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Abstract. We define a notion of substitution on colored binary trees that we call substree-
tution. We show that a point fixed by a substreetution may (or not) be almost periodic,
and thus the closure of the orbit under the F+

2 -action may (or not) be minimal. We study
one special example: we show that it belongs to the minimal case and that the number of
preimages in the minimal set increases just exponentially fast, whereas it could be expected
a super-exponential growth. We also give examples of periodic trees without invariant
measures on their orbit. We use our construction to get quasi-periodic colored tilings of
the hyperbolic disk.
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1. Introduction
1.1. Background and main motivations. In the present paper, we define and study a
notion of substitution on colored trees. In the following, they will be called substreetutions
to make clear they are substitutions on trees. The term substitution will be used for
‘classical ones’ acting on the line. These substreetutions are new objects and generate
many natural questions, within the dynamical viewpoint.

This work is a first step in view to export thermodynamic formalism to colored trees and
F+

2 -actions. Our first main theorem (see Theorem A) states the existence of a substreetution
H which admits a fixed point J = H(J), such that the closure of the F+

2 -orbit of J X :=
{Tω(J), ω ∈ F+

2 } is a minimal invariant set. This construction is an extension to the case
of colored trees and F+

2 actions of well-known objects for the case {0, 1}N and N-actions,
e.g. the Fibonacci or the Thue–Morse substitutions. However, we point out that minimality
for F+

2 -actions is different from minimality for N-actions, and does not only mean that any
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2 A. Baraviera and R. Leplaideur

point has a dense orbit. We refer the reader to [10, 11]. In particular, we exhibit an example
(see Theorem 1.4) of a periodic orbit which is non-minimal. In future work, we expect to
study thermodynamic formalism for (X, F+

2 ).
The first motivation comes from thermodynamic formalism in ergodic theory. One of

our final goals is to exhibit and study examples of freezing phase transitions (hopefully)
with ground states supported in quasi-crystal for several semi-group actions. A series of
works [1, 6, 7] investigates this question for Z-actions and makes links with substitutions.
The question of higher-dimensional actions naturally appears, but conflicts with the fact
that 1D thermodynamic formalism deeply uses the transfer operator, in particular to detect
freezing phase transitions. Indeed, there is no equivalent of this operator for Zd -actions
with d > 1. Actually, this operator needs (to be well defined) a kind of canonical order in
the action, which does not hold for Zd , d > 1. As F+

2 has a canonical order, we have thus
been led to study substitutions associated to F+

2 -actions.
The second motivation is the existence of works on Sturmian trees (see [5, 15]). We

were motivated to define substitutions on colored trees and to study the closure of the fixed
point, as it is done for the Fibonacci sequence. We remind that the Fibonacci sequence is
both Sturmian and substitutive.

Coming from the ergodic theory world, the question of invariant measures is of prime
interest. It seems that little is known on invariant measures for trees. We remind that
F+

2 is not amenable, which means the standard construction of invariant measures fails.
Literature mentions examples for simple periodic trees with high symmetries, Bernoulli
measures on the vertices, or Markov inspired measures (see [4, 24]). In [13], some
stationary measures are studied but it is not clear that they are F+

2 -invariant measures.
We also mention the work of Rozikov et al (see [23]) in the statistical mechanics context.

We remind that thermodynamic formalism is inspired from statistical mechanics
in physics. In thermodynamic formalism, invariant measures are usually obtained as
equilibrium states, and more precisely as conformal measures coming from a transfer
operator. It turns out that the minimal set we get in Theorem A seems to be sufficiently
(dynamically) rich to contain many invariant measures. Contrary to what could be expected
(see the first motivation), we finally have hope that the machinery with the transfer operator
could work to produce invariant measures inside X and not only external measures with
freezing phase transition in X.

If one wants to mimic or adapt the classical proofs, one of the first key points is to
control the spectral radius of the transfer operator. Still for the classical case, the logarithm
of the spectral radius is the topological entropy of the system. Entropy is a way to quantify
the complexity of the system, and this is the core of the study in dynamical systems.
Usually, entropy is given by the exponential growth rate of the number of configurations
the system sees with respect to their length. In the case of transitive shifts of finite type,
for example, defined by means of an adjacency matrix A that shows the allowed transitions
among elements of the alphabet, entropy is precisely the logarithm of the Perron–Frobenius
eigenvalue of A. For labeled trees, it is natural to expect a super-exponential growth rate
(see [19]).

It is interesting to remember that for classical substitutions, complexity is in O(n),
O(n log log n), O(n log n), or O(n2). This means that chaos is not observed at
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exponential scale but at a lower scale. Substitutions are chaotic but zero-entropy systems.
Here, we show in our second main result, Theorem B, that the growth rate for the number
of preimages of any tree in X is at most exponential, with an upper bound on the speed.
As the growth rate for preimages is usually expected to coincide with the growth rate for
configurations [21], this indicates that it is likely that our minimal system X behaves as a
classical expanding dynamical system, despite the acting semi-group being F+

2 and not N.
Copying the vocabulary for classical substitution, we mostly consider constant length-2

substitutions on regular binary trees in the present paper. More general substreetutions can
easily be defined; however, some computations show that complexity may become large
extremely fast.

Several examples of constant length-2 substreetutions are described and studied in the
paper. In one example, the fixed point is the usual Thue–Morse sequence lifted in a tree
(each line has a constant color). The closure of the orbit of this tree is obviously minimal
but does not really exploit the tree structure.

Furthermore, in Theorem 1.5, we give an example of a periodic tree without an
F+

2 -invariant measure.
The referee has kindly pointed out to us the paper [2], which continues a general

program and aims to expand the theory of aperiodic order to non-abelian locally compact
groups and to study the resulting dynamical systems. We hope that our present article
participates in this general program.

Many results we use on substitutions are well known and can be found in the general
book on substitutions [12].

1.2. Settings and results

1.2.1. Binary trees and colored trees. We consider the free monoid with two generators
F+

2 whose elements are the identity and all the finite words, of any given length, that can
be written with the alphabet {a, b}. The letter e stands for the empty word; |·| is the length
of a given word, meaning the number of letters it has; and we also set |e| = 0. The product
of two words is just the word obtained by the concatenation. The lexicographic order on
F+

2 is the one given by a < b and ω < ω′ if |ω| < |ω′|.
Fix a set A, called the alphabet; a colored tree (also called configuration) is a map

B : F+
2 → A, say B ∈ AF

+
2 . In the following, one shall set Bx for the value B(x) and, for

simplicity, we also fix A as being the set {0, 1}. We will only consider colored trees, and
thus simply use the word tree.

If A is a tree and ω belongs to F+
2 , Aω is called the digit at position ω. Hence, if the

tree A is fixed, elements of F+
2 will also be called sites. The generation of a site ω is |ω|.

Hence, the root, which corresponds to the site e, is generation 0, the two first descendants
form the set of sites at generation 1, and so on.

We shall always represent trees vertically, going down, with the root at the top. With
this representation, the digits of A corresponding to a fixed generation |ω| endowed with
the lexicographic order of its sites are called a line; line 0 corresponds to Ae (the root), line
1 corresponds to (Aa , Ab), line 2 to (Aaa , Aab, Aba , Abb), and so on.

If ω is a site, ω.a is called its a-follower. Equivalently, we shall say that the digit Aωa

is the a-follower of digit Aω and the digit Aωb is the b-follower of digit Aω. The sites ω.a
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and ω.b are said to be brothers. Followers will also be called children. An n-descendant for
ω is any digit at site ωω′ with |ω′| = n. Children are 1-descendants.

The site ω is the 1-ascendant of sites ω.a and ω.b. We shall also call it the father. The
father of the father is called the grandfather. It is also the 2-ancestor. By induction, one
may define the n-ancestor of any site ω with |ω| > n. Two sites are called cousins if they
have the same grandfather but they are not brothers.

A backward path in the tree is a path going from one site to one of its ancestor and
containing all intermediate ancestors. A forward (finite) path is a backward path read in
the opposite direction.

The distance between two trees A and B is 2−N(A,B), where N(A, B) is the minimal
integer n such that Aω �= Bω and |ω| = n.

In other words, d(A, B) = 2−n means that A and B have different roots if n = 0, and
if n ≥ 1, then Aω and Bω coincide for every ω with |ω| ≤ n − 1 and for at least one ω

with |ω| = n, one of the followers of Aω is different to the same follower for Bω.
Note that the space of trees AF

+
2 is compact (for the metric we introduced) as a product

of compact spaces. The subset of trees with root equal to 0 (or 1) is also compact as a
closed set included into a compact set.

1.2.2. Canonical dynamics on trees. There is a natural F+
2 -action on trees defined as

follows.
For any given x ∈ F+

2 and A ∈ F+
2 → {0, 1}, take

(TaA)x := Aax and (TbA)x := Abx .

For the definition of distance, one can easily see that we have

d(Tω(A), Tω(B)) ≤ 2d(A, B) for ω = a, b,

and thus the maps Ta and Tb are Lipschitz continuous.
As usual, given ω ∈ F+

2 , ω = ω1ω2 · · · ωk , we just write Tω = Tω1ω2···ωk
= Tω1 ◦ Tω2 ◦

· · · ◦ Tωk
. It is important to observe that

(Tω1Tω2 · · · Tωk
A)x = (Tω2 · · · Tωk

A)ω1x = (Tω3···Tωk
A)ω2ω1x = · · · = Aωk ···ω2ω1x .

This can be simply written as (TωA)x = Aω̃x where the symbol ˜ reverses the order of the
word ω, say, ω̃ := ωkωk−1 · · · ω2ω1.

Definition 1.1. Let A be a tree. A patch (of size n ≥ 1) is any ball B(TωA, 2−n) where
ω ∈ F+

2 .

Definition 1.2. A tree A is called pre-periodic if there exists a finite set of trees
O := {A(1), A(2), . . . , A(n)} satisfying:
(1) O contains A;
(2) O is Ta- and Tb-invariant.
The tree A is said to be periodic if Ta(O) ∪ Tb(O) = O.

Equivalently, A is periodic and O := {A(1), A(2), . . . , A(n)} is its orbit means that if
we consider the oriented graph whose states are the elements of O with edges representing
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FIGURE 1. A marked substreetution.

images by Ta or Tb, then each vertex is the initial point for two edges and the end point for
at least one edge.

Notation 1. For simplicity, we shall set T −1(A) for T −1
a (A) ∪ T −1

b (A).

1.2.3. Substreetution

Definition 1.3. A substreetution (actually, this is a constant length-2 substitution) on trees
is a map H on the set of configurations defined by concatenation as follows.
(1) H maps each site to a triple (actually a root with two followers), the value depending

only on the value of the digit at the site. See box with a dashline in Figure 1.
(2) H connects images of subtrees (followers) as indicated in Figure 1, with I, J, K, L ∈

{H(A), H(B)}.
The order word IJKL is called the grammar of the substreetution and is explained below.

The substreetution is said to be marked if H(0) =

i

and H(1) =

1 − i

, i = 0, 1.

Identifying the trees and their name, and re-employing notation from above, the word
IJKL is a word in {H(A), H(B)}4 and can canonically be identified with a word in
{A, B}4. This defines the grammar of the substreetution H and indicates the H-image
of which sub-tree as to be connected on which slot at generation 2.

Example. The grammar ABBA means I = L = H(A) and J = K = H(B). In this case,
it is easy to see that the function H satisfies the following relations: HTa = TaaH = TbbH

and HTb = TabH = TbaH .

More generally, we let the reader check that

{TaaH , TabH , TbaH , TbbH } = {HTa , HTb}, (1)

which is rewritten under the form T 2 ◦ H = H ◦ T . We call this relation the renormaliza-
tion equation.

We emphasize that equation (1) is a natural extension to the F+
2 -action case of the

property σ 2 ◦ H = H ◦ σ , which holds for the shift considered as an N-action for constant
length-2 substitutions.
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6 A. Baraviera and R. Leplaideur

It has been pointed out to us that our procedure could have some similarities with the one
introduced in [9]. This procedure deals with theoretical computer science. The vocabulary
and probably the questions are quite different from those in Dynamical Systems (at least as
used or studied by the authors). This makes the understanding of similarities or differences
harder. At least, we see a difference as the Damm procedure seems to study finite trees
whereas we are interested in infinite trees. We emphasize that our procedure has been
defined from the need that the renormalization equality in equation (1) holds.

1.2.4. Results. The first two results describe a property of one specific substreetution.

THEOREM A. Let H denote the substreetution given by 0 
→

0

1 0 and 1 
→

1

1 0,
equipped with the grammar BBAB. Then there exists a unique fixed point J with root 0.
The closure of its orbit is a minimal dynamical system X and is not periodic.

There also exists a unique fixed point J′ with root 1. It coincides with J except at the
root.

As T is continuous and X is compact, T (X) ⊂ X and minimality yield that T (X) = X.
Hence, T (restricted to X) is onto, which is a priori not obvious. This makes sense to study
the backward complexity in X. Furthermore, it is not clear that J′ belongs to X. However,
we show this actually holds, see Corollary 5.17.

THEOREM B. With the same H, let A be in X. Set p(n, A) := #{B ∈ X, Tω(B) = A,
|ω| = n}. Then for every n,

p(n, A) ≤ 3n.

