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EXPONENTIAL FAMILIES AND GAME DYNAMICS 

ETHAN AKIN 

A symmetric game consists of a set of pure strategies indexed by 
{0, . . . , n\ and a real (n + 1) X {n + 1) payoff matrix ( a 0 ) . When two 
players choose strategies i and j the payoffs are atj and aH to the i-player 
and j-player respectively. In classical game theory of Von Neumann and 
Morgenstern [16] the payoffs are measured in units of utility, i.e., desir
ability, or in units of some desirable good, e.g. money. The problem of 
game theory is that of a rational player who seeks to choose a strategy 
or mixture of strategies which will maximize his return. 

In evolutionary game theory of Maynard Smith and Price [13] we 
look at large populations of game players. Each player's opponents are 
selected randomly from the population, and no information about the 
opponent is available to the player. For each one the choice of strategy is 
a fixed inherited characteristic. The payoffs are measured in units of 
Darwinian fitness, i.e., net reproduction rate. The problem of evolution
ary game theory is to describe the strategy or mixture of strategies toward 
which the population will evolve and which are stable under small per
turbations due to mutation and sampling drift. 

The state of the population is described by the distribution vector x of 
the strategies in it. xt is the proportion of i-players. So x lies in the 
simplex 

A = {x e R7l+1: xt à 0 and £) ,*; , = l j . 

A distribution is called interior if all n + 1 of the strategies occur. So the 
set of interior distributions is 

A = {x Ç A: Xt > 0 for all i). 

The mean payoff to an t-player when the population is in state x is 
aix = 2^j dijXj because his opponent is a j-player with probability xv 

So the mean payoff for the entire population is axx where, in general, 
we define 

ttxy / J XfGfy / j X î&ijy y 
i i,j 

Maynard Smith and Price called strategy i an evolutionary stable 
strategy (ESS) when for all competing j (a) ait ^ ajt and if equality 
holds in (a), then (b) atj > ajr This means that a population of i-
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strategists is buffered against invasion by or mutation to a small number 
of 7-strategists. This is because most contests will still be against the 
dominant i-strategy and here the ^-players do better by (a). If the 
mutants do equally well against i then the second order effect of (b) will 
still serve to eliminate them. 

By analogy one can generalize to consider a mixed state which is 
evolutionarily stable against alteration by invasion, mutation or sampling 
drift, x Ç A is an ESS if for all y 9e x 

(a) axx ^ ayx 

and if equality holds in (a) for some y then 

(b) axy > avy. 

Implicitly we are thinking of some population dynamic with respect 
to which an ESS is a stable equilibrium. This dynamical system was 
explicitly defined by Taylor and Jonker [15]. Interpreting the payoffs 
as net reproductive rates they derived the equation: 

(0.1) -—• = [atx - axx]xt. 

This says that the relative rate of increase of the proportion of i 
players is the average advantage that an i player has over a random 
member of the population. 

If x is an ESS then for all i either aix = axx or xt = 0, for otherwise, 
&xx — z2i XiUiX = axx. Thus, an ESS is an equilibrium for (0.1). Combined 
work in [15], [8] and [17] proved that an ESS is indeed locally stable, i.e., 
an attracting equilibrium. However, the converse is not true. This means 
that even for a generic class of games obtained by throwing away such 
structurally unstable examples as the paper-rock-scissors game, there 
exist examples with no ESS. This can happen because the attracting 
equilibria fail to be ESS. It can even happen that there are no attracting 
equilibria but that the attractors which occur are more complicated, e.g. 
limit cycles (see [17]). These results raised the question of the signifi
cance of the difference between an attracting equilibrium and an ESS. 

In [6] Hines attacked a different problem which he then showed in [7] 
to be closely related to this question. 

In classical game theory the players may choose to use a randomized 
mix of strategies rather than some pure strategy. A mixed strategy can 
also be regarded as an element x of A where xt is now the probability that 
the player uses strategy i. The pure strategies are then identified with the 
vertices of the simplex. Suppose that each player of the evolutionary game 
uses some mixed strategy. Now the state of the population is described 
by a Borel probability measure w on the simplex A. If the number of 
different strategy types is small compared with the size of the population 
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then 7T will be concentrated on some finite subset of A. On the other hand 
if each strategy type occurs only a small number of times in a large 
population then a nonatomic measure or one with atoms only at the 
vertices will be more appropriate. This is true if we suppose that muta
tion can act on the mixed strategies to alter slightly the proportions in 
the mix. 

For any Borel probability measure w on A we define the mean vector 
x = x(ir) by: 

(0.2) x = I xir(dx). 
J A 

Hines derived a differential equation whose solution is the path of the 
mean strategy x(wt) as the population state irt evolves. He showed that 
if x is an equilibrium for the pure strategy dynamic (0.1) then any 
population state TT with mean x is an equilibrium for the mixed strategy 
dynamic. Furthermore, he proved that the mean x is stable with respect 
to all mixed strategy perturbations -K if and only if x is an ESS. 

Hines' dynamic is complicated by the fact that the evolution of the 
mean of -w depends on the second moment or covariance of -K whose 
evolution depends in turn on still higher moments. Zeeman, in [18], 
reinterpreted Hines' work by looking directly at the dynamic on the 
infinite dimensional space of measures on A. His version of Hines' equa
tion is: 

(0.3) ^ ~ = [aXT-aWTU(dx). 

Here axr is the average payoff to the x-player when the population is 
in state w: 

(0.4) axv = I axvir(dy) = axx 
J A 

with x = X(TT). Similarly, awir = axx. 
Heuristically (0.3) means just as before that the relative increase in 

density of the x strategy is given by its average advantage over the mean. 
Formally, dir/dt is the signed measure with density function relative to T 
given by the function of x in brackets. 

The purpose of this paper is to show the relation between the ostensibly 
infinite dimensional dynamics of (0.3) and the finite dimensional dyna
mics of (0.1). 

We prove: 
(1) The space of measures can be naturally (i.e., independent of atj) 

foliated into submanifolds invariant under the flow of (0.3). In statistical 
terminology each submanifold is an exponential family of probability 
measures on A. The map w —» x(ir) is a diffeomorphism of each sub-
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manifold onto the interior of a closed convex subset of A where the 
interior is taken with respect to the affine subspace spanned by the 
convex set. In particular, each submanifold has dimension ^ n. 

Thus, the behavior of the mean path x(irt) together with the initial 
distribution TT0 completely determine the state irt. 

(2) Consider the differential form on A: 

(0.5) 6 = X (dXiJdijXj = ^ aixdxi. 
i,j i 

Each of the invariant submanifolds of (1) carries a natural Riemannian 
metric with respect to which the vectorfield of (0.3) is dual to 6 when the 
invariant manifold is identified with a subset of A by the map TT —> X(T). 

To understand the significance of the form 0, we return to the pure 
strategy equation (0.1). The associated vectorfield X0 on A is defined by: 

(0.6) X0(x)i = Xi[aix - axx\. 

Note that X0 maps into (Rw+1)o = K Rn+1: X); »< = 0} and so is 
tangent to A at every point. 

