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CHARACTERISATION OF A MULTIVARIATE
STOCHASTIC ORDERING

COLM ART O'CINNEIDE

The tnultivariate stochastic ordering induced by the convex nondecreasing functions com-
pares a combination of size and variability of random vectors. Closely following methods
developed by Strassen, we show that two probability measures are ordered in this way
if and only if they are the marginals of some submartingale. The implications of this in
majorisation theory are discussed.

1. INTRODUCTION

The purpose of this note is to clarify a somewhat abstruse point in the stochastic
ordering and majorisation literature, namely, the equivalence of the "submartingale
property" and the ordering of (Borel) probability measure (p.m.s) induced by convex
nondecreasing functions. To explain, let /J, and v denote p.m.s on Rfc , fc > 1, whose
means are finite (namely, the Euclidean length |x| is both fi— and i/-integrable). Let
us write \i ~^.(\) v if for every convex function / : Rfc —> R we have

(1) J / dfi ^ I f du.

We write \i <(2) v if (1) holds for every convex nondecreasing (that is, nondecreasing
in each variable) function / . Note that the integrals in (1) may be +oo, but not —oo.
Let us say that the pair (fj., u) has the submartingale property if there exists a pair
of random variables (X, Y) with finite means such that X has distribution fj,, Y has
distribution v, and (X, Y) is a submartingale:

(2) E(Y | X) ^ X a.s.

We say that (/M, v) has the martingaie property if it has the submartingale property,
and equality holds in (2) almost surely; that is, if (X, Y) is a martingale. In this note
we prove
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388 C.A. O'Cinneide [2]

THEOREM 1. Let fj. and v be p.m.s on Rfe with Unite means. Then fj, ^(2) " #"
and only if {p, u) has the submartingale property.

Strassen [4, Theorem 8] has proved that fj, ̂ (j) v if and only if (fi, v) has the
martingale property. This result is shown below (Corollary 1) to be an easy consequence
of Theorem 1, and in this sense Theorem 1 may be viewed as an extension of Strassen's
result. Strassen's Theorem 9 also contains the univariate case (\t = 1) of our Theorem
1. That Theorem 1 may be proved using Strassen's original techniques is not well
recognised in the stochastic ordering or majorisation literature. Our proof below closely
parallels the proof of Strassen's Theorem 8. Stoyan [3, p. 33] remarks that Theorem 1
is known in the one-dimensional case (k — 1), as does Wliitt [5, p. 1064].

When n and v are uniform (that is "equally likely") p.m.s on finite subsets of
R* of the same cardinality, the ordering ^(2) is a multivariate generalisation of the
weak majorisation ordering -<w of Marshall and Olkin [1]. In this context, Theorem 1
becomes an extension of the multivariate case of Theorem 5.A.9 of their book. Because
of the independent interest of majorisation, we provide an alternative proof of the result,
in this special case, which does not rely on functional analytic methods.

2. PROOF OF THEOREM 1

The following special case of Strassen's Theorem 7 is crucial to our proof of Theorem
1. Here TTJ and n2 denote the two natural projections of Rfc x R* onto R*. Let Zm

denote the set of continuous real-valued functions h on Rm for which

LEMMA 1. (Strassen). Let fi and v be p.m.s on R* having Snite means. Let A
be a nonempty convex set of p.m.s on Rfc x R*, with finite means, which is closed in
the topology generated by the functionals

(3) \^ Jhd\

for h 6 Z2k . Then a necessary and sufficient condition for A to contain a measure A<>
with marginals fi = XQ O TT^1 and u = Ao o w^1 is that

(4) I f dfi+ I gdv% sup /
J J XeAJ

f dfi + I g dv ^ sup I f o TTI + g o 7T2 dX

for all f and g in Zk .

This result is a straightforward consequence of Strassen's Theorem 7. The hy-
potheses of Lemma 1 apply to the set A of all p.m.s X which are the distribution of
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some Revalued submartingale (X, Y) with finite means. This may be seen as follows.
Strassen points out that the topology generated by the functionals (3) is rnetrisable.
Thus it suffices to show that if {An} C A is a sequence converging to a p.m. A in the
sense that

(5) / h dXn —> / h dX as n —» oo

for all h G Z2k, then A G A. Towards this goal, let g be a bounded nonnegative
continuous function on R*. The submartingale property of An implies that

I {go TTl)TT2 d \ n > / ( j / O

But the functions (<? o TTI)TT2 : R
2* —> R and (<7 o TTI )TTI : R2* —> R are in Z2k , so that

(5) implies that this inequality persists in the limit:

(go 7Ti)7r2 d\ > {go TT^TTI d\.

It follows that this inequality holds also for bounded nonnegative measurable g, and
thus that A 6 A as required. Note that A is not closed under weak convergence, as we
see from the example (for k = 1) (l/n)5(0,n) + (1 — l/n)6(0,-n/(n-i)) G A, ra = 2,3 ,
where 6X denotes the point mass at x . The topology on p.m.s of Lemma 1 ensures that
not only mass (namely, "A(dx)"), but also moment (namely ux\(dx)") cannot vanish
"in the limit."

By the concave nonincreasing majorant of a given Borel function g with (Borel)
domain T C R* we mean the least (extended-real-valued) concave nonincreasing func-
tion on Rfc which is greater than or equal to j on I . The following lemma gives
a simple characterisation of the concave nonincreasing majorant. In this section it is
enough to have this result for T = Hk; in Section 3 we shall find it useful to take T to
be a finite set.

LEMMA 2. The concave nonincreasing majorant of a real-valued Borel function g
with domain T C Rfc is given by g where

(6) g(s)= sup jg s€Rk,

M,(T) being the set of p.m.s concentrated on T with mean componentwise greater
than or equal to 3 .