The bound in Theorem B is not sharp at all. What is remarkable is that it exists. We
emphasize that in the whole space of trees AF

+
2 , for any tree A, T −1(A) has cardinality

of the continuum. Furthermore, we conjecture a result similar to what holds for the
tree-pressure in [20]: for most of the elements A in X,

lim
n→+∞

1
n

log p(n, A) = sup
B∈X

lim
n→+∞

1
n

log p(n, B),

and both quantities exist.
Re-employing vocabulary from 1D ergodic theory, balls of size 2−n form a partition of

X. We denote by Rn its cardinality. Here, Rn is the number of patches of size n that we see
in J. We conjecture that

lim
n→+∞

1
n

log Rn = sup
B∈X

lim
n→+∞

1
n

log p(n, B)

holds.
The next results show that substreetutions may not generate a minimal set. The final

result shows that the existence of invariant measures on a periodic set of trees does not
always hold.
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THEOREM 1.4. The substreetution given by 0 
→

0

0 1 and 1 
→

1

1 0, equipped with
the grammar ABBA is periodic but non-minimal.

THEOREM 1.5. There exist periodic trees with no invariant measure on their orbit.

1.3. More general substreetutions. Once we agree that the way to define a substitution
on trees is to consider that equality in the renormalization equation (1) holds for sets, then
it is very to define more general substreetutions.

Actually, H can be defined by:
• fixing the image of each ‘color’ as a finite tree;
• fixing the grammar for each slot at the end of each H(⊗).
This may be defined for colored trees involving a greater alphabet (more than two colors)
and even not necessarily binary (or even regular) trees. Of course, the grammar has to
consider possible irregularities in the number of followers.

Example. We can consider a substreetution on binary 2-colored trees defined by

H

⎛⎜⎝ 0

A B

⎞⎟⎠
=

0

0

H(A) H(B)

H(B)

and H

⎛⎜⎝ 1

A B

⎞⎟⎠
=

1

0

H(A) H( B)

0

H(B) H(A) .

In this paper, we will mostly consider constant length-2 substreetutions, because
these objects are already complicated and there are many situations that we have not
yet studied. For constant length-2 substitutions on alphabets with two letters, there are
23 = 8 possibilities. For constant length-2 substreetutions on regular binary trees, there are
128 possibilities. Even if these numbers may be diminished due to symmetries, the number
of possibilities for trees is much higher than the number of possibilities for the line.

Furthermore, we will deeply use the constant-length structure to define tools (as the
source and the χ-procedure). These tools could be defined for general substreetutions but
would be much more complicated and harder to work with.

1.4. Plan of the paper. In §2, we first give some general results on substreetution, as
the existence of fixed points. Then, we prove some points of Theorem A: existence of two
fixed points that differ only from the root. This property corresponds, according to [17,
Definition 30], to say that the constant length substitution considered in Theorem A is not
strongly injective.

In §3, we give a precise description of each line of the fixed point J. For that, we use
the notion of source which corresponds to unsubstitution in the classical.

Section 4 is devoted to the proof of the remaining points in the Main Theorem A: that
X is minimal and that J is not periodic.
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Minimality follows from [10]. We show that J is almost periodic. The proof that J is not
periodic is done by contradiction. Assuming it is periodic, we use the Perron–Frobenius
theorem on positive matrices to show that the proportion of 1s along the lines of J should
have finitely many accumulation points that are all positive. Contradiction comes from the
fact that the proportion of 1s goes to 0 along special subsequences of lines.

Section 5 explores several symmetries and rigidities of the configuration J and its
images. This allows us to determine the types (namely odd and even) of trees in X.

We also show that knowing one subtree in A ∈ X allows one to recover its brother and
even its cousins.

Section 6 is devoted to the proof of Main Theorem B. For any type of tree defined above,
we compute the number of possible preimages in X and give a precise description of them.

Finally, in §7, we show Theorems 1.4 and 1.5. We also give an interesting example of
substreetution generating the well-known Thue–Morse sequence along the paths.

We give a picture of J and show how to get a colored quasi-periodic tiling of D2 using
elements of X.

2. Some more general facts on (constant length-2) substreetutions
2.1. Source and unsubstreetuted tree. We consider a constant length-2 substreetution as
defined in Definition 1.3.

Recall the renormalization equation T 2 ◦ H = H ◦ T . From this we get the following
lemma.

LEMMA 2.1. Let H be a substreetution. For every site ω with even length, there exists a
word s(ω) of length |ω|/2 such that

Tω ◦ H = H ◦ Ts(ω).

The site s(ω) is called the source of the site ω. Furthermore, given two words of even length
ω and ψ , then s(ωψ) = s(ω)s(ψ).

Proof. The first part follows as a direct application of the renormalization equation by
induction. For the second, just notice that

Tωψ ◦ H=Tω ◦ Tψ ◦ H=Tω◦H◦Ts(ψ)=H◦Ts(ω)◦Ts(ψ)=H◦Ts(ω)s(ψ)=H◦Ts(ωψ).

We emphasize that a kind of converse is true. Given any word ω, there exists ω′
with |ω′| = 2|ω| such that Tω′ ◦ H = H ◦ Tω. Nevertheless, such an ω′ is not necessarily
unique. It is entirely determined by the grammar.

2.2. Fixed points for marked substitution. We start with a basic observation.

LEMMA 2.2. A marked substreetution is one-to-one.

Proof. Let A and B be two trees coinciding up to generation n − 1. Let ω, with
|ω| = n, be such that Aω �= Bω. Let ω′ be such that s(ω′) = ω. By definition, Tω(A)

and Tω(B) have different roots. Because H is marked, H ◦ Tω(A) = Tω′(H(A)) and
H ◦ Tω(B) = Tω′(H(B)) have different roots. Therefore, H(A) �= H(B).
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Assume that A is a fixed-point for a substreetution H. Let ω be a site with even length.
Set ω′ = s(ω). Then, Tω(A) = H(Tω′(A)). We say that Tω′(A) is the unsubstreetuted tree
from Tω(A). By Lemmas 2.1 and 2.2, it is well defined and uniquely determined. However,
because the source operation is not one-to-one, it may be that several sites have the same
unsubstreetuted tree. This holds if and only if the subtrees with roots on these sites are
equal.

Now, we show that a well-known result on classical substitutions holds for substreetu-
tions.

PROPOSITION 2.3. If H(0) =

0

(respectively H(1) =

1

) then, independently of the
chosen grammar, there is a unique fixed point for H starting with 0 (respectively 1). They
will respectively be denoted by 0A and 1A.

Proof. Let us assume that H(0) = (0, ., .) holds, the other case being totally symmetric.
By definition of H, if A and B are two trees coinciding up to generation n, with n ≥ 1,

then H(A) and H(B) do coincide up to generation 2n because each site produces two
generations of new sites. Therefore,

d(H(A), H(B)) ≤ d2(A, B) ≤ 1
2d(A, B).

Hence, H acts as a contraction on the compact set of trees whose root is 0. It admits a
unique fixed point on this set.

Because the set of trees is compact, and thus is a Hausdorff space, the fixed point 0A

is obtained as the limit of Hn(A) as n goes to +∞, where A is any tree with root 0.
Furthermore, 0A can also be obtained as limn→+∞ Hn(0).

In Theorem A, we consider the substitution 0 
→

0

1 0 and 1 
→

1

1 0, equipped with
the grammar BBAB.

It fulfills conditions to ensure that there is a fixed point with root 0 and a fixed point
with root 1. We denote by J the fixed tree with root 0 and by J′ the fixed point with root 1.
It is easy to check (by induction) that each odd line is a string of 10s.

We give here a first description of these two fixed points.

PROPOSITION 2.4. The two trees J and J′ only differ on the root.

Proof. We recall that J and J′ are obtained as limn→+∞ Hn(0) and limn→+∞ Hn(1).
Hence, the proof is done by induction on the number of iterations for H. We show that
Hn(0) and Hn(1) only differ in the root.

Because H(0) =

0

1 0 and H(1) =

1

1 0, then level 1 for J is equal to level 1 for J′.
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10 A. Baraviera and R. Leplaideur

For n ≥ 2, Hn(0) = Hn−1

⎛⎝ 0

1 0

⎞⎠
. This finite tree is the tree An−1 := Hn−1(0),

where we glue the trees Hn−1(0) or Hn−1(1) at the extremities. The gluing only depends
on the grammar rules.

Similarly, the finite tree Hn(1) = Hn−1

⎛⎝ 1

1 0

⎞⎠
is equal to the tree Bn−1 :=

Hn−1(0), where we glue the trees Hn−1(0) or Hn−1(1) at the extremities. The gluing
for that tree respects the same rules as for Hn(0).

By assumption, A and B only differ in the root. This finishes the proof by induction.

In the following, we write O(J) for {Tω(J), ω ∈ F+
2 }. We remind that X = O(J).

3. Description of the Jacaranda tree J

In all the following, except if it is especially mentioned, we shall only consider the

substitution from Theorem A: 0 
→

0

1 0 and 1 
→

1

1 0, equipped with the grammar
BBAB. In this case, the renormalization equations take the form

TaTaH = TbTaH = TbTbH = Tb, TaTbH = HTa , (2)

where J and J′ are the two fixed points (for H) respectively with root 0 and 1. Additionally,
J is referred to as the Jacaranda tree.

As mentioned above, each odd line in J is a concatenation of 10s. The goal of this
section is first to describe each even line (see Proposition 3.11) and to get an estimation for
the number of 1s on even lines. This later result will be used to show that J is not periodic
(nor pre-periodic).

3.1. Inverse of the source function for J. As defined previously in Lemma 2.1, the source
function s is defined by

TωH = HTs(ω).

From equation (2), it is easy to see that{
s(aa) = s(ba) = s(bb) = b,

s(ab) = a.

Obtaining s for a general even length word ω is now easy with the use of the concatenation
property described in Lemma 2.1.

Here we want to adapt the source function s to understand how to describe the tree J;
more precisely, given an even length word ω, we want to find a function S such that
Jω = JS(ω).
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We remind the reader that for a word ψ = ψ1ψ2 . . . ψk , we set ψ̃ = ψkψk−1 . . . ψ1;
we easily get ψ̃η = η̃ψ̃ . By extension, we also set s̃(ω) := s̃(ω).

We claim that S(ω) = s̃(ω̃) holds. To prove the claim, we first recall that the map H has
the property that for any given tree C, we get (H(C))e = Ce. Then,

Jω = (Tω̃J)e = (Tω̃ ◦ H(J))e = (H ◦ Ts(ω̃)J)e = (Ts(ω̃)J)e = J̃s(ω̃) = JS(ω).

Hence, a is the image of ba under S. In a similar way, we can obtain that the images of
S on the points aa, ab, bb, and ab are:{

S(aa) = S(ab) = S(bb) = b,

S(ba) = a.

More generally, we get the following lemma.

LEMMA 3.1. Given two words P and Q with even length, then S(PQ) = S(P )S(Q).

Proof. The proof uses the properties of the source function s presented in Lemma 2.1: we
have

S(PQ) = s̃(P̃Q) = s̃(Q̃P̃ ) = ˜s(Q̃)s(P̃ ) = s̃(P̃ )̃s(Q̃) = S(P )S(Q).

Now we want to see the inverse image of S, which we denote by θ , as a multivalued
function that maps words to sets of words. It is defined in such a way that S(θ(p)) = {p}
for any word p and θ(S(P )) � P for any even length word P. In the definition of θ , we also
set θ(∅) = ∅ and θ(e) = {e}.

The main property of the function θ is the following lemma.

LEMMA 3.2. Given the words p and q, then θ(pq) = θ(p)θ(q) (where the product above
is the set of words obtained by concatenating any word in θ(p) with any another word in
θ(q)).

Proof. (θ(p)θ(q) ⊆ θ(pq)): Let R ∈ θ(p)θ(q); then R = PQ, where P ∈ θ(p) and
Q ∈ θ(q). Hence, S(P ) = p and S(Q) = q, and Lemma 3.1 yields S(R) = S(PQ) =
S(P )S(Q) = pq, showing that pq is the source for R. Therefore, R ∈ θ(pq) holds.

(θ(pq) ⊆ θ(p)θ(q)): Let R ∈ θ(pq); hence, S(R) = pq. Since R is a word with
even length (because it is in the image of θ ), we can write R = AB with |A| = 2|p|
and |B| = 2|q|. Then S(R) = S(AB) = S(A)S(B). This shows that S(A) is the prefix
of S(R) = pq with length |p|. Similarly, S(B) is the suffix of pq with length |q|.
Hence, S(A) = p and S(B) = q. This implies that A ∈ θ(p) and B ∈ θ(q), showing that
R = AB ∈ θ(p)θ(q) as claimed, concluding the proof.

A simple recurrence yields

θ(p1p2 . . . pk) = θ(p1)θ(p2) . . . θ(pk). (3)

It is also easy to see from the definition that θ(a) = ba and θ(b) = {aa, ab, bb}; hence,
using the property above, we can obtain θ for any given word.
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12 A. Baraviera and R. Leplaideur

3.2. The χ-procedure for even lines. Odd lines for J and J′ are just strings of 10s. We
want to get a description for even lines. We start with the last even line for finite trees.

3.2.1. Word in the last even line for image of finite colored trees. Here, we want to
describe how the word in the last line for a colored tree generates the word in the
penultimate line for its image by H. This procedure is recursive.

Definition 3.3. A family-block in a colored tree is the collection of all n-descendants of a
site ω.

Note that two brothers and four cousins form a family block. A family block has
cardinality 2n, where n is such that the first common ancestor is their n-ancestor.