On A Shahshahani [14] defined a Riemannian metric by: 

(0.7) (u, v)x = X) xl~
1tiivi. 

i 

If v is in the tangent space of A, i.e., v £ (Rn+1)o, then 

(0.8) (X0(x),v)x = ]£ (aix - axx)vt = ^v&tfCj = dx(v). 
i ij 

So the vectorfield X0 is dual to 6 with respect to the Shahshahani metric. 
Thus, before the payoff matrix a î ; is chosen the space of measures is 

foliated by finite dimensional Riemannian submanifolds. The different 
leaves can be identified with a subset of A and so with one another by 
the map x. However, the Riemannian metrics vary from leaf to leaf. 
The payoff matrix then defines the form 6. The vectorfield of (0.3) is dual 
to 6 with respect to the metric on each leaf. Given a fixed form the vector-
fields dual with respect to various Riemannian metrics can have rather 
different dynamical behavior. We will see this when we study Mines' 
characterization of ESS. 

In the next two sections we describe the differential geometry of spaces 
of measures related by bounded density functions. I see this work as part 
of a growing bridge between differential geometry and statistics, compare 
[3] and [4]. In the third section we erect our study of evolutionary games 
on these foundations. 

For the measure theory needed below we will follow [5]. In general, 
we look only at finite measures and signed measures, using in, w etc. to 
denote measures (not necessarily probability measures) and /x, v etc. to 
denote possibly signed measures. For the definitions from differential 

https://doi.org/10.4153/CJM-1982-025-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-025-4


378 ETHAN AKIN 

topology needed below, e.g. tangent space, foliation etc. we will follow 
[10]. However, a less forbidding treatment of these elementary definitions 
occurs in [1, Section 1.3]. 

1. Manifolds of measures. Consider a fixed measurable space, M. 
Two measures TI and 7r2 are called equivalent (written m ~ W2) if they 
have the same sets of measure 0. In general, if ir and /x are a measure and 
a signed measure on M then T > /x means 7r measure zero implies (x 
measure zero. If -K > M then the Radon-Nikodym derivative dix/dw is 
defined [5, Section 31]. This is the unique (a.e. ir) measurable real func
tion such that for any bounded measurable / : M —* R 

(1.1) ff(xMdx) = //(*) -£ (x)ir(dx). 

From the uniqueness easily follows the chain rule: 

, . dix dix dw2 , s. 
(1.2) - — = - — - . - — (a.e. Tri) 

air\ air2 awi 

where iri ~ T2 > \x. 
Let C be a locally compact metric space. If F: M —•> C is Borel measur

able then F is called essentially bounded (rel 71-) if there exists a compact 
subset Co of C such that 

T T ( M - F-i(Co)) = 0, 

i.e., .F(x) G Co a.e. For an essentially bounded map the essential image, 
ess. Im F, is: 

ess. Im F = C\ {C0 C C: Co is compact and F(x) G Co a.e.} 
= the smallest compact subset C0 of C such that F(x) G C0 a.e. 

In particular, if ikT = C is compact then the essential image of the 
identity map is called the support of ir. 

If C = R the vector space of essentially bounded functions is denoted 
L°°(7r). It is a Banach space with respect to the norm: 

11/11 = ess. sup l/l = sup (ess. Im | / | ) . 

If 7Ti ~ 7T2 then the concepts of essential boundedness and essential 
image rel -K\ and 7r2 agree. In particular, the support of equivalent mea
sures on a compact metric space agree. Also the Banach space Lœ(ir) is 
independent of the choice of measure T in an equivalence class. 

Now we sharpen the ordering > by defining 

T T » M if 7T > n and • / • G L°°(T). 
air 
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The corresponding equivalence relation is: 

^ J T T I d7T2 / ^ T n l 
7Ti ^ 7T2 II 7T1 ~ 7T2 a n d 3 , 3 = I 3 I £ £ 

a7T2 <X7Ti \aT2/ 

or equivalently 

7Ti œ 7T2 if 7TI ̂  7T2 and In -— £ L°°. 
tt7T2 

Here In is the natural logarithm. L°° denotes L°°(7ri) = L 0 0 ^ ) . Note that 
transitivity of ^> and œ follow from the chain rule (1.2). 

From now on let 5̂ be a fixed œ equivalence class of measures on M, 
L°° be the associated Banach space of essentially bounded real valued 
functions and 

Wl = {M- M is a signed measure with T = /x for ir £ $} . 

Note that $ C 2R. 
$ is a complete metric space with respect to the distance: 

In — 
dTT2 

(1.4) dOrlf 7T2) = 

To see that d is a metric we define, for 7r0 G $: 

/T 0 : ^ - + L ° ° /.0(7r) = l n | ^ 

(1.5) 

tt7ro 

1. PROPOSITION. For ez^ry 7r G $, /T ^ ÛW isometry of *$ onto L°°. 77&e se/ 
0/ charts {(L°°, JT~l): n G $) w aw a//as îwïfe respect to which $ becomes a 
smooth manifold modeled on Lœ. In other words, we regard the map JT~l as 
a global coordinate chart on the manifold $ . 

For every T £ ty, Fr is a linear isomorphism of 9DÎ onto L°°. The maps FT 

induce equivalent norms on Wl with respect to which 9W becomes a Banach 
space. 

The inclusion map z.* **J3 —> SCXÎ is a smooth diffeomorphism onto an open 
subset. 

Identify the linear spaces 9J? and U° with their own tangent spaces at each 
point. At each point w £ $ identify the tangent space of $ at T, i.e., T^ty 
with 3D? via the inclusion map i. With these identifications we have, for ir, 
TTo G Ç : 

(1.6) Fr = (TM~l: 3)}^Lœ, 

where T^J^ is the tangent map of JT0 at w. 
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Proof. By the chain rule: 

(1.7) J*O(TTI) — - ^0 (^2 ) = l n ~ 7To, 7T!, 7T2 € $ . 

From this the isometry result is clear. The inverse map JT0~
1' Lœ —» $ 

is given by 

(1.8) J.o-K/) = ^7T0. 

Consequently, 

/ri o J*0~\f) = / + In - ~ ° . 
#71*1 

So the transition map Jiri o J^O"1 : Lœ -^ Lœ is translation by In (diro/dn). 
Its tangent map is the identity and 3̂ is an affine manifold modeled on L°°. 

Fro : 9W —» Lœ is an isomorphism with inverse: 

(1.9) Fr~i(f) = fa. 

This identification of 99Î with Lœ maps ^ onto 

L + = ( / a œ : / ^ a.e. for some e > 0}. 

L°° is a Banach algebra and we claim that L+ is the component of the 
identity, 1, in the group of units of Lœ. L+ is clearly open and convex. It is 
a subgroup of the group of units. Since the union of the other cosets is 
open, L+ is open and closed in the group of units. 

(1.10) FrOioJ^if) = e'= Zfn/n\ 

So for any TT G $, FT o i o Jr~
l is the exponential map for the group of 

units. It is clearly C°° with inverse/ —» I n / mapping L+ onto L00. On the 
other hand it is the coordinate version of i. Since its tangent map at zero 
is the identity we have that the diagram of tangent maps: 

\ / ' 

m 
commutes, at least when 7r0 = 71-. Since the tangent map of J^ o JT0

_1 is 
always the identity the above diagram always commutes and implies 
(1.6). 

Finally, 7v o iv0
_1 is multiplication by the unit dir/diro £ L+ and so is 

a linear automorphism of the Banach space L°°. 