Note:. Although g may not be defined on all of R* , g is (being —oo whenever M,(T)
is empty).
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PROOF: g > g on T since 8, e M,{T) if s G T. g is nonincreasing since if
t ^ s (componentwise) then Mt(T) C M,(T). g is concave since if fii G M,(T) and
fi2 G Aft(T') then p/zi + qfi2 G Mp,+ge(!r) , whenever p and g are nonnegative and sum
to 1. Thus g is concave and nonincreasing. It remains to show that if h is another
concave nonincreasing function satisfying g ^ h on T, then g ^ h also. To show this,
note that for such an h, and any fi G M,(T), we have

h{s)Z

Thus fix ^ h, where hx denotes the restriction of h to T. Now g 5: /ix on T, so
g ^ ^.T = ^> by monotonicity of" as defined by (6), and so g ^ h as required.

PROOF OF THEOREM 1: If (/it, u) has the submartingale property, (1) may be
deduced from (2) for convex nondecreasing functions through an application of Jensen's
inequality. Conversely, suppose that fi ^2)

 v • The result will follow from Lemma 1
once we prove (4) for the set A of distributions of Revalued submartingales with finite
means. Thus let / and g be elements of Zk. We have

(7) I f dfj, + I g dv ^ I f dp + I g dv, since g > g,

/

[ since — g is convex nonde-

f dfi + I g dfi, . . ,
J creasing, and fi S(2)

 v

+ g dfi <
Now let a be a real number for which

(8) a< snp[f(x) + g(x)].

Let us choose a point s G R* for which a < f(s) + g(s). By Lemma 2 there exists a

measure 0 G M, (Rfc) such that

a<f[s)+ J gd0.

Then the p.m. A on R* x R* defined by \({s} x E) = 0(E) for Borel E C Rk (that is
the p.m. giving all mass to the affine set {s} x R , with 9 determining the distribution
of mass on the second component) is in A, and further

/ / o TTI + g o TT2 d\ = f(s) + g d6 > a.

As a was arbitrary subject to (8) we have

sup / / o TTJ + g o TT2 dX 2; sup [f{x) + g{x)\ > f dfi + I g dv,
A€A J x€Rk J J

using (7) in the second inequality. This demonstrates (4), and we are done. |
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Remark. To relate the submartingale (X, Y) whose existence is quaranteed by The-

orem 1 to Marshall and Olkin's Theorem 5.A.9, note that their vector u corresponds

to our E(Y | X), and their v corresponds to our Y + X — E(Y \ X).

It is easy to deduce the corresponding representation for the ordering induced by

all convex functions. We have

COROLLARY 1. (Strassen). Let fi and v be p.m.s on R* with Unite means. Then

fi ^(j) v if and only if the pair (/i, v) has the martingale property.

PROOF: Sufficiency of the martingale property follows from Jensen's inequality.
Conversely, if \i <(j) v then clearly fi ^(2) v also. Thus by Theorem 1 we can find
(X, Y) with the correct marginals for which E(Y | X) ^ X. But fi ^^ v also
implies that E(X) — E(Y), since (1) holds for all affine functions / , and this forces
E{Y \X) = X a.s. |

3. MAJORISATION

Let 5 = {xi, z2 ) . . . £ „ } and T = {j/i, j/2> •••2/n} be subsets of Rfc of the same
cardinality. Following Marshall and Olkin let us write 5 -<„, T if for every convex
nondecreasing function / : R* —> R we have

Let us write 5 -< T if this holds for all convex / . Then we have

COROLLARY 2. 5 -<w T if and only if there exists a doubly stochastic matrix
P = (pij) such that

n

Y^ ^ xui = 1, 2, . . .n .

Furthermore, S -< T if and only if such a P may be found giving equality here.

PROOF: Let /i be the p.m. giving mass 1/n to each point of 5 and let \i be the
p.m. giving mass 1/n to each point of T. Then the hypothesis 5 -<w T is equivalent
to M =(2) v • The result is a restatement of the conclusions of Theorem 1 and Corollary
1 in this situation. |

Since the idea of majorisation is of interest in its own right, and is a finite-
dimensional notion, it is somewhat unsatisfactory that in proving Corollary 2 we im-
plicitly used the functional analytic ideas of Lemma 1. We now provide a proof of
Lemma 1 in the finite-dimensional case which uses only finite-dimensional methods. It
is appropriate to use the language of vectors and matrices now, rather than that of
functions and measures. In the following, all vectors are taken to be columns, and T

denotes transpose. We denote by ej the 7-vector all of those entries are ones.
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THEOREM 2. Let n € Rm and v £ R™ be nonnegatfive rectors whose entries sum

to one. Let A be a closed convex set of nonnegative m x n matrices whose entries

sum to one. Then A contains a matrix Ao with row sums fj, = \oen and column sums

uT =

(9)

if and only if

for all f € Rm and j 6 R n .

PROOF: Necessity being obvious, we only prove sufficiency. Let A be the set of all
real m x n matrices with row and column sums // and vT, respectively, and assume,
seeking to contradict (9), that A has no element in common with A . Since both A and
A are closed and convex, and A is compact, there exists, by the (finite-dimensional)
separating hyperplane theorem, a linear functional (p for which

(10) inf <p{\) > sup v?(A).
A ^ A AGA

As A is nonempty, such a <p is bounded below on A. But since A is an affine set,
the functional <p can only be bounded below there if it is constant there, and so <p is a
function of the row and column sums of its argument only. Thus there exist / and g
with

V(A) - /TAen + eT
m\g.

But this with (10) contradicts (9), since <p{X) = fT(J. + gTv for A £ A, and we are

done. |

This result, along with a proof of Lemma 2 in the case of T a finite set, engenders
a proof of Corollary 2 using only finite-dimensional methods.
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