Definition 3.4. Let A be a finite colored tree whose last line is a full family block. Then,
the word in the last line is called the bottom-word of A. It is denoted by bw(A). The word
in the penultimate line is called the vice-bottom-word. It is denoted by vbw(A).

The next lemma is a direct consequence of the definition of H, depending strongly on
the chosen grammar.

LEMMA 3.5. Let A be a finite colored tree whose last line is a full family block. Set

A =

⊗

L R . Then,

vbw(H(A)) = vbw(H(R))vbw(H(R))vbw(H(L))vbw(H(R)).

Note that the equality bw(H(A)) = bw(H(R))bw(H(R))bw(H(L))bw(H(R)) also
holds but is not interesting as the bottom-word is only composed by a chain of 10s.

Now, to introduce χ , we notice that we can represent any configuration C ∈ {0, 1}F+
2 by

means of the sets of addresses of the 1s in each of its lines (it is clear that this can also
be done using zeros, our choice of ‘1’ here is completely arbitrary). Let us define the set
Wn = {a, b}n of words of length n ≥ 1 over the alphabet {a, b}, where W0 is the singleton
{e} that represents the root.

Given a configuration C, we have, on the line l ≥ 0, a word of length 2l on the alphabet
{0, 1} whose addresses are words on the alphabet {a, b}, with length l; hence, the addresses
corresponding to the line l are in Wl . Then we define 1l(C) as the set of addresses ω ∈ Wl

where Cω = 1.
For example, 12(0010) = {ba} and 13(01000001) = {aab, bbb}; in the case of words

with length one (corresponding to the root of the configuration), we write 10(0) = ∅ and
10(1) = e.

Since the alphabet is {0, 1}, we have a one-to-one correspondence between a word
P ∈ {0, 1}2l

(with length 2l) and the set 1l(P ) ⊂ Wl .
In particular, this allows us to define a function χ that maps words of {0, 1}2l

to words of
{0, 1}22l

: given a word P ∈ {0, 1}2l
, we take the corresponding addresses of the symbols

‘1’ (say, 1l(P )), take their image under θ , which gives a set of addresses in {a, b} with
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length 2l, and consider them as the addresses of the symbols ‘1’ of a new word χ(P ) of
length 22l . More formally, we have the following definition.

Definition 3.6. χ is the function such that

12l(χ(P )) = θ(1l(P )),

where P is a word of length 2l over the alphabet {0, 1}.
Remark 1. In the expression above, as usual, θ(A) = {θ(a) for all a ∈ A}.

From this definition, we get that the function χ can be described recursively (but it is
valid only for the substitution H defined in the beginning of this section).

LEMMA 3.7. We have that χ(0) = 0, χ(1) = 1 and, for any given word P1P2 with length
2l , we have

χ(P1P2) = χ(P2)χ(P2)χ(P1)χ(P2).

Proof. We have

10(χ(0)) = θ(10(0)) = θ(∅) = ∅.

Hence, χ(0) = 0. Similarly, 10(χ(1)) = θ(10(1)) = θ(e) = e, and so χ(1) = 1.
Now

12l(χ(P1P2)) = θ(1l(P1P2)).

However, 1l(P1P2) = {a1l−1(P1), b1l−1(P2)} and then

θ(1l(P1P2)) = θ({a1l−1(P1), b1l−1(P2)})
= {baθ(1l−1(P1)), aaθ(1l−1(P2)), abθ(1l−1(P2)), bbθ(1l−1(P2))}
= {aa12l−2(χ(P2)), ab12l−2(χ(P2)), ba12l−2(χ(P1)), bb12l−2(χ(P2))}
= 12l(χ(P1P2)).

Hence, χ(P1P2) = χ(P2)χ(P2)χ(P1)χ(P2).

Remark 2. We emphasize (and let the reader check):
(1) χ(10) = 0010;
(2) any χu(10) = χ ◦ . . . ◦ χ︸ ︷︷ ︸

u times

(10) with u ≥ 2 is a concatenation of blocks 0010 and

0000;
(3) χu(10) is a word of length 22u

in 0s and 1s.

PROPOSITION 3.8. For any finite colored tree with full last line, say A, then
vbw(H(A)) = χ(bw(A)) holds.

Proof. The proof is done by induction on the number of lines of the finite colored tree A

(with full last line). If A = 0, 1 (that is only line 0), then H(A) =

⊗

1 0 with ⊗ = A.
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14 A. Baraviera and R. Leplaideur

Moreover, bw(A) = ⊗. Then,

vbw(H(A)) = ⊗ = χ(⊗) = χ(bw(A)).

Assume that the result holds for any finite colored tree with full last line with l lines.

Let A be a finite colored tree with full last line and with l + 1 lines. Set A =

⊗

L R and
bw(A) = w. Then w = bw(L)bw(R) holds with L and R two colored trees with full last
line and with l-lines.

Lemma 3.5 and the induction assumption yield

vbw(H(A)) = vbw(H(R))vbw(H(R))vbw(H(L))vbw(H(R))

= χ(bw(R))χ(bw(R))χ(bw(L))χ(bw(R))

= χ(bw(L)bw(R)) = χ(bw(A)).

3.2.2. Some technical lemmas on χ . We give some extra properties of χ that will be
used later.

LEMMA 3.9. If ω is a word with length 2l and ω′ is the concatenation of 2k words ω, then
χ(ω′) is a concatenation of χ(ω).

Proof. The proof is done by induction on k. The result is obvious if k = 1. Let us assume
it holds for k, and let us prove it for k + 1.

Set ω′ to be the concatenation of 2k words ω and ω′′ = ω′ω′. Then,

χ(ω′′) = χ(ω′ω′) = χ(ω′)χ(ω′)χ(ω′)χ(ω′).

Hence, the property holds for k + 1 just by using the induction hypothesis.

LEMMA 3.10. For any u ≥ 1, the word χu(10) has at least one 1 in the second half. The
same holds for the first half if u ≥ 2.

Proof. The proof is done by induction.
First, χ(10) = 0010. The second half of the word is 10 which contains 1.
Let us assume that the result holds for χu(10) and let us prove it for χu+1(10). Set

χu(10) = P1P2 with |P1| = |P2|.
By definition, χu+1(10) = χ(χu(10)) = χ(P1P2) = χ(P2)χ(P2)χ(P1)χ(P2). The

second half of χu+1(10) is the word χ(P1)χ(P2) as the length of the image of a word
under χ only depends on the length of the word.

By the induction hypothesis, P2 contains some 1s. By the definition of χ , as χ(1) = 1,
χ(P2) also contains some 1s. This shows that both halves contain some 1s.

3.2.3. Description of words on even lines in J

PROPOSITION 3.11. For every integer of the form m = 2u(2n + 1) with u ≥ 0, the word
at generation m in J is a concatenation of blocks χu(10).
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Proof. The proof is done by induction on u.
For u = 0, we look at an odd line that is only composed by blocks 10 by the definition

of H.
We assume that this the property holds for any line of the form 2u(2n + 1) and we prove

it for a line of the form 2u+1(2n + 1).
At line 2u(2n + 1), we consider all the consecutive and juxtaposed blocks of length 22u

.
They form a sequence of family blocks with common 2u-ancestors. More precisely, the line
2u(2n + 1) is the juxtaposition of the bottom-words of all the finite subtrees in J with root
at line 2u+1n and with size 2u.

The tree J is invariant by H, and hence the line 2u+1(2n + 1) is obtained from the line
2u(2n + 1). From Proposition 3.8 and the induction hypothesis, Lemma 3.9 shows that the
line 2u+1(2n + 1) is the concatenation of blocks χ(χu(10)) = χu+1(10).

We emphasize:
(1) odd lines are only composed by concatenations of 10s;
(2) lines in 4N + 2 are only composed by 0010;
(3) lines in 4N are composed by blocks 0010 and blocks 0000.

3.3. Proportion of 1s on even lines in J. Now we want to estimate how many 1s we have
in even lines of the Jacaranda tree J.

First we start with special even lines.

PROPOSITION 3.12. The number of 1s on the line 2n is given by 22n
(1 + f n(1))−1, where

f (x) = x + x−1 + 1 and n ≥ 0.

Proof. First, we recall the map θ is defined such that θ(a) = ba, θ(b) = {aa, ab, bb} and
θ(pq) = θ(p)θ(q) (meaning the concatenation of any word of the set θ(p) with any word
of the set θ(q)).

Now consider the line 1 = 20; since it is an odd line, the element that corresponds to 1
is on the site a. We define P0 as the number of sites with 1 and Q0 as the number of sites
with 0 on the line 20; hence, P0 = Q0 = 1. This line is the source of line 2 = 21 and so, to
find the sites that correspond to 1, we need to find all the sites whose source is a. However,
they are given exactly by θ(a) = ba.

Then on the line 2n, we have that the sites with 1 are given by θn(a) (and the sites
with 0 are given by θn(b)). Denoting by Pn (respectively Qn) the cardinality of θn(a)

(respectively θn(b)), we have that Pn + Qn = 22n
, the length of the line 2n.

To obtain the line 2n+1, whose source is 2n, we use the fact that the 1s are on the
positions θ(θn(a)) = θn(θ(a)) = θn(ba) = θn(b)θn(a); hence the sites of the 1s are the
concatenation of any site of θn(b) with any from θn(a). This implies that the number of 1s
is given recursively by Pn+1 = PnQn. To obtain Qn+1, we just recall that this number is
the number of elements of the line 2n+1 minus the number of elements that are equal to 1:
Qn+1 = (Pn + Qn)

2 − Pn+1 = (Pn + Qn)
2 − PnQn.

For any n ≥ 1, we have then the recursion

Pn+1 = PnQn and Qn+1 = (Pn + Qn)
2 − PnQn.
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16 A. Baraviera and R. Leplaideur

Writing Rn = Qn/Pn, we obtain that

Rn+1 = Qn+1

Pn+1
= (Qn + Pn)

2 − PnQn

PnQn

= Q2
n + P 2

n + PnQn

PnQn

= Qn

Pn

+ Pn

Qn

+ 1 = Rn + 1
Rn

+ 1 = f (Rn),

where f (x) = x + 1/x + 1 and R1 = 3.
Hence,

22n = Pn + Qn = Pn + RnPn ⇒ Pn = 22n

1 + f n−1(3)
= 22n

1 + f n(1)

as claimed.

COROLLARY 3.13. Using the same notation of the previous proposition, we have the
following.
(1) The proportion of 1s in the line 2n is given by Pn/(22n

) = (1 + f n(1))−1, which is a
strictly decreasing function of n, and this proportion goes to zero as n goes to infinity.

(2) The proportion of 1s in the lines m = 2u(2n + 1) is given by (1 + f u(1))−1.

Proof. (1) Notice that f (x) = x + 1/x + 1 > x + 1; hence, we have that f k(1) ≥ 1 + k,
showing that f k(1) → ∞ as k goes to infinity, and so

Pn

22n = 1
1 + f n(1)

→ 0 as n → ∞.

It is also clear that f n(1) = f (f n−1(1)) = f n−1(1) + 1/(f n−1(1)) + 1 > f n−1(1)

showing that f n(1) increases with n, and so the proportion of 1s decreases as n increases.
(2) As a consequence of Proposition 3.11, we have that the lines m = 2u(2n + 1)

are a concatenation of blocks χu(10); since in each one of those blocks the proportion
of 1s is given by (1 + f u(1))−1, the proportion of 1s at the line m is also given by
(1 + f u(1))−1.

A very useful consequence of the results above is the following corollary.

COROLLARY 3.14. A concatenation of blocks χu(10) is the same as a concatenation of
blocks χv(10) if and only if u = v.

Proof. One implication is automatic, let us concentrate on the other. Suppose v > u (the
case v < u being completely similar); now take a concatenation of blocks χu(10). The
proportion of 1s in this word is the same as in χu(10), that is, larger than the proportion of
1s in χv(10). However, in the concatenation of χv(10), the proportion of 1s is the same as
in χv(10), showing that both blocks are distinct when v �= u.
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4. Proof that X is minimal
4.1. The fixed point is minimal. The grammar BBAB yields TaTaH = TbTaH =
TbTbH = HTb and TaTbH = HTa . Thus, the source is given by{

s(aa) = s(ab) = s(bb) = b,

s(ba) = a,

and more generally, s(p1p2 . . . p2n) = s(p1p2) . . . s(p2n−1p2n).

PROPOSITION 4.1. There exists N such that for any position ω = ω1 . . . ωn, for any word
ωn+1 . . . ωn+N , there exists k ≤ N such that n + k is even and Jω1...ωn+k

= 0.

Proof. The result is obvious if n is even and Jω1...ωn = 0. For the rest of the proof, we
assume that Jω1...ωn = 1 holds.

Every odd line is followed by an even one. Hence, we only need to prove the proposition
for n even, as the result for odd lines is an immediate consequence of the result for even n.

For the rest of proof, we consider that n is even and that the digit at position ω1 . . . ωn

is 1.
(1) The case n ∈ 8N. Let us set n = 8n1. Because H is marked, the source of the digit at

position ω1 . . . ωn is 1 and is an even line. Its source is at line 2n1 and is again 1, and the
source of this last digit is at line n1 and is 1. Hence, we have line n1, 1, and the following
configurations at lines 2n1, 4n1, and 8n1.