Remark. By (1.6) / y - 1 is the tangent map at ir of the difreomorphism 
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i o Jr0~
l and so is smooth in 7r, i.e., the functions: 

F: $-+L(9D?;Lœ) 

taking w to 7v and (/v)"1 respectively are smooth maps. In practice, this 
means that a smooth vectorfield on $ can be regarded as a smooth map 
from 5̂ to 9W or as a smooth map from $ to L°° with the two versions 
related by FT at ir. 

Integration is a continuous bilinear pairing of 9M and V° which we 
will call the Kronecker pairing: 

(1.11) ( , ): 2» X L°°->R 

</*,/> =!f(x)n(dx). 

For each ir G ^ we can define inner products on L°° and 9)f. First, the 
L2(T) inner product restricted to Lœ: 

(1.12) . ( J i T x r - . R 

T ( / I , / 2 ) = J fi(x)f2(x)7r(dx). 

T( , ) makes L°° a pre-Hilbert space with a weaker topology than that 
induced from || ||. Its completion isL2(7r). Different choices of T induce 
equivalent although not identical inner products on L°°. 

On m we define ( , )r: Wl X 5DÎ -> R by 

(1.13) (MI, M2)* = (MI, ^T(M2)) = J ^ (x)m(dx) 

= / ^ T (*)f^ (*)*(<&) = T(ft(Mi), F , (MO) . 

So /v is an isometry between ( , )T and T( , ). Since 7^$ = 39Î, ( , )7r is 
a weak Riemannian metric on $ . By (1.6) the local version of ( , )T with 
respect to the chart (L°°, J*^1) is *( , ). So it is given by the map 

g : L œ - > z * y m ' ( £ œ ; R ) 

g(f)(fi,f*) = jfi(x)f2(x)e^7T0(dx). 

Smoothness of (1.10) implies that g is smooth and so 7r( , ) is a weak 
Riemannian metric on $ which we will call the Shahshahani metric (cf. 
[1]). It is called weak because it induces an incomplete topology weaker, 
i.e., coarser, than the norm topology on 9W. So a smooth real valued 
function on $ need not have a gradient vectorfield with respect to this 
inner product. Two important classes of functions do have gradients. 

2. PROPOSITION. For T0 (E $, M £ 9W and f0 £ Lœ define the maps 
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(1.14) US(r) = (M, 7 „ ( T ) ) = flnp- {x)»{dx) 
*J U1T0 

£'»(*) = (TTJO) = J7o(*)ir(ds). 

L ^ and £ / o are smooth maps admitting gradient vector fields. The gradients 
V L ^ and VEfo are the smooth maps from ty to %Jl given by: 

(1.15) V J V = M 

v ^ o = / o T = 5 /v- i( /0) . 

Proof. LT0
M is the composition of J ^ with the continuous linear map 

coM: Lœ —» R (coM(/) = (ju, / ) ) . So L ^ is smooth and its tangent map 
satisfies (by (1.6)): 

l\{L^)(TJ^(f)) = «"(/) = <M,/) = (M, ^ - H / ) ) . 

= (M, r,/^-1 (/)),. 
£ / o is the restriction to 3̂ of the continuous linear map co/o: SDÎ —» R 

(CO/O(JLX) = (JU,/O))- So £ / o is smooth and its tangent map satisfies: 

TTE"(n) = w /o(M) = (M>/0) = (/o7r,M)„. 

Note that by (1.7) the difference L*/ — L*/ is the constant L7ro
M(7Ti) 

and so the gradient is independent of the choice of WQ. 
Now suppose A is a linear subspace of L°°. We can sharpen the equiva

lence relation œ on $ by defining: 

7Ti œ A 7T2 if I n -7— G A for 7Ti, 7r2 6 3J. 

a7r2 

Let 3 A denote the set of equivalence classes in $ and 3A(?r) denote 
the equivalence class of 7r. By (1.7) it is clear that for 7r0 G ^3: 

Tri ^ A 7T2 if and only if / ^ (TTI) — ^0(^2) G -4. 

So JTTQ maps the set of equivalence classes 3 A to the set of translates of 
the subspace A in L°°. If PA: Lœ —->• L°%4 is the quotient map of con
gruence mod ^4, we can define: 

(1.16) LT0
A = PAoJ^. $-+Lœ/A. 

Just as with LT/ a different choice of ir0 changes the map LT0
A by a 

translation on Lœ/A. 
If 4̂ is a closed subspace of L°° then U°/A is a Banach space, P A is a 

continuous linear map and LV0
A is a surjective smooth map whose point 

inverses are the equivalence classes $A. 3 A is a foliation of $ by smooth 
submanifolds modeled on A. 
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On the other hand, if B is a closed subspace of 2ft then we let 35B 

denote the equivalence classes of congruence mod B in 2ft restricted to $ 
via i. So 

ni G ®B(7T2) if and only if wi — T2 € 5 . 

If P s is the quotient map of 2ft onto 2ft/7? then 3)B consists of the point 
inverses of the smooth map: 

(1.17) EB = PBoi: $->m/B. 

3. PROPOSITION. Let A be a closed subspace of U° and B be a closed sub-
space of 2ft. Fix 7T0 G ^ . The tangent distributions of the foliations $A and 
$)fl satisfy: 

(1.18) 1\SA = { V J 5 ' : / e 4̂} = / V " 1 ^ ) 

^ty Tv3
Aifor example, we mean the tangent space of the leaf of $A containing 

ir. Here the gradients are taken with respect to the Shahshahani metric on ty. 

Proof. The tangent space of T)B(T) is just the subspace B since 5Dfî is 
the intersection with $ of translates of B. So 

T^B = i ^ ^ l = {VJW: M G £} by (1.15). 

Similarly, 7^3A = 7 ^ j ^ - 1 (.4 ) and so by (1.6) 

1\SA = FT-*(A) = {ficifeA}. 

In a number of important examples these two foliations are orthogonal 
complements. This requires very strong conditions on the pair. 

4. Definition. Linear subspaces A C Lœ and B C 2ft are called totally 
complementary if they satisfy: 

(CI) f £ A and n e B imply (M,/) = 0. 
(CII) For any 7r £ $ and v £ 2ft there exist/ £ 4̂ and /x G B such that 

y = fir + ix. 

5. LEMMA, (a) If A and B are totally complementary then A and B are 
closed subspaces. In fact, 

B = ( ^ 2ft: <M,/> = 0/or a/// 6 A) 

A = {/ G L°°: (M,/> = 0/or a// ^ 5 ) 

i.e., /I awd .5 are the annihilators of one another with respect to the Kronecker 
pairing. 

Furthermore, for any w and v the decomposition of v in CI I is unique. 
(b) If A is a closed subspace of U° and B C 2ft is its annihilator then 

(A, B) is a totally complementary pair if and only if for every T £ $ A 
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admits a closed complement in Lœ orthogonal to A with respect to the L2(ir) 
metric r( , ). In other words, if and only if for every T there exists a continu
ous projection P*: Lœ —* A whose kernel is orthogonal to A with respect to 

Proof, (a) Uniqueness follows from uniqueness for v — 0. If 0 = fir + JU 
w i th / G A and JJL G B then by CI: 

So / = 0 and \i = — fir = 0. 
If v = fir + M annihilates 4̂ then it annihilates/ and so w(f, / ) = 0. 

Thus, v = il £ B- On the other hand if g annihilates B let g7r = /7r + n 
with / G A and n d B: 

0 = <M, g> = (M, g*")* = <M, / ) + (/x, M)T = (M, M)T. 

So M = 0 and g7r = fir. Hence, g = f G A 
(b) If B is the annihilator of A then FV{B) consists of the vectors 

orthogonal to A with respect to v( , ). Furthermore, v = fir + M if and 
only if iv(i>) = / + FT(fx). SO (̂ 4, 5 ) is totally complementary if and 
only if Lœ is the direct sum of A and FT(B) for all IT. 

Remark. Uniqueness, as opposed to existence, of the decomposition 
v — fir + /x required only CI. 

6. T H E PRODUCT THEOREM. Let A, B be closed sub spaces of Lœ and 2JÎ 
respectively. Suppose that CI holds. Fix ir0 G $ and define L^A'. $ —> Lœ/A 
and EB: $ -> 2R/£ as i« (1.16) and (1.17). The product map 

EB XLT,A: $ - > 2 R / S XLœ/A 

is a smooth infective immersion, i.e., a smooth infective map whose tangent 
map is infective at each point. 

If (A, B) is a totally complementary pair then EB X Lr{i
A is a diffeo-

morphism of ty onto an open subset of 3)1/B X Lœ/A. T^ty is then the direct 
sum of the closed sub spaces TV^A and TTT)B. This direct sum decomposition 
is orthogonal with respect to the Shahshahani metric. 

Proof. The tangent map at w is the product 

PB o Tri XPAo TrJrQ-1 

or (1.6): 

PB X PA o Fr: m -> m/B X Lœ/A. 

So jut G 9)? is in the kernel of the tangent map if and only if ^ G B and 
Fir(v) = / G A, i.e., 0 = — fir + /i. By CI and the remark after Lemma 5, 
/it = 0. So CI implies that the tangent map is injective. 
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Suppose that CI I also holds. To show that the tangent map is sur-
jective we start with v Ç 9K and g Ç L00 and construct \x G 9JÎ such that 
\x — v ^ B and /V(/LI) — g 6 A Decompose z> = /i7r + /mi and g7r = f2tr 
+ jU2 Wlth/1,/2 £ ^4, Mli M2 G JB. Let M = fiTT + M2-

M — ^ = M2 — vi £ B and 

/V(M) - g = / I - / 2 e ^ . 

So the tangent map is an isomorphism and EB X LW0
A is a local diffeo-

morphism by the inverse function theorem. In particular, it has an open 
image. 

To prove that the map is injective suppose TTI, 7r2 € $ with 

EB(in) = EB(TT2) and Z ^ ( i n ) = L.0
A(^i). 

Let j \ = diTi/diro. So In/* = /*•<,(*•<)• Since LT(/(7ri) = LT0^(TT2), ln / i — 
ln / 2 G A. Since EB(wi) = EB(T2) the signed measure 7n — ir2 (E .#. CI 
implies 

0 - /(ln/xOc) - ln / 2 (*))0n - T2)(dx) 

= f(\nfi(x) - ln/2(x)(/i(x) - f2(x))T0(dx). 

But the function of two positive real variables: 

(In x — In y) (x — y) 

is nonnegative and vanishes only when x = y. So fi = f2 a.e. (w0) i.e., 
they are the same element of L°°. Thus, 

7Ti = /l7To = . /Wo = 7T2. 

Finally, the decomposition of TTty identified with 9K is into the sub-
spaces 7VDB = B and Tir^sA = Fir~

l(A) which are orthogonal comple
ments in Wl with respect to ( , )T by Lemma 5 (b) and its proof. Ortho
gonality also follows from Proposition 3 and the equation: 

(1.19) (VTL./, VTE')* = </*,/>• 

Remark. Lr^
A maps ^ onto U°/A. The image of EB is an open convex 

subset of %Jl/B which we will denote £)B. I conjecture that in the totally 
complementary case EB X LTQ

A maps onto £)B X Lœ/A. Call this the 
"Image Conjecture". When true it implies that EB restricts to a diffeo-
morphism of each leaf of $A onto €)B and LT0

A restricts to a diffeomor-
phism of each leaf of 33B onto V°/A. 

In passing we notice that the inclusion of ty in 9JÎ on the one hand and 
the atlas of maps Jw on the other induce two different parallelisms on $, 
i.e., maps identifying the tangent spaces of $ with one another. These 
are related by the linear maps FT as shown in Proposition 1. The Shah-
shahani Riemannian metric also induces a parallelism as shown by: 
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7. PROPOSITION. FÎXTTQ G fy. ThemapKTQ: L°°-> Wl defined by: 

(1.20) Kvo(f) = 4-VVo 

is a smooth map and its restriction to L+ is a diffeomorphism onto $ . This 
restriction is an isometry between L+ with the constant Riemannian metric 
T0 ( , ) and $ with the Shahshahani metric. 

Proof. FroK^: L°° —> U° m a p s / to 4 - 1 / 2 which is clearly smooth. Its 
restriction to L+ is a diffeomorphism onto L+ with inverse: g —> 2g1 /2. 

IfXT 0(/) = Trthen 

r ^ o V O = 2-^/TTO. 

If / 6 L+ then this is (2/i//)*r and 

( r ^ o C f i ) , TfK„0(f2))„ = J ( W 2 / / 2 ) T T = jAfaro = xoCfiJ2). 

Remark. The image of ifT0 is the closure of ^ in 3)î. In fact, JK"T0 is a 
homeomorphism of the closure of L+ in L°°, which is the set of nonnegative 
bounded functions, onto the closure of $ . On the other hand, the image of 
Kir0 is the same as the image of KT0 on the nonnegatives. In fact, K^ is 
really the quotient map of a group action. For the additive group of the 
measure algebra of subsets of M acts on Lœ by (Mo, f) —> Mo • / where 
Mo • / agrees with — / on Mo and w i th /on M — Mo./i2 = f^ if and only 
if l/i| = I/21 if and only if/1 and/ 2 lie in the same orbit of this action. 

In applications we are frequently interested only in probability mea
sures. So we define 

% = {TT 6 $:JV(d*) = 1}, 

i.e., the set of probability measures in ^ . Define 

2Ro = U G Wt:fv(dx) = 0}. 

For the constant function 1, the map El: $ —» R defined by (1.14) 
sends 7r to JV(dx). So E1 maps $ onto the positive reals R+ . Let P i : 
$ -» ^ ! be defined by 

(1.21) PI(TT) = TT/E1(TT). 

Clearly, E1 X Pi is a diffeomorphism of $ onto R + X $1. 
Because E1 is constant on $1 its gradient defined by VvE

l = -K is normal 
to $1. VE1 is easily seen to be of unit length on $1 and so is the unit 
normal vectorfield for the submanifold $1 of $ . 

If a function/: $ —> R has a gradient field Vf then the restriction to $1 
has a gradient which we denote Vf. It is the normal projection to 99?0. 
Since VE1 is the unit normal field this projection is given by: 

(1.22) VJ = Vvf - (V,/, VrE
l)rVrEK 
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Regarding VTf and VTEl = -w as elements of 9W this says: 

(1.23) V„/ = V . / - <V,/, 1)TT. 

In particular, from (1.15) we have for 7r £ $ i : 

(1.24) VU^* = /i - (M, 1)TT 

v U / o = (/o - (7r,/o))7r. 

Note that if M G 2Wo, 

V,!^* = VTLT/ = /x. 