In Figure 2, site 0 at level 4n1 + 1 is mapped by H on sites 0 at level 8n1 + 2.
The subtree in frame at level 4n1 + 1 is mapped on the subtree at level 8n1 + 2 in
frame (+ children). At level 8n1 + 2, three grand-children are 0. At level 8n1 + 4, all
the grand-children from the site with digit 1 at level 8n1 + 2 are 0.

Consequently, for any α with |α| ≥ 4, there exists a digit in J at position
ω1 . . . ωnα1 . . . αk with k ≤ 4 whose value is 0 and such that n + k is even.

(2) Other cases. Let us set n = 8n1 + j with j = 2, 4, 6. Let α be any word with length
at least 10. Then, ω1 . . . ωnα1 . . . α8−j has length in 8N. Either there is some 0 at even
position from position ω1 . . . ωn to position ω1 . . . ωnα1 . . . α8−j , or we are back to the
previous case.

In the following for ω ∈ F+
2 = ω0 . . . ωn, ω̃ stands for ωn . . . ω0.

PROPOSITION 4.2. There exists N0 such that for any ω = ω1 . . . ωn ∈ F+
2 , there exists

k ≤ N0 and α ∈ F+
2 with |α| ≤ k such that Tω̃(J) belongs to Tα(B(J, 1)).

Proof. From Proposition 4.1, a path from position ω′ := ω1 . . . ωn−N to ω1 . . . ωn

contains some 0 at an even level. Having a digit equal to 0 at an even level implies being
in B(J, 1). Thus, the result holds with N0 equal to N from Proposition 4.1.

PROPOSITION 4.3. For every m, there exists Nm such that for any ω = ω1 . . . ωn ∈ F+
2 ,

there exists k ≤ Nm and α ∈ F+
2 with |α| ≤ k such that Tω̃(J) belongs to Tα(B(J, 2−m)).

Proof. The proof is done by induction on m. For m = 0, this follows from Proposition 4.2.
Let us assume that the proposition holds for m and let us prove it for m + 1.
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18 A. Baraviera and R. Leplaideur

FIGURE 2. Different parts of the tree J.

Let ω = ω1 . . . ωn ∈ F+
2 . For simplicity, we assume that |ω| is bigger than 2Nm + N0.

Again, we assume that n is even. From Proposition 4.2, we can find k ≤ N0 such that n − k

is even and

Jω1...ωn−k
= 0.

Let us consider the source for this digit. It lives at level n′ = (n − k)/2. Note that n′ is
greater than or equal to Nm.

Let β = β1, . . . βn′ ∈ F+
2 be its position. Then, by the induction hypothesis, there exists

j ≤ Nm such that Tβn′−j ...β1(J) belongs to B(J, 2−m).
By definition, β1 . . . βn′ = S(ω1ω2) . . . S(ωn−k−1ωn−k), and then

β1 . . . βn′−j = S(ω1ω2) . . . S(ωn−k−2j−1ωn−k−2j ) = s(ω2ω1) . . . s(ωn−k−2jωn−k−2j−1).

Then we use the renormalization equality and apply Tβn′−j ...β1 . This yields

H ◦ Tβn′−j ...β1(J) = H ◦ Ts(ωn−k−2j ωn−k−2j−1)...s(ω2ω1)(J)

= Tωn−k−2j ωn−k−2j−1...ω2ω1H(J)

= Tωn−k−2j ...ω1(J),

where we use H(J) = J.
However, we remind that H acts as a contraction on trees. Hence, Tβn′−j ...β1(J) ∈

B(J, 2−m) yields

B(J, 2−m−1) = B
(
H(J), 1

2 2−m
) � Tωn−k−2j ...ω1(J).

Note that k + 2j is lower or equal to 2Nm + N0. If we set α = ωn . . . ωn−k−2j+1, then

Tω̃(J) ∈ TαB(J, 2−(m+1)).

This proves that the property holds for m + 1, and thus it holds for every m.
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Following notation from [10, Ch. IV(1.2)] for group actions, and [11, Proposition 5.21
and Definition 5.22], Proposition 4.3 shows that J is almost periodic (this is also referred to
as uniformly recurrent in [11]). Therefore, the closure of its orbit is a minimal invariant set.

4.2. The fixed point J is not periodic. We are now in a position to prove the main result
of this subsection.

PROPOSITION 4.4. The fixed point J is not periodic.

Proof. Because odd lines are alternations of 1 and 0, we cannot have TωJ = J with |ω|
odd, because it would send even lines to odd lines, and in each odd line, the ratio between
the 0s and the 1s is equal to 1.

We do the proof by contradiction. Let us assume that there are finitely many trees
J(1), . . . , J(N) with J(1) = J such that the orbit of J is O = {J(1), J(2), . . . , J(N)}.
This means that we can construct the graph whose vertices are the J(i) terms and there
is an arrow (with label a or b) going from J(i) to J(j) if J(j) = Tc(J(i)) with c = a, b.
By the definition of being the orbit, each vertex has two outgoing arrows and at least one
incoming arrow.

We denote by M the matrix associated to this graph. If we have at least one of the
equalities J(j) = TaJ(i) or J(j) = TbJ(i), then we set Mi,j = 1; hence, Mij = 1 means
that we can go from J(i) to J(j) on at least one path (Ta or Tb, perhaps both).

By definition, each row and each column of M has at least one 1. By construction,
(Mn)i,j > 0 means that there exists ω ∈ F+

2 with |ω| = n and Tω.J(i) = J(j).
We let the reader check that the matrix M is exactly of the form of the matrices

considered in [14, Ex. 1.9.4]. The spectral decomposition yields a partition of O =
{J(1), . . . , J(N)} in finitely many disjoint sets O1, . . . , ON ′ , with

TaOi ∪ TbOi = Oi+1,

with the convention N ′ + 1 = 1. Moreover, the dynamics for return in each component Oi

is mixing in the following sense: there exists N ′′ such that for every n ≥ N ′′, for every i, for
every ki and ji such that J(ki) and J(ji) belong to Oi , there exists ω ∈ F+

2 with |ω| = nN ′
and TωJ(ki) = J(ji).

In other words, the transition matrices for the return in each Oi are irreducible. We
can apply the Perron–Frobenius theorem which yields for each Oi an eigenvector with
positive entries (if we only consider the indexes ki such that J(ki) ∈ Oi) associated to
the eigenvalue λN ′

, where λ is the spectral radius (and thus the unique single dominating
eigenvalue) for M. We denote these eigenvectors by �γi .

The �γi terms yield an interesting property for the lines of J. We remind that J = J(1)

and thus belongs to one of the Oi terms, say Oi0 . The dynamics of the transition matrix
M represent the elements of the orbit of J that can be reached by applying the F+

2 -action.
Hence, each line of value KN ′ in J is only composed by roots of the elements of Oi0 (and
they do not appear elsewhere, since the sets Oi are disjoint). More generally, each line
KN ′ + i in J is only composed by roots of elements of O(i0+i mod N ′).
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J

Level N ′
Substrees in O1

Level K .N ′
Proportion of each subtree in O1 given by coefficients of �γ1 as K → +∞

Level K .N ′ + i

Proportion of each subtree in Oi given by coefficients of �γi as K → +∞

FIGURE 3. Proportion of 1s is bounded away from 0 as the generation increases.

Furthermore, the entries of the vector (1, 0, . . . , 0).MKN ′+i give exactly how many
Tω1...ωKN ′+i

J belong to each J(ki) ∈ O(i0+i mod N ′). In addition, as a consequence of the
Perron–Frobenius theorem, their relative proportion is asymptotically given by the ratio
between the entries of the eigenvectors �γi0+i as K goes to +∞. We refer to Figure 3 for
a graphic representation of this fact. Hence, the ratio between the number of 1s and the
number of 0s must be uniformly (in i and K) bounded away from 0 and away from 1. This
is in contradiction with Corollary 3.13.

COROLLARY 4.5. There is no ω ∈ F+
2 such that Tω(J) = J′.

Proof. The proof is done by contradiction. Let us assume that Tω(J) = J′. Note that
ω �= e, as J and J′ have different root. Then, Tω(J′) = J′. Set ω = ω1 . . . ωn.

Pick m and consider a concatenation k times ω such that its length is bigger than Nm

from Proposition 4.3. As Tω(J′) = J′, we get that for some 1 ≤ j ≤ n, Tω1 . . . ωj (J
′)

belongs to B(J, 2−m). Note that j = j (m) but there are finitely many possibilities for j.
Letting m → +∞ yields that for some j, Tω1 . . . ωj (J

′) belongs to infinitely many
B(J, 2−m), and hence Tω1 . . . ωj (J

′) = J. Then Tωω1...ωj
(J) = J. This is a contradiction

with Proposition 4.4.

5. Self-similarities, types, unsubstreetutions, and rigidity
5.1. Self-similarities in J

LEMMA 5.1. Let ωa and ωb be two brothers with even length. Let ω′ and ω′′ respectively
denote the sources of ωa and ωb. Then either ω′ = ω′′ or they are brothers.

Proof. Let ⊗ be the color for the grandfather of ωa. We have the configuration

⊗

site ω

site ωa site ωb or

⊗

site ω

site ωa site ωb
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In any case, ⊗ lays at an even level and we can consider its source. At the source, one

sees

⊗

A B which yields at the level of the grandfather

⊗

1

H(B) H(B)

0

H(A) H(B) .

If ω is the a-follower of ⊗, then ω′ = ω′′. If ω is the b-follower, then ω′ and ω′′ are
brothers.

We remind that odd lines of J are composed by strings of 10. We remind equalities
χ(1) = 1, χ(0) = 0, χ(10) = 0010, and

χ2(10) = χ(0010)

= χ(10)χ(10)χ(00)χ(10)

= 0010 0010 0000 0010.

Clearly, χn(0000) is a chain of 0s.
Hence, by Proposition 3.11, even lines in J are composed by blocks 0000 or 0010.
More precisely, we have the following lemma.

LEMMA 5.2. Any line in J at level in 4N + 2 is only composed with blocks 0010. Any
group of 16 digits in J at level in 4N with the same 4-ancestor is either composed only by
0s or is equal to

0010 0010 0000 0010.

LEMMA 5.3. Let ω be a site such that all its grandchildren in J have root equal to 0. Then,

Taaω̃(J) = Tbaω̃(J) = Tabω̃(J) = Tbbω̃(J).

Proof. Because all sites ωaa ωab, ωba, and ωbb have color 0, it means that they lay at
an even level. Hence, |ω| is even and we can consider its source. At the source, we see

⊗

A B , which yields at site ω

⊗

1

H(B) H(B)

0

H(A) H(B) .
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We also know that the configurations A and B are both equal to 0 on their roots, which
corresponds to the sources of the sites ωaa, ωab, ωba, and ωbb.

From the hypothesis, we know that (Taaω̃(J))e = (Tbaω̃(J))e = (Tabω̃(J))e =
(Tbbω̃(J))e.

Now, let us set |ωba| = 2u(2n + 1). We can consider the unsubstreetuted trees for
H(B) and H(A) (respectively at site ωba and ωbb) u-times. These two resulting trees are
at level 2n + 1. By Lemma 5.1, they are either equal or ‘brother’ subtrees. Furthermore,
their roots are equal to 0. However, on an odd level, one only sees strings of 10. This yields
that the subtrees are equal, and hence H(A) = H(B).

5.2. Types and unsubstreetution. We remind O(J) = {Tω(J), ω ∈ F+
2 } and X = O(J).

As H(J) = J, equation (1) shows that the set X is H-invariant. A natural question is to
inquire about in which Hu(X) a given element belongs. If A = Hu(B), then we say that
B is the u-times unsubstreetuted tree of A. Unsubstreetution has been defined for elements
in O(J) in §2.1, via the source function (see Lemma 2.1). The goal of this section is to
extend this notion to general elements in X and not only those in the orbit of J.

At this stage, it is not yet proved that J′ belongs to X. The proof is done in Corollary 5.17
in §5.3. Nevertheless, we point out that it is not an error to consider the case A ∈ X and
A �= J′. Furthermore, Corollary 5.17 comes from Lemma 5.16. The lemma could be stated
earlier but only for J. As we need it for any element of X, it appeared easier to postpone
the proof of J′ ∈ X.

5.2.1. Type 2u for elements in X

Definition 5.4. We say that A ∈ X is of type 2u, with u ∈ N, if there is a sequence ωk with
|ωk| = 2u(2nk + 1) such that

A = lim
k→+∞ Tωk

(J).

An element of type 1 (that is, 20) is also said to be of odd type. An element which is not
of odd type is said to be of even type.

The set of odd (respectively even) trees will be denoted by Xod (respectively Xev).

Note that any Tω(J) with |ω| = 2u(2n + 1) is of 2u-type. It is a priori not clear that the
type is well defined for any element in X. The purpose of this part is to prove that it holds.

LEMMA 5.5. Let A be in X := {Tω(J), ω ∈ F+
2 }. Let (ωk) be a sequence in F+

2 such
that |ωk| →k→inf +∞ and A = limk→∞ Tωk

(J). Then only the two following cases may
happen:
(1) (|ωk|) eventually is even;
(2) (|ωk|) eventually is odd.

Proof. We remind that any odd line for J is composed by a string of 10, and every even
line of J is composed by blocks 0000 or 0010. This yields that if |ω| is even and |ω′| is odd,

d(Tω(J), Tω′(J)) ≥ 2−3.
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A converging sequence is also a Cauchy sequence, and thus all lengths must have the same
parity for sufficiently large index.