If (4 , 7?) is a totally complementary pair then 1 £ A if and only if 
5 C SDÎo- In that case every leaf of T)B which meets ^ i lies completely in 
$i , i.e., El is constant on the leaves of 35B because 1 Ç i . We will then 
denote by 3)5 the restriction of the 35 B foliation to $i . On the other hand, 
each leaf of $A is closed under multiplication by positive scalars. Thus 
every leaf of 3 A intersects SJ31 in a codimension one submanifold. We let 
3?A denote the induced foliation of $ i consisting of the point inverses of 
the restriction of LT0

A to $i . (1.18) becomes for w £ tyi: 

(1.25) TrS
A = {VTE': /É 4} 

T.® 5 = { V ^ / : M £ £} = B C SKo. 

The map / —> VVT*/ is the isomorphism 7v_1 from .4 to 7^3^. Since 
vVTi1 = 0 , / —> vVTî/is an isomorphism of any complement of [1] in A onto 
7^3^- 7^(7^3^) is the T( , ) orthogonal complement of [1] in 4 . 

Theorem 1.6 implies: 

8. T H E PRODUCT THEOREM. If (A, B) is a totally complementary pair 
with 1 £ A then ED X Lro

A is a diffeomorphism of tyi onto an open subset 
of(m/B)1XLœ/Awhere 

(2»/J3)i = {̂  + 5 G m/B\$p{dx) = 1}. 

iw 0/fter words, (Wfl/B)i is that translate of the subspace Wto/B C Wfl/B 
which maps to 1 under E1. 

Remark. The image of $ i under Lro
A is still all of L°%4. The image of 

$i under £ * is the intersection of £)B = EB($) with (2»/5)i . So 
£>iB s EB(<}5i) is an open convex subset of the affine subspace (%R/B)i. 
EB X Lro

A maps $ onto OiB X L œ / 4 if and only if it maps % onto 
OiB X L°%4 (cf. Remark after Theorem 1.6). 

Finally, KT0 of Proposition 1.7 restricts to a diffeomorphism of 

\f£L+:$P(xU0(dx) = 4} 

onto $i . 
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2. Exponent ia l f a m i l i e s . Suppose i t is a finite dimensional subspace 

of Lœ containing the constant functions. If {po, . . . , pn] is a basis for A 

then the map 

(2.1) a: Rn+l->A 

a(u0, . . . , un) = X Uipi 

is a linear isomorphism. 
The annihilator B of A consists of those JU G 9JJ such t ha t (id, pi) = 0 

for i = 0, . . . , n. So 

(2.2) |3: 9K/5 - » Rn + 1 

is an injective linear map. T h a t it is in fact a linear isomorphism follows 
from the fact tha t (A, B) is a totally complementary pair. For the iso
morphism Fv: 2W —» L°° maps B onto the vectors perpendicular to A with 
respect to T( , ). If the pair is totally complementary then Lco/F7r(B) is 
isomorphic to A. So Lco/Fir(B) and its isomorph 9K/5 are n + 1 dimen
sional. £ is then an injective linear map between vector spaces of the same 
finite dimension and so is an isomorphism. 

For any measure IT G $ we can choose a basis {eo71", . . . , £ / } to be 
orthonormal with respect to the inner product r ( , ) restricted to A. Then 
the TT( , ) orthogonal projection Pv: Lœ —> A is defined by: 

(2.3) P „ ( / ) = E r t f , «/)«<'• 

So the pair is totally complementary by Lemma 1.5. 
Identifying $Jl/B with Rw+1 via 0 identifies the map EB with: 

(2.4) £ * : sp - » R»+i 

£ * ( T T ) = «7T, £„>, • • • , (IT, Pn)) = ( P ° W , • • • , £ * » « ) • 

Since J ^ - 1 maps A onto the leaf 3A(7r) of the 3 A foliation, 

3A( i r) = { e ' i r : / É ^4}. 

Using a we can coordinatize 3A(7r) by Rw+1: 

(2.3) 3 A ( T T ) = j e x p ( g Mfl£<J TT: (WO, . . . , un) G R w + 1 | . 

As 1 G ^4, the leaf -3A(7r) of the foliation $A on probabil i ty distr ibutions 
consist of the 3A(7r) measures normalized to measure 1. 3A(7r) is n 
dimensional and if the basis is such t ha t p0 = 1 then we can coordinatize 
3 A ( T T ) by R w fo r TT G %: 

(2.4) Y M = | c ( w i , . . . , Un) exp ( g uiPi) *'• («i, • • • , O G Rn 

C(«i, . . . , Wn)""1 = J exp I X) uiPi(x)f ir(dx). 
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This is because two measures 

exp I ]C uiPi ) *" and exp I ̂  utpi I : 
\i=0 I \{=0 ' 

normalize to the same probability measure if and only if /T^o 
(ut — ûi)pi{x) is constant, i.e., a multiple of 1. Since po = 1 this is true 
if and only if ut = Ut for i = 1, . . . , n. 

Thus the leaves of 3 A are n dimensional exponential families of 
probability measures (cf. [11, Section 2.7]). 

To prove the Image Conjecture in this case we need an analytic result. 

1. LEMMA. Fix 7r €î 3̂i andf0 Ç L°°. Then as K —> oo in R and f —»/0 
Y OO 

in L 

jf(x)eKf^Tr(dx)/jeKf^7r(dx) -* S 

where S is the essential supremum off0. 

Proof. Let wf
K be the probability measure eKfTr/feKfw. The result says 

Lim ff(x)wf
K(dx) = S as i£ —* oo and/—>/0. 

If 11/ ~ /o|| ^ e t hen / ^ S + e and so 

Thus, Lim sup ^ 5. 
For the other direction define 

Mf(e) = {*:/(*) è S - e | . 

Clearly, ||/i — /2 | | ^ d/2 implies 

Mfl(b/2)CMfM. 

Also since S is the essential supremum of/0, 

7r(M/0(e)) > 0 for all e > 0. 

We now claim that for any fixed e > 0 

(2.5) L i m 7 r / ( M / ( 0 ) = 0 

as/—»/o and i£ -+ oo , where M/(e) = M — M,(e). 
In fact, if | | / - / o | | ^ e/4 then 

J Mf(e) K OUT / \ \ ^ MfU) ^ 

f *, =e^—\(Mf(e/Z)) 
I £ 7T 

•^ M/(«/2) 

5; e-X 6 / 2 /^(M / 0( e /4)) . 

Since e and /o are fixed this approaches 0 as K —* 00 . 
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That Lim inf jfirf
K è S now follows from 

(/TT/ ^ r f*,K ^ (s - e)(i - ^(^,(0)) 

because the last term approaches S — e as X" —•> oo , / —»/0. 

2. THEOREM. Z>e/we £: X -» Rw+1 6y 

P(*0 = (^o(x), . . . ,pn(x)). 

Let C be the convex hull of the essential image of p, i.e., C is the smallest 
compact convex set such thatp(x) £ C a.e. Define EB: $ —•> Rw+1 fr;y 

77ze image of ED, denoted £)B, is the interior of the positive cone on C, i.e., 
£)B = Interior C+ with 

C+ = {tv:t ^ 0 andv e C}. 

ED X LW0
A is a diffeomorphism of $ onto DB X Lœ/A. 

Suppose po = 1 and define p: X —*Rnby 

p(x) = (pi(x), . . . ,pn(x)). 