A direct consequence of Lemma 5.5 is that any A ∈ X is either of odd type or even type.

LEMMA 5.6. Let A be in X of even type. Let (ωk) be a sequence such that
limk→+∞ Tωk

(J) = A. Set |ωk| = 2uk (2nk + 1). If uk → +∞, then A = J or A = J′.

Proof. Let us set Ak := Tωk
(J). The uk-source for ωk is a site ω′

k that is at level 2nk + 1.
The digit is either 0 or 1 (for every sufficiently large k, only one option is possible because
H is marked). Hence, Ak starts with Huk (0) or Huk (1). To simplify the proof, we assume
that the source is 0.

The assumption uk → +∞ yields that for every integer m, and for every sufficiently
large k, Ak starts as Hm(0). This implies that A starts as Hm(0), and this holds for every
m. Hence, A = J.

The same argument holds if the source is 1. In that case, A = J′.

PROPOSITION 5.7. Let A ∈ X be of even type. If A �= J, J′, then it is of 2u-type for some
integer u ≥ 1 and u is unique.

Proof. Let u and k be positive integers. Let ω and ω′ in F+
2 such that |ω| = 2u(2n + 1)

and |ω′| = 2u+k(2m + 1). Set B := Tω(J) and B′ := Tω′(J).
Line 2u in B is at level 2u+1(n + 1) =: 2u+a(2l + 1) in J, with a ≥ 1. By

Proposition 3.11, this line is a concatenation of blocks χu+a(10). Now, line 2u in B′
is at level 2u(2k(2m + 1) + 1). Hence, it is a concatenation of blocks χu(10). Therefore,
Corollary 3.13 yields

d(B, B′) ≥ 2−u. (4)

Now, consider (ωk) such that A = limk→∞ Tωk
(J) with |ωk| = 2uk (2nk + 1). Because

we have assumed A �= J, J′, Lemma 5.6 shows that (uk) is bounded. Hence, it only takes
finitely many values. We may consider the smallest one which is taken infinitely many
times. We denote it by u.

The sequence (Tωk
(J)) is converging and thus it is a Cauchy sequence. By equation (4),

we must have uk ≤ u for sufficiently big k. This shows that the sequence (uk) is eventually
constant.

Furthermore, Corollary 3.13 yields that u is unique because trees in J with root at lines
2u(2n + 1) and trees with root at lines 2u+t (2m + 1) are uniformly (with respect to n, m,
and position of the sites) far away from each other.

Notation 2. In the following, we shall say that J and J′ are of 2∞-type.

Remark 3. Any element of X is of a fixed type 2u with 0 ≤ u ≤ +∞. This also holds for
element in the orbit of J. However, for elements in O(J), we also shall specify the type by
the line: Tω(J) is of the type 2u if |ω| = 2u(2n + 1).
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Now, we give two results about sequences. The next lemma is a kind of converse result
of Lemma 5.6.

LEMMA 5.8. Let Ak := Tωk
(J) be such that |ωk| = 2uk (2nk + 1) and J = limk→+∞ Ak .

Then limk→+∞ uk = +∞.
The same holds if J′ = limk→+∞ Ak .

Proof. Assume, by contradiction, that this is not the case. Up to a sub-sequence, we can
assume that uk = u ∈ N for every k. We can also assume that for every k, Ak

e = 0 because
limk→+∞ Ak = J.

Set Ak =: Hu(Bk). Each Bk is an odd-type tree. They all have root equal to 0 because H
is marked and all Ak have root equal to 0. Hence, taking the source, we see a configuration

Bk starts as

0

1,0

1 0

0

1 0.

Because H is marked, Hu(Bk) differs with J, either at line 2u + 1 or at line 2u+1 + 1.
This means that limk→+∞ Ak �= J, which is a contradiction.

If now we assume J′ = limk→+∞ Ak , we re-employ the same notation, and mimic the
proof of first point, in that case, we have

Bk starts as

1

0

1 0

0

1 0,

because a 1 at an odd level must have its two followers equal to 0. Hence, Hu(Bk) differs
with J′ at line 2u + 1.

PROPOSITION 5.9. Let A be in X and Ak of type 2uk in O(J) such that A = limk→+∞ Ak .
Then either uk → +∞ or (uk) is eventually stationary.

Proof. This is an immediate consequence of equation (4) and the fact that a converging
sequence is also a Cauchy sequence.

In view to be able to use Proposition 5.9, we explain how to detect the type 2u for
any even tree. The case u = +∞ is extremely simple because we must see either J or J′.
Hence, only the finite case is relevant.

If k is an integer, we denote by v2(k) its dyadic valuation. This means

v2(k) = n ⇐⇒ k = 2n(2m + 1), m ∈ N.

We let the reader check the following result.
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LEMMA 5.10. Let k, k′ be two positive integers.
(1) If k′ ≥ k, then for any m, v2(2k(2m + 1) + 2k′+1) = k.
(2) If k′ = k − 1, then for any m, v2(2k(2m + 1) + 2k′+1) ≥ k + 1.
(3) If k′ ≤ k − 2, then for any m, v2(2k(2m + 1) + 2k′+1) = k′ + 1 < k.

LEMMA 5.11. Let A ∈ X of 2u-type with u < +∞. Then, u is the unique integer k such
that any line 2k+1p, p ≥ 1 in A is composed by blocks χk(10).

Proof. Let Ak be a sequence of trees in J which converges to A. We may assume that all
the roots appear at levels 2u(2nk + 1). Hence, any line numbered 2u2n in Ak corresponds
to a piece of line 2u(2(nk + n) + 1) in J. By Proposition 3.11, such a line (in J) is a
concatenation of χu(10). This cannot be detected at line 0 in Ak but it is detectable from
line 2u+1 where we already have a full block χu(10).

This yields that for any line in Ak multiple of 2u+1, the proportion of 1s with respect to
the 0s is fixed and is equal to the proportion of 1s in χu(10). This passes to the limit, and
thus this also holds in the tree A.

This shows that the set of integers l such that any line 2l+1n (n ∈ N∗) is a concatenation
of blocks χl(10) is non-empty and contains u. We now prove that u is the unique integer
with this property.
• Indeed, let us pick v′ < u. Choose any v such that v′ + 1 + v > u. Any line 2v′

2n

in Ak corresponds to a piece of line 2u(2nk + 1) + 2v′
2n = 2v′+1(n + 2u−v′−1

(2nk + 1)) in J. Now, choose a positive n of the form n = 2v(2m + 1) −
2u−v′−1(2nk + 1) (with m sufficiently big). Then the line 2v′

2n in Ak corresponds
to a piece of line 2v′+1+v(2m + 1) in J. It is a concatenation of blocks χv′+1+v(10),
but it may be truncated. As m can increase as wanted, we can fix it such that the line
2v′

2n in Ak is a non-truncated concatenation of blocks χv′+1+v(10). Now, we remind
that Corollary 3.14 states that a concatenation of blocks χv′+1+v(10) cannot be equal
to a concatenation of blocks χu(10).

Because v can be chosen arbitrarily, this shows that the proportion of 1s in lines
2v′

2n does not converge because it has several different accumulation points.
• Now for v′ > u and for any n, a line 2v′

2n in A is also a line 2u2.2v′−un, and hence is
a concatenation of blocks χu(10).

This finishes to prove that u is unique integer such that all lines 2l2n in A are
concatenations of blocks χl(10).

5.2.2. Unsubstreetution

PROPOSITION 5.12. Let u ≥ 0 be an integer. Let A ∈ X be of type 2u. Then there exists a
unique B ∈ Xod such that A = Hu(B). The tree B is called the u-times unsubstreetuted
tree of A, and the map A 
→ B is called the u-unsubstreetution.

Proof. The result is trivial if u = 0 (that is, odd-type tree). We only do the proof for u ≥ 1
(that is, even-type tree).

We consider a sequence (Ak) in O(J) converging to A. By Proposition 5.9, we can
assume that all the Ak are of the form
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Ak = Hu

⎛⎝ ⊗

Ck Dk

⎞⎠
,

with ⊗ = 0, 1. The tree

⊗

Ck Dk is of odd-type. With this notation, we prove that (Ck)

and (Dk) do converge in X.

The tree Hu

⎛⎝ ⊗

Ck Dk

⎞⎠
is of the form Hu(0), and then at each slot at line 2u + 1,

we connect either the tree Hu(Ck) or the tree Hu(Dk). If we say that Ak coincides with
A for the first nk-lines, the convergence Ak → A yields nk → +∞ as k → +∞. Hence,
Hu(Ck) and Hu(Dk) coincide with the right Tω(A) with |ω| = 2u for at least nk − 2u

lines.
Let us fix N. If we assume that for any k ≥ k0, nk > N + 2u, then for any k and k′

greater than k0, Ck and Ck′
on the one hand, and Dk and Dk′

on the other hand do coincide
for at least �N2−u − 1� digits. In other words, the sequences (Ck) and (Dk) are Cauchy
sequences, and hence converge.

We emphasize that the proof of Proposition 5.12 also yields the following lemma.

LEMMA 5.13. If Ak = Hu(Bk), then (Bk) converges to B as k → +∞ if and only if
(Ak) converges to A and A = Hu(B).

5.3. Rigidity. We remind that X stands for the closure of the orbit of J:

X := {Tω(J), ω ∈ F+
2 }.

If A =

⊕

A′ A′′ is an element in X, then there are actually some relations between
the three objects ⊕, A′, and A′′. This is what we name rigidity. Indeed, it turns out that
knowing A′ or A′′ actually yields knowledge of the other one. This also may lay down
some specific value for ⊕.

5.3.1. Blocks at even levels

LEMMA 5.14. If we see in X a tree starting as

⊕

�

0 0

⊗

1 0,
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then:
(1) the tree is of even type;
(2) it is equal to

⊕

1

A A

0

B A ,

with Ae = 0 and Be = 1.

Proof. Due to Lemma 5.5 and Proposition 5.9, it suffices to prove the statement for
configurations in J. Hence, we consider that we see the configuration

⊕

�

0 0

⊗

1 0

in J.
We denote by ω the site where the root of the configuration we study stands. At line

|ω| + 2, we see a block 0010, and hence line |ω| + 2 is even. Therefore, |ω| is even.
Because ω lays at an even level, we can consider its source. At the source, we see
⊗

A′ B′ , which yields at site ω

⊗

1

H(B′) H(B′)

0

H(A′) H(B′) .

This immediately yields Taaω̃(J) = Tbaω̃(J) = Tbbω̃(J) =: A and B := H(A′). By
hypothesis, Ae = 0 and Be = 1.

COROLLARY 5.15. (Configuration 00 at even line) Assume that we see in X a tree

⊕

A B ,
with Ae = Be = 0. Then, ⊕ stands at an odd level and A = B.

Proof. Again, Lemma 5.5 and Proposition 5.9 show that it is sufficient to prove the

statement for configurations

⊕

A B in J.
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At the level of the roots for A and B, we see the block 00. This shows that this level is
even. By Lemma 5.2, we only see blocks 0000 or 0010 at even levels. Hence, we must see
either the configuration

⊕

A B

or the reverse one

⊕

A B .

Then, Lemmas 5.3 and 5.14 show that A = B.

LEMMA 5.16. (0000 yields 0010 at 2u-type, u ≥ 2) If a tree in X starts as

⊗

�

0 0

�

0 0,

then:
(1) it is of type 2 = 21;
(2) we actually see

⊗

1

A A

0

A A

with Ae = 0;
(3) A is of 2u-type with u ≥ 2.

Furthermore, we also see a configuration

�

1

A A

0

B A

with Be = 1 in X of the same 2u-type.
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Proof. Again, by Proposition 5.9, we may only prove that the lemma holds for
configurations in J.

Then, the first three statements are a direct consequence of Lemma 5.3, plus the fact
that a block 0000 can only appear at a level in 4N. Note that the grandfather for Ae must
be at an even line which is not a multiple of 4.

Let us assume that the line where the A terms have their root is 2u(2n + 1) with u ≥ 2.
If we consider u-times the source, we are at level 2n + 1. We must see

where Hu

⎛⎝ 0

D D′

⎞⎠
= A. Actually, we have a better description because the root ⊕ is

at an even level: we see

⊕

1

H(E′′) H(E′′)

0

H(D′′) H(E′′) ,

and hence we have E = E′ = D′.

Let us set A′ :=

0

D D′ and B′ :=

1

D′ D′ . This means that we see the configura-

tion

⊕

B′ A′.

The image by H of the subtree at level 2n

⊕

B′ A′ is

Taking the image by H of the subtree in the dashed frame, we see
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In the dotted framebox, we see the same kind of configuration as previously but at level
22(2n + 1). Iterating this process u − 2 more times, we finally get the configuration:

Now, remember that Hu(A′) = A. Moreover, B′
e = 1 and H is marked, and thus

Hu(B′)e = 1.

COROLLARY 5.17. The tree J′ belongs to X.

Proof. Minimality comes from the fact that J contains many finite subtrees Hu(0) with
u as big as wanted. Lemma 5.16 applied to J shows that any level where J contains
Hu(0) with u ≥ 2, also contains a subtree starting as Hu(1). Letting u → +∞ yields
that J′ = limn→+∞ Hn(1) belongs to X = O(J).