Let C be the convex hull of the essential image of p. Define ËB: $ i —» Kn by 

ËB(ir) = (dr,p1),...,(r,pH)). 

The image of ËB, denoted £)B, is the interior of C. ËB X LTQ
A is a diffeo

morphism of $1 onto £)B X L°°/A. 

Proof. Since a change of basis doesn't affect the result we can assume 
po = 1. Then the first paragraph follows from the second because p = 
j op and £ B | $ i = j o ËB where j : Rn -> Rn+1 is defined by 

j(tli, . . . , Un) = (1, tti, . . . , ttn)-

Multiplying TT by a positive scalar t doesn't affect Lro
A and multiplies 

EB{ir) byt. 
Now from the Product Theorem we know that £)B is open and that 

EB X LV0
A is a diffeomorphism of $ onto an open subset of £)B X Lœ/^4-

D2* = j^iO13) is open and Ë f î X Ar0
A is a diffeomorphism onto an open 

subset of £B X Lœ(A) by Theorem 1.8. To prove OB = Int C and the 
Image Conjecture it is enough to prove: 

(1) Ë»(%) C_C. 
(2) EB maps 3 A 0 ) onto Int C for any x £ $ L 
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The key facts that we need are: 

(2.6) C = {v e Rn For all (u1} . . . , un) € Rn 

Z) UiVi g ess. sup J2 Utpi). 

(2.7) Boundary C — {v £ C: For some (^i, . . . , un) 

J2 UiVi = ess. sup Y, Uipt}. 

These are true because the hyperplanes of support for the convex hull 
of the essential image of p consist of 

{v Ç RM: 2 utvi = ess. sup J^ Uipt) 

for (MI, . . . , t t n ) Ç Rn. 
(1) If v = Ë 5 ( T T ) = «7T, ^ ) , . . . , (TT, £ n » t h e n 

2 UiVi = (TT, X) w^i) ^ ess. sup £ w^i 

because TT £ ^ i . So (1) follows from (2.6). 
(2) We use the coordinatization of 3^(7r) by Rw given by (2.4). So 

the coordinate version of EB\^sA(ir) becomes the map: 

(2.8) g: Rn -> Rn 

giW = J Piipc) exp \J£ Ujpj(x)j w(dx) f 

I exp I ̂  Ujp(x) I w(dx) for i = 1, . . . , n. 

We show that g maps onto Int C. 
Suppose that u{k) is a sequence in Rw such thatg( /° = g(u{k)) converges 

to |(CO) not in the image of g. It suffices to show that |(oo) is a boundary 
point of C. 

Since ^ w can have no convergent subsequence Kk = \\u{k)\\ must tend 
to oo . Let ûik) = u(k)/Kk. By going to a subsequence we can assume that 
Kk is never zero and Uik) converges to û{CO) in the unit sphere of Rn. Let 

pw = ZÛ^PJ (k £ oo). 

Then p& -> £(œ> in Lœ and #* -> oo. Apply Lemma 1 with f0 = £<°°>: 

E û^gH = Lim £ «/*>!/*> = ess. sup. p^ 

= ess. sup X) ûj{œ)pj. 
So by (2.7) g(00) is a boundary point of C. 

Remark. In applications A will usually be defined by a list of functions 
[pi\ i = 0, . . . , n\ which therefore spans A but which need not be 
linearly independent in L°°. We can still define EB\ W —» Rw+1 to be 
the linear map of (2.4) but now it need not be onto. The vector function 
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p: M -> Rn+1 is essentially bounded and the image EB(Wl) is the sub-
space spanned by the essential image of p. The image £)B = EBC$) is 
the interior in £B(9JJ) of the positive convex cone spanned by ess. Im (p). 
Since 1 is assumed to lie in A, EB($lo) will be a codimension one subspace 
of Efi(9K). Some translate of this subspace will be the affine subspace 
spanned by ess. Im (p). For example, if 1 = ]F^=o Pi then 

EB(m0) = EB(m)^ (Rw+1)o = \v 6 EB{m):Y.iVi = 0}. 

The affine subspace spanned by ess. Im (p) is 

{v£ £*(2R):2>< = 1}. 

Finally the image £)iB = EB(tyi) is the intersection of £)B with this 
affine subspace. Equivalently, DiB is the interior of the convex hull of 
ess. Im (p) in the affine subspace it spans. 

3. Game dynamics. The purpose of the smooth structure on ty is to 
make sense of differential equations of measures. A vectorfield on $ can 
be regarded as a smooth map X: ^ —> 50Î or $: ty —> L°° related at -K by 
/V, i.e., FT(X(T)) = £(V)- So the corresponding differential equation is: 

(3.1) dir/dt = X(TT) = Z(T)T. 

By analogy with the finite dimensional case we can think of X(TT) as the 
absolute rate of change at T and £(71-) as the relative rate. 

Restricting to probability measures a ^ i vectorfield is a map X: 
$ i - > 2»o, i.e.,: 

(3.2) 0 = (X(TT), 1) = (X(TT), TT). = T(É(ir), 1) (TT G $ i ) . 

From the Product Theorem we get the following: 

1. PROPOSITION. Let (A, B) be a totally complementary pair with 1 £ A. 
Suppose X: tyi —> 99?0 is a smooth vectorfield. 

(a) The following conditions are equivalent and define "X is a horizontal 
field": 

(i) £(*•) G A for all w £ $i . 
(ii) 77ze leaves of the foliation 3A of ^ are invariant manifolds for the 

local flow associated with X. 
(iii) J / 7T* w a solution of equation (3.1) defined for t in some interval 

containing 0, themrt ttA wofor all tyi.e., 

In (dTt/diro) G 4̂ for all t. 

(iv) For all n £ B and 7r0 G $ i the functions L7ro
M: $ i —> R ar^ integrals 

of the motion associated with X, i.e., each L T / is constant on solutions of 
(3.1). 

(b) The following conditions are equivalent and define "X is a vertical 
field": 
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(i) X(v) e B for all T G %. __ 
(ii) The leaves of the foliation T)B of tyi are invariant manifolds for the 

local flow associated with X. 
(iii) If ir i is a solution of equation (3.1) defined for t in some interval 

containing 0, then irt — 7r0 G B for all t. 
(iv) For all f £ A the functions Ef: ^ i —> R are integrals of the motion 

associated with X. 

Proof. In each of the two cases, condition (i) says that the vectorfield 
is everywhere tangent to the corresponding foliation and so restricts to 
a vectorfield on each leaf. So condition (i) is equivalent to condition (ii) 
by uniqueness of solutions for the differential equations (3.1) restricted 
to the leaves [10, Chapter IV]. Condition (iii) is a restatement of condition 
(ii). Condition (iv) says that the vectorfield is orthogonal to the comple
mentary foliation and so is equivalent to condition (i) because (A, B) is 
a totally complementary pair. 

Remark. In each case the equivalence of (i), (ii) and (iii) and their 
implying (iv) requires only that A and B be closed subspaces of L°° and 
SDÎ respectively satisfying condition (CI) of Definition 1.4. 