LEMMA 5.18. (0010 yields 0000 at 2u-type, u ≥ 2) If we see in J the configuration

�

1

A A

0

B A

with Be = 1 in J and A of 2u-type with u ≥ 2, then we also see the configuration

⊗

1

A A

0

A A

with Ae = 0 in J and at the same line.
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Proof. Because A is of even-0-type, this means Ae stands at level 2u(2n + 1) with

u ≥ 2. Considering the source, we see

�

B′ A′ , with H(B′) = B and H(A′) = A. Roots
B′

e = 1 and A′
e = 0 are at the even level 2u−1(2n + 1). By Lemma 5.14, we only see blocks

of 0000 or 0010. Hence, we actually see

Taking the H-image of the dashed frame, we get

1

1

A A

0

A A

with the A terms at the level 2u(2n + 1).

5.3.2. Consequences for even trees and decidability.

PROPOSITION 5.19. Only one of the three following cases may happen for an even tree A

in X:

(1) A = Hv

⎛⎝ Ae

D D

⎞⎠
with

Ae

D D odd, De = 0, and D of 2u-type with 1 ≤ v ≤
+∞ and u ≥ 2;

(2) A = Hv

⎛⎝ 1

D D

⎞⎠
with

1

D D odd, De = 0, and D of 2-type with 1 ≤ v ≤
+∞;

(3) A = Hv

⎛⎝ 0

E D

⎞⎠
with

0

E D odd, De = 0, and Ee = 1, D and E of type 2u,
with u ≥ 1 and 1 ≤ v ≤ +∞.

Furthermore, knowing Ta(A) or Tb(A) is sufficient to determine v.

Remark 4. We emphasize that by Lemmas 5.6 and 5.8, in the previous statement, v = +∞
means A = J or A = J′, depending on the value for Ae.
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Proof. We consider a sequence Ak in O(J) which converges to A. For simplicity, we set
Ae = ⊗. By Proposition 5.9, we may assume that all the Ak are of the form

Hv

⎛⎝ ⊗

Ek Dk

⎞⎠
,

and

⊗

Ek Dk is an odd-tree.
By Lemma 5.13, convergence for Ak is equivalent to the convergence for Ek to E and

for Dk to D.
Furthermore, the root of Ek and Dk stand at even level, say 2uk (2mk + 1). Again by

Proposition 5.9, we may assume that all are of fixed type 2u with u ≥ 1.
At even level, we see blocks 0000 or 0010. Hence, the possibilities are Ee = 0 = De

or Ee = 1 and De = 0. Note that by Corollary 5.15, Ee = De yields E = D. Furthermore,
Ee = 0 is only possible if u ≥ 2.

Hence, the possibilities are:

(1) u ≥ 2, A = Hv

⎛⎝ ⊗

D D

⎞⎠
;

(2) u = 1 ⊗ = 1, A = Hv

⎛⎝ 1

D D

⎞⎠
;

(3) u ≥ 1, ⊗ = 0, and A = Hv

⎛⎝ 0

E D

⎞⎠
with Ee = 1 and De = 0.

Remark 5. We point out that in the case u ≥ 2, A = Hv

⎛⎝ ⊗

D D

⎞⎠
, Lemma 5.18 shows

that the tree A′ := Hv

⎛⎝ ⊗̄

D D

⎞⎠
with ⊗̄ = 1 − ⊗ also exists in X.

Now, we explain how we can determine the value of v. The case v = +∞ is extremely
simple because we must see either J or J′. Hence, we assume that A is not J nor J′. Then,
Lemma 5.11 shows that v is entirely determined by one of the branches of A: for any u, and
for any sufficiently large n, the line n in Ta(A) or Tb(A) only contains full blocks of length
|χu(10)|. Hence, v is the unique integer u where we see blocks χu(10) at lines in 2u+1N

(in A).
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Remark 6. We emphasize that in case (3), A starts as Hv

⎛⎝ 0

1 0

⎞⎠
. Hence, lines 0 to

2v+1 − 1 are the same as those in J. Line 2v is equal to χv(10). If v ≥ 2, both halves of
that word contain 0s and 1s (see Lemma 3.10).

Obviously, in cases (1) and (2), the line 2v in A only contains 0s.

5.3.3. Branch with root 0 determines the brother with root 1

LEMMA 5.20. (Configuration 10. 0 → 1) Assume that we see in X a tree

⊗

A B , with
Ae = 1 and Be = 0. Then, A is entirely determined by B: if B is of 2u-type and equal to

Hu

⎛⎝ 0

B′ B′′

⎞⎠
, then A = Hu

⎛⎝ 1

B′′ B′′

⎞⎠
.

Proof. Still by Proposition 5.9, we only do the proof in the case that we see the
configuration in J.

Let ω be a site where we see

⊗

A B .
• First, we consider the case |ω| is even. If we consider the source of ω, we see the

configuration

⊗

C D , which yields at site ω

⊗

1

H(D) H(D)

0

H(C) H(D) .

Hence, we get B =

0

H(E) H(D) and A =

1

H(D) H(D) .
The latter tree can be obtained from B:

(1) by exchanging the color of the root;
(2) by replacing the left-hand side subtree by a copy of the one at the right-hand

side.
This corresponds to the result of the lemma with u = 0.

• Assume that |ω| is odd. Then we set |ω| + 1 = 2u(2n + 1). We consider the u-source
for A and B. By Lemma 5.1, they are either brothers or equal. As H is marked and
Ae = 1 �= 0 = Be, the u-sources are brothers. Let us denote them by Au and Bu. They
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are odd-type trees at level 2n + 1. Furthermore, Au
e = 1 and Bu

e = 0. By Lemma 5.2,
their father is 0.

We use the part of Lemma 5.20 that is already proved (with father at even level). Hence,
Au is obtained from Bu by exchanging the color of the root and replacing Ta(B

u) by
Tb(B

u). Then, applying Hu, we get for A:
(1) A starts as Hu(1) whereas B starts with Hu(0);
(2) at any slot at line 2u, we glue Hu(Tb(B

u)).
Employing notation from the statement of the lemma, we have B = Hu(Bu),

A = Hu(Au). If Bu =

0

B′ B′′ , then Au =

1

B′′ B′′ .

Remark 7. We emphasize that the construction of A from B in Lemma 5.20 is coherent
with the construction of B from A in Lemma 5.16.

6. Preimages and proof of Theorem B
The aim of this section is to obtain preimages of a given tree with respect to the shift
action, say, to obtain (when it is possible) T −1

a and T −1
b .

6.1. Preimages in general. Given a tree A in X, the preimages are of the form

⊗

A B

or

⊗

B A . We remind that A ∈ X means A = limk→+∞ Ak , Ak = Tωk
(J).

The question of preimages is then equivalent to determining, for a given converging

sequence (Ak), which configurations,

⊗

Ak Bk or

⊗

Bk Ak , we see in J.
We shall see that answer depends on the type of the configuration A: even or odd. It

also depends on the values for the roots of Ak and Bk .
From Lemmas 5.3, 5.2, and 5.14, for even type trees, we only see (the root level is the

framed one)

0,1

1

0 0

0

0,1 0 .

For odd-type trees, we only see (the root level is the framed one)

0,1

1 0 .
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(1) In §6.2, we deal with odd-type trees. Proposition 6.3 deals with odd trees with root
equal to 0 and Proposition 6.2 deals with odd trees with root equal to 1.

(2) In §6.3, we deal with even-type trees with root equal to 0. Proposition 6.4 deals with
2u-types with 2 ≤ u < +∞, Proposition 6.5 deals with 2-type, and Proposition 6.6
deals with the case 2∞-type (J and J′).

(3) In §6.4, we deal with the even-type trees and root equal to 1. Proposition 6.8 deals
with the 2u-types 1 ≤ u < +∞, and Proposition 6.9 deals with the case 2u-type
u = +∞.

The proof of Theorem B is done in §6.5.

6.2. Preimage of odd trees. Let A, B ∈ X be odd trees with Ae = 1 and Be = 0.
Then:
(1) T −1(A) = T −1

a (A);
(2) T −1(B) = T −1

b (B).

In the first case, a brother is an odd tree B′ with B′
e = 0 and such that

⊗

A B′ exists

in X. In the second case, a brother is an odd tree A′ with Ae = 1 and such that

⊗

A′ B

exists in X.
Because the root for odd trees determines if there are preimages by Ta or Tb, we shall,

in this subsection, reserve the letter A for odd trees with root 1 and B for odd trees with
root 0.

We emphasize that for the latter case, Lemma 5.20 shows that A′ is entirely determined
by B.

We now see that the same holds in the first case. First we point out that an odd tree with

root equal to 1 is of the form

1

D D with De = 0, D of 2u-type with 1 ≤ u ≤ +∞.

Furthermore, any brother for A is a tree of the form

0

D . More precisely,

Lemmas 5.16 and 5.18 show that the configuration

0

1 D always exists but the

configuration

0

0 D exists if and only if D is of 2u-type with u ≥ 2. This is formulated
more explicitly in the following lemma.
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LEMMA 6.1. Let A ∈ X be an odd tree with root equal to 1. Set A =

1

D D with De = 0,
D of 2u-type with 1 ≤ u ≤ +∞.

Let F be the tree obtained applying Lemma 5.20 to

0

F D . Set B :=

0

F D and

B′ :=

0

D D .
Then:

(1) whatever u ≥ 1 is, there exists a tree A B in X;

(2) if (and only if) u ≥ 2, there exists a tree A B′ in X.

Proof. As A belongs to X, we see in J trees

⊗

1

Dk Dk

0

. .

with limk→+∞ Dk = D. The trees Dk stand at 2u-levels. By Lemma 5.16, we will actually
see in J trees

⊗

1

Dk Dk

0

Dk Dk

(this holds only for u ≥ 2) and trees

�

1

Dk Dk

0

Fk Dk

(at the same levels) with Fk
e = 1 (this holds for any u ≥ 1).

The tree Fk is obtained from Dk via the procedure described in Lemma 5.20.
Lemma 5.13 yields that Fk converges as Dk converges. The link between Fk and Dk passes
to the limit and then Fk converges to F (from the statement of the lemma).
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Therefore, letting k → +∞, we get:

(1) in any case, a tree

�

A B in X;

(2) if and only if u ≥ 2, a tree

⊗

A B′ in X.

Lemma 6.1 states (for a given A ∈ Xod with root 1) what kind of trees

⊗

A B we can
find in X. However, it does not make precise what is the value for ⊗. Similarly, we have
seen that Lemma 5.20 states that an odd tree B has a single brother A′ in X. Again, it does
not make precise what the father may be.

Furthermore, preimages of these trees are even trees, and thus obey the rule described in
Proposition 5.19. We now connect the two results and give a full description of preimages
of odd trees.

PROPOSITION 6.2. Let A be an odd tree satisfying Ae = 1. Let v be such that A ∈ Ta ◦
Hv(Xod). Then, we get the following.
(1) If v ≥ 2, then A has a unique brother B given by Lemma 6.1 case (1). Furthermore,

only one of the following cases may appear:

(a) T −1
a (A) =

⎧⎨⎩
0

A B ,

1

A B

⎫⎬⎭
, line 2v − 1 in A only contains 0s, and

T 2v−1(A) is even of 2v+u-type with u ≥ 2;

(b) T −1
a (A) =

⎧⎨⎩
1

A B

⎫⎬⎭
, line 2v − 1 in A only contains 0s, and T 2v−1(A) is

even of 2v+1-type;

(c) T −1
a (A) =

⎧⎨⎩
0

A B

⎫⎬⎭
, line 2v − 1 in A contains 0s and 1s.

(2) If v = 1, then A has two brothers B and B′ given by Lemma 6.1. Furthermore, only
one of the following cases may appear:

(a) T −1
a (A) =

⎧⎨⎩
0

A B′ ,

1

A B′ ,

0

A B

⎫⎬⎭
, and Ta(A) is of 21+u-type with

u ≥ 2;

(b) T −1
a (A) =

⎧⎨⎩
1

A B′ ,

0

A B

⎫⎬⎭
, and Ta(A) is of 22-type.
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Proof. We remind that by Proposition 5.19, A determines the type of any preimage.

• If v ≥ 2 holds, then any tree A starts as

⊗

1

0 0

0

1 0,

which shows that A has a unique brother, and it starts as

0

1 0.
Using notation from Lemma 6.1, this yields that B is the unique brother for A (case B′

is impossible).

Line 2v − 1 in A corresponds to the line 2vin A B . By Remark 6, this line only
contains 0s if and only if we are in cases (1) or (2) from Proposition 5.19, and the line
contains 0s and 1s if and only if we are in case (3) from Proposition 5.19.

Furthermore, for any ω ∈ F+
2 with |ω| = 2v − 1, Tω(A) is equal to Hv(D) if we

re-employ notation from Proposition 5.19. It is thus of type 2u+v and this determine the
type of D. Hence, this differentiates case (1) and case (2) (from Proposition 5.19).

Now, still for v ≥ 2, case (1) in Proposition 5.19 corresponds to case (1a) in the
statement of Proposition 6.2, case (2) in Proposition 5.19 corresponds to case (1b) in the
statement of Proposition 6.2, and case (3) in Proposition 5.19 corresponds to case (1c) in
the statement of Proposition 6.2.

• Let us now assume that v = 1 holds. Re-employing notation from Lemma 6.1, we

see A B and A B′ in X. Line 2 in A B is equal to 0010, whereas line 2

in A B′ is equal to 0000. Hence, the tree A B corresponds to case (3) from

Proposition 5.19, and A B corresponds to case (1) or (2) from Proposition 5.19.