We now return to game dynamics. The underlying measurable space 
is A C Rw+1 where {0, 1, . . . , n\ indexes the strategies in the game. Let 
pi'. A —» [0, 1] i — 0, . . . , n be the ith. coordinate function so that p: A —> 
Rw+1 is the inclusion map of A into Rw+1. For /* Ç 9K define 

E%) = f (3.3) E\n) = J p& = (M, pi) i = 0, . . . , n. 
J A 

So E*: )̂3i -» R is the map Ef w i th / = p{. Clearly, E* maps Ci to [0, 1] 
and Yl% E* = 1. So £ : ^ i —» Kn+1 with coordinate functions Ei maps into 
A and in the notation of the introduction E(ic) is the mean value of the 
measure -K. 

7r) = I pw 
J A 

(3.4) E(w) = I pic = X(TT). 
J A 

Now let 4̂ be the subspace of L°° spanned by p0, . . . , pn and let B be 
the subspace of Wl annihilating A, so 

(3.5) n e B <=> </x, £i) = 0 i = 0, . . . , n <=> I Pv = 0. 
J A 

So the dimension of 4̂ :g w + 1 and by Section 2, (<4, 5 ) is a totally 
complementary pair. The leaves of the corresponding foliation 3 of tyi 
have dimension equal to dim A — 1. The leaf through ir is the exponen-
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tial family of dimension ^ n given by /cf. (2.3) and (2.4)): 

(3.6) 3(TT) = { C(u0, . . . , un) exp I X Uipij TT: (U0, . . . , un) 6 R n + V 

\ - i 

/
e x P \ X W ^ J T . C(w0, • • • , un) 

*> A \ i = 0 

We get a coordinate system on $(TT) by choosing dim A — 1 linearly 
independent £ / s such that they together with the constant function 1 = 
2 ip t form a basis for A in L°°. 

With (a 0 ) a given payoff matrix we define the vector-field X: tyi —> 9D?o 
by X(TT) = £(*•)*• with £(*) G Lœ given by (Cf. (0.3)): 

(3.7) J (T ) (X) = a^ — aTir x Ç A. 

Here we follow the notation of (0.4) with axy = X) xi^ijJj- The subscript 7r 
stands for x(w) = E(TT). 

2. THEOREM. Let $1 6e a fixed œ equivalence class of probability measures 
on A. The vector field X: $1 —> 3DÎ0 defined by X(TT) — £(ir)ir with %(ir) given 
by (3.7) is a smooth, complete vectorfield on ^$1. With respect to the Shah-
shahani metric on tyiit is dual to the one-form: 

(3.8) J2 (dE^dijE* = E*6 

where 6 is the one form on A given by (0.5). 

(3.9) X(T) = £ ( a u E V ) ) ^ * 

wfrere VE* is the gradient of El with respect to the Shahshahani metric on $1. 
X is a horizontal vectorfield so that each leaf of the foliation 3 o / $ i is an 

invariant submanifold of the flow. 
Let C be the compact convex subset of A which is the convex hull of the 

support of TT for TT (E $1. C is independent of the choice of w Ç $1. Le/ £)i 
6e Jfee interior of C in the affine subspace spanned by C. E restricts to a 
diffeomorphism of each leaf of 3 onto Oi. 

Proof. Note first that 

x^OO» 1) = / K71*)*" = ^TT — a™ = 0 

andsoX(7r) Ç 2Jî0- Thus, the vectorfield X is tangent to $1. 
The form on the left in (3.8) defines the pullback of 6 by E, i.e., E*0. 

The proof that it is dual to X is identical to (0.8) : Let \i £ 9}?0, so (/u, 1 ) = 0. 

(Z(TT), JU)T = (n, f (TT)) = I [a*T - a^Mdtf) 
^ A 

= (E^E^E'OOW). 
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Here we use the fact that El is the restriction to $1 of a linear map and 
so its differential is this same linear map. 

(3.9) now follows because the dual of the differential of El is the 
gradient of E\ It also follows by direct computation using (1.24). 

From (3.9) follows the smoothness of X. To see that it is complete 
first extend X to a vectorfield on ty by preceding £ by the smooth projec
tion P i : $ —» $1 given by (1.21). Now fix 7r0 € $i and use the chart 
Jr0~

1' Lœ —> ty. The local representative of X with respect to this chart is 
the map £: L°° —» L°° defined by 

! ( / ) = UPlVro-Hf))) = "XT - flxx 

where TT = P ^ V H / ) ) . Now let 

M = sup {|a^|: x, y G A}. 

M < oo by compactness of A. Clearly, the L°° norm of £(/) is at most 2ikf. 
So £ is a smooth uniformly bounded vectorfield defined everywhere on 
the Banach space L°°. It follows from the usual estimates that it is com
plete, i.e., initial value problems have unique solutions defined for all /. 

X is a horizontal vectorfield by Proposition 1 (ai) since the gradients 
VEl are everywhere tangent to 3 (cf. (1.25)). By Proposition 1(a) each 
leaf of 3 is an invariant submanifold. E is a diffeomorphism of each leaf 
onto ©i by Theorem 2.2 and the Remark thereafter. 

3. COROLLARY. A solution path {irt: t £ R} of equation (3.1) with X 
given by (3.9) is completely determined by the initial distribution, 7r0, and 
the mean path x (IT t) = E(wt). 

Proof. TTt lies in the leaf 3(fl"o) and E\^s(wo) is invertible. So 

Tt = (ElSfro))-1^)). 
Before applying these results, we must interpret the dimension of 

A = 1 + the dimension of C geometrically. Clearly, the n + 1 functions 
po, . . . , pn are linearly independent on A. But they need not be linearly 
independent in Lœ. For example, if the measures of $ i have support 
contained in the face of A defined by po = 0 then p0 = 0 a.e. T and so 
po = 0 in L°°. 

4. LEMMA, (a) The mean values of the measures in ^ i are all contained in 
some open face of the simplex A, possibly A itself. Call this face A($) 

so 

(3.10) dim A - 1 = dim C g dim A($). 

The measures in the family %i are called "full" if the inequality in (3.10) is 
an equalityj i.e., if the affine subspace spanned by the support of T for -K in 
$i is the same as the affine subspace spanned by A (^3). 
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(b) Let Fij(ir) i,j = 0 , . . . , n denote the covariance matrix of the functions 
{pi} with respect to the measure w in $1, i.e., 

(3.11) FM = f p<pt* - E'ME^T). 

The rank of the matrix FI^-K) = dim A — I for all w £ ^ 1 . So the measures 
in tyi are full if and only if 

rank F^ir) = dim A(^) . 

Proof, (a). Let / be a proper subset of {0, . . . , n\ and let A(7) be the 
face of A defined by pt = 0 for i Ç / . Clearly, if the support of T C A(7) 
then pi = 0 a.e. (T) for i £ / and so the mean x(w) satisfies 

#00* = ÏPi^idp) = 0 for i Ç / . 

Conversely, if x(ir) t = 0 for i £ J then since pt ^ 0 and has zero integral, 
pi = 0 a.e. (IT) . So the support of J is in A (J). 

Now all of the measures in $ have the same support. Let A ^ ) be 
the smallest face of A containing this support. The mean values of the 
measures in $1 are contained in this face by the preceding paragraph. 
None of them lie in any proper face of A($) for then the entire support 
would lie in this smaller face. So £)i C A(*iJ3). Now dim A — 1 = dim C 
which is at most the dimension of A($) since C C A($). dim C is strictly 
less than dim A(^) if and only if the affine space spanned by C (= the 
affine space spanned by the support) is a proper subspace of the afifine 
space spanned by A($). 