If we set A =

1

G G , because v = 1, A belongs to H(Xod), and hence G is of

2k-type with k ≥ 2. This means that if we set A B′ = H

⎛⎝
D D

⎞⎠
, then D is of

type k − 1.
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If k − 1 = 1, only the configuration

1

D D exists because lines at even levels not in
4N only contain blocks 0010. In contrast, if k − 1 ≥ 2, then Lemmas 5.16 and 5.18 yield

that both configurations

1

D D and

0

D D do exist.

Hence we get: if Ta(A) is of type k ≥ 3, then A has three preimages:

0

A B′ ,

1

A B′ ,

and

0

A B .

If Ta(A) is of type k = 2, then A has two preimages:

1

A B′ and

0

A B.

PROPOSITION 6.3. Let B ∈ X be an odd tree with Be = 0. Let A be its brother (as in

Lemma 5.20). Let Tb(B) be of type 2k . Let v be such that A B is of type 2v (as in
Proposition 5.19). Then, only one of the following cases may appear.

(1) If B starts as

0

0 0, then:

(a) k ≥ 3 and v = 1, and T −1
b (B) =

⎧⎨⎩
0

A B ,

1

A B

⎫⎬⎭
;

(b) k = 2 and v = 1, and

1

A B is the unique preimage of B.

(2) If B starts as

0

1 0, then:

(a) if k ≥ 2, then v = 1 and T −1
b (B) =

⎧⎨⎩
0

A B

⎫⎬⎭
;

(b) if k = 1, then v ≥ 2 and one of the following case occurs:
(i) line 2v − 1 of B only contains 0s and T 2v−1(B) is of 2u+v-type with

u ≥ 2. Then T −1
b (B) =

⎧⎨⎩
0

A B ,

1

A B

⎫⎬⎭
;
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(ii) line 2v − 1 of B only contains 0s and T 2v−1(B) is of 21+v-type. Then

T −1
b (B) =

⎧⎨⎩
1

A B

⎫⎬⎭
;

(iii) line 2v − 1 of B contains 0s and 1s. Then T −1
b (B) =

⎧⎨⎩
0

A B

⎫⎬⎭
.

Proof. Any tree

⊗

A B is of the form Hv

⎛⎝ ⊗

E D

⎞⎠
with

⊗

E D odd. We remind
that v is uniquely determined by B (see Proposition 5.19).
• Suppose B starts (which means that it is a B′ if we re-employ notation from

Lemma 6.1) as

0

0 0. This is possible only if v = 1, as H 2(⊗) starts as
⊗

1

0 0

0

1 0. Hence, we get k = u + 1. Furthermore:

– either u ≥ 2 (which is equivalent to k ≥ 3) and then B = TbH

⎛⎝ 0

D D

⎞⎠
=

TbH

⎛⎝ 1

D D

⎞⎠
for some D of type 2u satisfying De = 0. Note that by

Lemmas 5.16 and 5.18, both configurations

1

D D and

0

D D do exist. This
means that B has two preimages;

– or u = 1 (that is, k = 2) and B = TbH

⎛⎝ 0

D D

⎞⎠
for some D of 21-type with

De = 0. Here, only the configuration

1

D D does exist. This means that B has
a unique preimage with root 1.

• Suppose B starts as

0

1 0. Note that

⊗

A B starts as
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⊗

1

0 0

0

1 0.
If Ta(B) is of 2k-type with k ≥ 2, then ⊗ stands at an even level which is not in 4N.
This yields v = 1.

Hence, we get

⊗

A B = H

⎛⎝ ⊗

E F

⎞⎠
=

⊗

1

H(F) H(F)

0

H(E) H(F) .

This yields Ee = 1 and Fe = 0. Now,

⊗

1 0 with ⊗ at an odd level is possible in J if and
only if ⊗ = 0.

Now, we deal with the case where B starts as

0

1 0 and k = 1. Recall that

⊗

A B

starts as
⊗

1

0 0

0

1 0
and the last line 0010 stands at a level in 2N \ 4N. This yields that the root ⊗ stands at
a level in 4N, and hence v ≥ 2. We remind that v can be detected, as it is explained in
Lemma 5.11. Furthermore, Proposition 5.19 states that v can be detected knowing only B.

Hence, we have:
– either we are in cases (1) or (2) from Proposition 5.19 with v ≥ 2. In that case, there is

a line of 0s at line 2v of

⊗

A B;
– or we are in case (3) from Proposition 5.19 (with v ≥ 1). In that case, the line 2v of

⊗

A B contains 0s and 1s.
Furthermore, to separate cases (1) and (2), we need to check what is the type 2u+v of

any tree Tω(B) with ω ∈ F+
2 and |ω| = 2v − 1.

Table 1 summarizes the possible preimages for a given odd tree.
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TABLE 1. Preimages of odd trees. All cases in the same line coexist.

Hv

⎛⎜⎝ 0, 1

D D

⎞⎟⎠
, Hv

⎛⎜⎝ 1

D D

⎞⎟⎠
, Hv

⎛⎜⎝ 0

F D

⎞⎟⎠
,

D of 2u-type D of 2-type, De = 0, Number of
↙ Ta or Tb u ≥ 2, De = 0 De = 0 Fe = 1 preimages Case

A, Ae = 1 Ta(A) of
2k − type

v ≥ 2, brother B 2 Proposition 6.2(1a)

v ≥ 2, brother B 1 Proposition 6.2(1b)
v ≥ 2, brother B 1 Proposition 6.2(1c)

v = 1 and brother
B′ k = u + 1

v = 1, k = u + 1
brother B

3 Proposition 6.2(2a)

v = 1 and brother
B′ k = 2

v = 1, k = 2 brother
B

2 Proposition 6.2(2b)

B′, starts as

0

0 0 ,
Ta(B

′) of
2k − type

k ≥ 3, v = 1 2 Proposition 6.3(1a)

k = 2, v = 1 1 Proposition 6.3(1b)

B, starts as

0

1 0 ,
Ta(B) of
2k − type

v ≥ 2 2 Proposition 6.3(2bi)

v ≥ 2 1 Proposition 6.3(2bii)
v ≥ 2 1 Proposition 6.3(2biii)
v = 1 1 Proposition 6.3(2a)
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6.3. Preimage for even-type elements with root equal to 0

PROPOSITION 6.4. Let B be in X of 2u-type with 2 ≤ u < +∞ and Be = 0. Then,
T −1(B) is the set ⎧⎨⎩

0

B B ,

1

B B ,

0

A B

⎫⎬⎭
,

where A = Hu

⎛⎝ 1

B′′ B′′

⎞⎠
if B = Hu

⎛⎝ 0

B′ B′′

⎞⎠
.

Proof. We consider a sequence of trees Bk := Tωk
(J) such that B = limk→+∞ Bk . For

simplicity, we assume that for every k, |ωk| = 2u(2nk + 1) holds.
Lemmas 5.16 and 5.18 show that we see the configurations

�

1

Bk Bk

0

Ak Bk

and

⊗

1

Bk Bk

0

Bk Bk ,

with Ak
e = 1. Moreover, Ak is obtained from Bk following Lemma 5.16 and as explained

in Lemma 5.20.
As Bk goes to B if k → +∞, the branches at level 2u for Bk converge. Hence, Ak

converges to some tree A ∈ X. This yields

T −1(B) ⊃

⎧⎨⎩
0

B B ,

1

B B ,

0

A B

⎫⎬⎭
.

Furthermore, configurations

1

Bk Dk or

1

Dk Bk with Dk
e = 0 and Dk �= Bk

are forbidden (by Corollary 5.15). For the same reason, configurations

0

Bk Dk with
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Dk
e = 0 and Dk �= Bk are also forbidden. Finally, configurations

0

Bk Dk with Dk
e = 1

are forbidden because the configuration

⊗

0 1 is forbidden (see Remark 2 after the proof
of Lemma 3.7 for allowed digits).

PROPOSITION 6.5. Let B be in X 2-type and Be = 0. Then, T −1(B) is the set⎧⎨⎩
1

B B ,

0

A B

⎫⎬⎭
,

where A = H

⎛⎝ 1

B′′ B′′

⎞⎠
if B = H

⎛⎝ 0

B′ B′′

⎞⎠
.

Proof. The proof is almost the same as for Proposition 6.4. The unique difference is that,
by Proposition 3.11, the configuration

⊗

1

Bk Bk

0

Bk Bk

does not exist because the line with the Bk stands at a level 2.(2nk + 1), where we only

see blocks of 0010. This just prohibits the configuration

0

Bk Bk , and hence forbids one
preimage compared with the case u ≥ 2.

PROPOSITION 6.6.

T −1(J) =

⎧⎨⎩
0

J J ,

1

J J ,

0

J′ J

⎫⎬⎭
.

Proof. The fixed point J is not periodic. Hence, there is no ω �= e such that Tω(J) = J.
This yields that there is no ω ∈ F+

2 with ω �= e such that Tω(J) belongs to T −1(J).
An element C in T −1(J) is thus obtained as limk→+∞ Ck with Ck of the form Tωk

(J).
If, say Ta(C) = J, then limk→+∞ Taωk

(Ck) = J.
Conversely, if Bk is of the form Bk = Tαk

(J) and limk→+∞ Bk = J, and if Ck is such
that, say TaC

k = Bk , then any accumulation point C for the Ck terms satisfies Ta(C) = J.
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To compute T −1(J), we thus adapt the proof of Proposition 6.4. We consider a sequence
of terms Bk := Tωk

(J) such that limk→+∞ Bk = J. We compute T −1(Bk) and consider
the accumulation points for these sequences of trees if k goes to +∞.

Note that Bk
e = 0 (at least for any sufficiently large k). By Lemma 5.8, if we set |ωk| =

2uk (2nk + 1), then uk → +∞ as k → +∞. Hence, for any sufficiently large k, uk ≥ 2
and we can apply Proposition 6.4 to each Bk . For simplicity, we assume that the above
conditions hold for every k.

Then, for each fixed k, T −1(Bk) is the set whose elements are

0

Bk Bk ,

1

Bk Bk ,

and

0

Ak Bk , where Ak is given in Lemma 5.20.

The first two elements converge respectively to

0

J J and

1

J J as k goes to +∞.
Now, we remind that Ak starts as Huk (1) and uk → +∞. Furthermore, in the proof of
Proposition 2.4, we have seen that Hn(0) and Hn(1) differ only from the root. Therefore,

limk→+∞ Ak = J′. This shows that

0

J′ J is also in X and in T −1(J).

6.4. Preimages of even-type elements with root equal to 1. We start with a description
of even-type elements with root equal to 1.

LEMMA 6.7. Let u ≥ 1 be an integer. The 2u-type elements with root equal to 1 in X are

elements of the form Hu

⎛⎝ 1

C C

⎞⎠
with C = Hv

⎛⎝ 0

C′ C′′

⎞⎠
, 1 ≤ v ≤ +∞.

Remark 8. The case v = +∞ means C = J.

Proof. Because A is of even type and Ae = 1 and H is marked, Proposition 5.12 yields
that we can write A under the form A = Hu(B) with Be = 1, and B is of odd type. Any
1 at an odd line is followed only by 0s and thus Corollary 5.15 yields

B =

1

C C ,

with Ce = 0.
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The tree B is of odd type, and thus C is of even type, say 2v-type with 1 ≤ v ≤ +∞.

Hence, C can be written under the form

0

C′ C′′ , with the convention that v = +∞ means
C = J.

PROPOSITION 6.8. Let A be in X of 2u-type with 1 ≤ u < +∞ and Ae = 1. Set

A = Hu

⎛⎝ 1

C C

⎞⎠
with C = Hv

⎛⎝ 0

C′ C′′

⎞⎠
, 1 ≤ v ≤ +∞. Then:

(1) if v = 1, then

T −1(A) = T −1
a (A) =

⎧⎨⎩
0

A B

⎫⎬⎭

with B = Hu

⎛⎝ 0

D C

⎞⎠
and D = Hv

⎛⎝ 1

C′′ C′′

⎞⎠
;

(2) if v > 1, then

T −1(A) = T −1
a (A) =

⎧⎨⎩
0

A B ,

0

A B′

⎫⎬⎭
,

with B = Hu

⎛⎝ 0

D C

⎞⎠
, D = Hv

⎛⎝ 1

C′′ C′′

⎞⎠
and B′ = Hu

⎛⎝ 0

C C

⎞⎠
.

Remark 9. We remind that if v = +∞, then we replace Hv

⎛⎝ 0
⎞⎠

by J and

Hv

⎛⎝ 1
⎞⎠

by J′. Note that B′ differs from A only with the root.

Proof. We consider a sequence of terms Ak := Tωk
(J), with Ak → A as k → +∞. By

Proposition 5.9, we may assume that every Ak is of 2u-type. Then, with the notation of

Lemma 6.7, we set Ak = Hu

⎛⎝ 1

Ck Ck

⎞⎠
. By Lemma 5.13, Ck → C. Hence, we may
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write Ck = Hv

⎛⎝ 0

Gk Hk

⎞⎠
. This makes sense if v �= +∞. If v = +∞, then we set

Ck = Hvk

⎛⎝ 0

Gk Hk

⎞⎠
with vk → +∞.

The root of Ak (equal to 1) is at an even line. We remind that even lines are composed
by blocks 0000 or 0010. This shows that T −1

b (Ak) = ∅.
By Lemma 5.14, we see a sequence of configurations

⊗

1

Bk Bk

0

Ak Bk ,

with Bk
e = 0.

Note that this is the unique configuration where Ak appears, and this yields that
T −1(A) = T −1

a and that any preimage of A has its root equal to 0.
We now see how the Bk terms depend on the Ak terms.

We remember the equality Ak = Hu

⎛⎝ 1

Ck Ck

⎞⎠
. Hence, we consider the u-times

unsubstreetuted trees for Ak and Bk . They have different roots since H is marked. By
Lemma 5.1, they are brothers.

Hence, we see a configuration
⊗

1

Ck Ck

0

Mk Nk .

We first deal with the case v < +∞. The root of Ck stands at even level 2v(2mk + 1)

and its value is 0. Because at even lines we only see blocks of 0010 or blocks of 0000,
Lemma 5.14 yields Nk = Ck .

Lemmas 5.16 and 5.18 show that:
(1) either v = 1 and necessarily Mk

e = 1;
(2) or v ≥ 2 and we see at the same level both configurations

⊗

1

Ck Ck

0

Mk Ck

https://doi.org/10.1017/etds.2023.108 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.108


48 A. Baraviera and R. Leplaideur

for some Mk with Mk
e = 1 and

⊗

1

Ck Ck

0

Ck Ck .

For both cases where we see some subtree Mk , it remains to determine how we
obtain the subtree Mk from the subtree Ck . For that, we use Lemma 5.20. We have

Ck = Hv

⎛⎝ 0

Gk Hk

⎞⎠
, and thus

Mk = Hv

⎛⎝ 1

Hk Hk

⎞⎠
.

Because Ck converges to C =

0

C′ C′′ , Lemma 5.13 shows that Gk converges to (say)
C′ and Hk converges to C′′. Furthermore, the same lemma shows that Mk converges to

Hv

⎛⎝ 1

C′′ C′′

⎞⎠
.

Going back to Bk , we finally get:

(1) if v = 1, there is a unique preimage for A, it is

0

A B with B = Hu

⎛⎝ 0

D C

⎞⎠
,

where D = Hv

⎛⎝ 1

C′′ C′′

⎞⎠
;

(2) if 2 ≤ v < +∞, then A has two preimages. The same as for the case v = 1 plus
0

A B′ with B′ = Hu

⎛⎝ 0

C C

⎞⎠
.

Now, we deal with the case vk → +∞. In that case, A = Hu

⎛⎝ 1

J J

⎞⎠
. The same

work as for the case v > 1 can be done, except that we finally consider v → +∞. Hence,
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we get two preimages for A. The tree

0

A B with B = Hu

⎛⎝ 0

J′ J

⎞⎠
and the tree

0

A B′ with B′ = Hu

⎛⎝ 0

J J

⎞⎠
.

PROPOSITION 6.9. T −1(J′) = T −1
a (J′) =

⎧⎨⎩
0

J′ J

⎫⎬⎭
.

Proof. By Corollary 4.5, there is no ω such that Tω(J) = J′. Therefore, preimages of J′
are the accumulation points of preimages of Ak := Tωk

(J) such that limk→+∞ Ak = J′.
Let us consider such a sequence, and set ωk = 2uk (2mk + 1). By Lemma 5.8,

limk→+∞ uk = +∞.
If we re-employ notation from the beginning of the proof of Proposition 6.8, we will see

in J the configuration

�

1

Bk Bk

0

Ak Bk .

By Lemma 5.1, Ak starts as Huk (1) whereas Bk starts as Huk (0). Then, by Lemma 5.6,
limk→+∞ Bk = J. This finishes the proof.

6.5. Proof of Theorem B. The proof is immediate. It follows from Propositions 6.3, 6.2,
6.4, 6.5, 6.8, and 6.9 that for any A ∈ X,

p(1, A) = #T −1(A) ∩ X ≤ 3.

Hence, it yields p(n, A) ≤ 3n.

7. Some more results
Here we present some examples from grammars others than BBAB.

7.1. Thue–Morse case. Define the function H in such a way that

0 
→

0

1 1 and 1 
→

1

0 0 .

Using the recurrence, it is easy to see that fixed points for H are ‘grammar-free’: each
one of the fixed points 0A and 1A has each generation with only one symbol. Thus, there
is a natural projection π from 0A and 1A to {0, 1}N, commuting the dynamics. Moreover,
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π ◦ H(0) = 01 and π ◦ H(1) = 10. This means that π ◦ H is the classical Thue–Morse
sequence.

Hence, {Tω(0A), ω ∈ F+
2 } = {Tω(1A), ω ∈ F+

2 } is a minimal dynamical system,
although it does not really exploit the tree structure.

7.2. Proof of Theorem 1.4. We consider the substreetution given by

0 
→

0

0 1 and 1 
→

1

1 0 ,

equipped with the grammar ABBA. It is marked and therefore admits two fixed points, 0A

and 1A, respectively with root 0 and 1.
The renormalization equation is

TaTaH = HTa = TbTbH and TaTbH = TbTaH = HTb, (5)

and then the source is given by {
s(aa) = s(bb) = a,

s(ab) = s(ba) = b.

More generally, we have

s(p1p2 . . . p2n) = s(p1p2) . . . s(p2n−1p2n). (6)

Using the identification a = 0 and b = 1, we can write simply s(xy) = (x + y)

mod (2).
The images by H 2 of roots 0 and 1 are

0

0

0

0 1

1

1 0

1

1

1 0

0

0 1 and

1

1

1

1 0

0

0 1

0

0

0 1

1

1 0 .

In the following, D stands for 0A or 1A. We note the following equalities:

H(D)e = De, H(D)a = De, H(D)b = 1 − De = D̄e

(where x̄ = 1 − x). We remark that by identifying a with 0 and b with 1, the last two
expressions above can be rewritten as

H(D)ω = (De + ω) mod (2) where ω = 0, 1.

By induction, we get for the odd generations,

Dp1p2...p2na = Dp1p2...p2n
and Dp1p2...p2nb = D̄p1p2...p2n

. (7)
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These expressions can be rewritten as

Dp1p2...p2nω = (Dp1p2...p2n
+ ω) mod (2),

where we still make the identification a = 0 and b = 1.

LEMMA 7.1. Writing D = iA, i = 0, 1, then the following holds:

for all n ≥ 1, Dp1p2...pn = (De + p1 + p2 + · · · + pn) mod (2)

= (i + p1 + p2 + · · · + pn) mod (2).

Proof. The proof is by induction. For n = 1, it is true from the definition of H.
Assume that it is valid for n; then Dp1...pk

= (De + p1 + p2 + · · · + pk) mod (2) for
any k = 1, . . . , n.

Now we need to show that the expression is valid for n + 1. If n + 1 is odd, then we can
use equation (7) to obtain

Dp1p2...pnpn+1 = (Dp1...pn + pn+1) mod (2) = (De + p1 + · · · + pn + pn+1) mod (2)

as wished.
If, however, n + 1 is even, then n + 1 = 2k and so we have, from equation (6), that

Dp1p2...pn+1 = Dp1p2...p2k−1p2k
= Df (p1p2)f (p3p4)···f (p2k−1p2k)

= (De + f (p1p2) + · · · + f (p2k−1p2k)) mod (2)

= (De + p1 + p2 + p3 + p4 + · · · + p2k−1 + p2k) mod (2)

= (De + p1 + p2 + · · · + pn + pn+1) mod (2)

as claimed, concluding the proof.

The expression above allows us to write a generation from the previous one, just using
that 0 gives rise to 01 (on the subsequent generation) and 1 gives rise to 10 (also on the
subsequent generation). This gives us an easy recursive way to write the two fixed points
of H in this case. It is interesting to notice that each new line corresponds to a step in the
construction of the Thue–Morse sequence.

The fixed points 0A and 1A (whose roots are respectively 0 and 1) can be obtained
writing the generation n + 1 from the generation n, and in this case, we have Ta(0A) =
Tb(1A) = 0A and Tb(0A) = Ta(1A) = 1A, showing that X is the periodic orbit {0A, 1A}.

Despite the orbit being periodic, the ball B(0A, 1) is not syndetic (see [11, Definition
5.1]) since for any n, Tban(0A) = 1A /∈ B(0A, 1). Therefore, the system is not minimal.

7.3. Proof of Theorem 1.5. We give here an example of a periodic tree whose orbit
does not support an invariant measure. The tree is not obtained by a substreetution but
via another way: each line is obtained from the previous one by applying some map. The
choice of the map depends on the parity of the line.

We set {
T1(0) = 01 and T1(1) = 10,

T2(01) = 0001 and T2(10) = 1110.
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We call 0A and 1A the two colored trees obtained by the following process with roots 0
and 1: an even line 2k is obtained applying T2 to the line 2k − 1 (gluing digit by pair); a
line 2k + 1 is obtained by applying T1 to each digit of the line 2k.

The fixed points start as

0A = 0

0

0

0 1

0

0 1

1

0

0 1

1

1 0 and

1A = 1

1

1

1 0

1

1 0

0

1

1 0

0

0 1 .

As for each even line, we apply T1, which depends only on one digit, then the subtree
only depends on that site. Hence, at each even line, at each site with color 0, there is a 0A

and at each site of color 1, there is a 1A. This means that we have

0A =

0

0

0A 0A

1

0A 1A and 1A =

1

1

1A 1A

0

1A 0A .

Hence,

Ta(0A) =

0

0A 0A =: B, Tb(0A) =

1

0A 1A =: C,

Ta(1A) =

1

1A 1A =: D, Tb(1A) =

0

1A 0A =: E

and

Ta(B) = Tb(B) = 0A, Ta(C) = 0A, Tb(0A) = 1A, Ta(D) = Tb(D) = 1A,

Ta(E) = 1A, Tb(E) = 0A.

Then the orbit of 0A is O = {0A, 1A, B, C, D, E} and Ta(O) ∪ Tb(O) = O (see Figure 4).
We remind the reader that a measure μ on X is said to be an invariant probability

measure if for every Borel set A, we have μ(A) = μ(T −1
a (A)) = μ(T −1

b (A)).
In particular, μ(C) = μ(T −1

a (C)) = μ(∅) = 0; similarly, we get μ(B) = μ(D) =
μ(E) = 0. Finally, μ(0A) = μ(T −1

a (0A)) = μ(B ∪ C) = 0 and μ(1A) = μ(T −1
a (1A)) =

μ(D ∪ E) = 0, showing that we do not have an invariant probability on the periodic
orbit O.
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B 0A 1A

C

E

D

Tb

Ta

Tb

Ta

Ta , Tb

Tb

Ta

Tb

Ta

Ta , Tb

FIGURE 4. The graph for F+
2 -action on O.

We remind the reader that the classical Krylov–Bogolubov theorem (see [16] or [14,
Theorem 4.1.1]) states that a continuous action of an amenable group G on a compact
metrizable space X admits at least one invariant Borel probability measure; but here, the
semi-group under consideration, F+

2 , is non-amenable.

7.4. Colored quasi-periodic tilings for hyperbolic disk. In [3], it is proved that there
does not exist a primitive substitutive tiling of the hyperbolic plane H2. Tilings studied
there are geometric ones. Here, we show how our colored trees may generate colored tilings
for the hyperbolic plane. The construction is done in the hyperbolic disk.

In the following, quasi-periodic means it is not periodic but repetitive: any patch is seen
infinitely many times with bounded number of iterations to see repetition of the patch.

The following example of ‘ping-pong’ in the hyperbolic disk has kindly been given to
us by M. Peigné.

We consider in D2 the isometry h1 which maps − 1
2 to 1

2 and let ±1 be fixed (we use the
canonical embedding of D2 into C). We also consider the isometry h2 which maps −i/2
to i/2 and let ±i be fixed.

The Dirichlet domain (see [8]) is obtained by considering the intersection of the
half-planes

{z ∈ D2, d(z, 0) ≤ d(z, γ 0)},

with γ = h±1
i , i = 1, 2.

We consider the half-planes {z ∈ D2, d(z, 0) ≤ d(z, γ 0)}, with γ = h±1
i , i = 1, 2.

They are denoted by Pw, Pe, Ps , and Pn as in Figure 5. We set P0 := D2 \ ⋃
i=w,e,s,n Pi .

Hence, P0 is the Dirichlet domain with which we deal.
Furthermore, we identify 0 ∼ e, a ∼ h1, and b ∼ h2.
Now, for any given A ∈ X, we construct a colored tiling for D2 in the following way: for

each ω ∈ F+
2 , the fundamental domain that contains ω in D2 (up to identification) has the

color of the site Aω. Each half-plane ω.b(Pw) (respectively ω.a(Ps)) has the same color
as Aω.b (respectively Aω.a).
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FIGURE 5. Colored tiling from ping-pong in D.

FIGURE 6. The Jacaranda tree: black = 1, grey = 0, a-follower = rectangle, b-follower = disk, root = yellow +
hatching.

This tiling only colors images ω.P0 with ω ∈ F+
2 . We can also decide to color all

different ω−1.P0 via the same principle. We can also use another tree B ∈ X, up to the
condition that the color for P0 has to be fixed (either Ae or Be).

7.5. Picture of Jacaranda tree. The next picture has kindly been computed by F.
Flouvat. We point out that the tree structure increases exponentially fast with the number
of sites and this is a brake to compute the fixed point on a large number of generations.
Graphic representation is also a challenge. Figure 6 used the algorithm introduced in [18].
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