(b). Consider the linear mapôT: Rw+1 —> ^4/[l] where [1] is the subspace 
of constants in L°°, defined by 

n 

a(uQ, . . . , un) = ^ Uipi. 

Now 22 ij UfFijUj is the variance of ]T utpi which is ^ 0 and equals 
zero if and only if ]£ u%pi is a.e. constant, i.e., if and only if the vector u is 
in the kernel of â. Hence the symmetric matrix Ftj is positive semidefinite 
and its rank is the codimension of its annihilator, i.e., n + 1 — dim K 
where K is the kernel of â. But since â is onto, 

dim A — 1 = dim A/[I] = n + 1 — dim K = rank Ftj. 

Remarks, (a) The covariance matrix is closely related to the Rieman-
nian metric on the leaves. In fact, from (2.4) it follows that: 

(3.12) (VV£\ V,E')x = FijM. 

From this equation we can derive Hines' original dynamic for the mean: 

(3.13) 4ÊM± = g Ftj(r)ajkxMk. 
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To see this recall that x(w)i = E*(T) and so the left side is (VVE*, X^ir))*. 
(3.13) then follows from (3.9) and (3.12). 

(b) Note that if IT is concentrated on the vertices of A with ir({i}) — xt 

then 

x(w) = x and Ftj = xfiij — XiXj. 

(c) We call the measures of the family tyi interior if A($) = A, i.e., 
if the means x(w) lie in A. So the measures are full and interior if and 
only if £)i is an open subset of A. 

5. PROPOSITION, IT is an equilibrium for the vectorfteld X, i.e., X(w) — 0 
if and only if the restriction of the form 6 to d vanishes atx(w). In that case, 
the entire leaf {wi £ $i.* x(wi) = x(w)} of the vertical foliation 2) consists of 
equilibria for X. 

Proof. X is dual to E*(0|£)i) with E a submersion of $ i onto d . So 
X(ir) = 0 if and only if the form E*(0 |d ) vanishes at IT if and only if 
0 | d vanishes at x(ir) = E(T). Since this condition depends only on the 
mean X(TT) the whole leaf 3)(71-) consists of equilibria. 

6. COROLLARY. If x(ir) is an equilibrium for X0 of (0.6) then ir is an 
equilibrium for X. Conversely, if the measures of -K are full and ir is an equilib
rium for X then x (ir) is an equilibrium for X0. 

Proof. If d C A($) then X0 is dual to 0|Â($) with respect to the 
Shahshahani metric on A(^). So if X0(e) = 0 with e = x(ir) then 
6\A(^) = 0 at e and a fortiori 0 | d = 0 at e. X(w) = 0 by Proposition 5. 
If the measures are full then d is open in A($) and so the reasoning can 
be reversed. 

To relate the details of equilibrium behavior of X for full, interior 
families to that of X0 on A we recall: 

7. PROPOSITION, (a) Suppose e £ A andX0(e) = 0. Then e is an ESS 
if and only if the quadratic form axx for x £ (Rw+1)0 is negative definite. If 
we define 

Ie(x) = — X ) ^ l n (Xi/et) forx£ A 
i 

then Ie(x) is a smooth nomnegative function of x vanishing only at e. e is an 
ESS if and only if 

(3.14) dxIe(X0(x)) < 0 e ^ x G A. 

(b) / / XQ never vanishes on A, i.e., there are no interior equilibria, then 
there exists b £ (Rw+1) 0 such that with Lb (x) ^^ibilnxtfor x £ A, 

(3.15) dxL*(X0(x)) > 0 x Ç A. 
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Proof. The first part of (a) is proved in [1, Appendix 3]. By strict 
convexity of In, 

Ie(x) ^ - In Z ^iipCi/ei) = 0 

with equality only when all the xje^s are equal, in which case they are 
all 1. By direct computation 

dxIe(Xo(x)) = axx — a ex = a,(X-e)(X-e). 

Note that because e is an interior equilibrium aie = aee for all i and so 
dxe aee. 

&(x-e)(x-e) < 0 

for all x 9e e in A if and only if the quadratic form is negative definite on 
( R ^ o . S e e ^ ] . 

(b) is [2, Theorem 3]. 

Remark. If the quadratic form axx on (Rn+1)0 is negative semidefinite 
instead of definite, then (3.14) is still true if < is replaced by ^ . So e is 
stable although not necessarily asymptotically stable. In such a case 
we call e a weak ESS. 

The main tool in relating these X0 results to X is: 

8. LEMMA. Let b £ Kn+l. There exists /x £ ffll such that: 

(3.16) <Ml£f> = 6, i = 0, . . . , » 

if and ow/y if & is in the vector sub space of Rw+1 spanned by C. In particular 
if the measures of $1 are full and interior such ju's exist for all b in Rw+1. 

Define Lb: A —> R 63/ Lb(x) = 22* bf In xt. Fix 7r0 G ^1 and recall that 
Lv/: 3̂ —> R is defined by 

L*oMOr) = <M, In (dir/diro)). 

If \x and b are related by (3.16) Jfeew 

(3.17) drLro^XM) = diL*(X*(£)) 

for all IT £ $1. Here x is x(IT). 

Proof, ty is open in 5DÎ and £ : **J3i —> A is the restriction of the linear 
map: /x —» (pt, £) from 9J? to Rn+1. By the remark after Theorem 2.6 the 
image of 99? is the subspace spanned by E(tyi) = Oi. This proves the 
first paragraph. 

(3.17) is a direct computation using (3.9) and (1.24): 

dvLV0»(X(ir)) = (V.L,0
M,Z(x)). = £ (V.L^, V^U^E^T) 

ij 

= E ((», Pi) - </*, l><T,£«»a„EV). 
ij 
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But {ix,pi) — bt so that (M, 1) = 2 * *̂« Also, (71-, £<) = .£'(71-) = x{. So we 
continue: 

ij \ \ h I I ij 

= d£L\X0(x)). 

9. THEOREM. Let $1 be a full, interior family of probability measures. 
(a) If e = X(TTI) is an ESS for X0 then in is a globally attracting equilib

rium for the restriction of X to the invariant manifold 3» (71-1). In fact, for 
7T 6 $1 define we to be the unique element of $>M such that x(we) — e. 
Define the function I e: tyi —>Rby: 

(3.18) / . (x) = - < * . , In ( £ ) > . 

Ie is a smooth nonnegative function with IeM = 0 if and only if x(ir) = e, 
i.e., IT = 7Te. 7e is a global Lyapunov function for X} i.e., 

(3.19) dJe(X(w)) < 0 X(T) * e. 

(b) Suppose Xo has no interior equilibrium. Then there exists \i £ 5Dîo 
swc/̂  / t o mJfe 7T0 a fixed element oftyi: 

(3.20) ^L^(Z(7T)) > 0 7T 6 $!. 

Proof, (a) Theorem 2.2 gives a diffeomorphism 

£ X L : Çi->Ox X r / i . 

The map ir —•> 7re from $1 to itself is given by 

7T-> ( X ( T T ) , / ) - > (é?f / ) ->7Te 

where the first map is E X L and the third is (£ X L)~l. Clearly, w —» we 

is a smooth map. 
FixTo G ^5iwithx(7ro) = e. Since ire £ 3(?r), 

In — 6 4 . 

Since x(7r0) = e = x(7re), 7re — 7r0 £ i? which annihilates ^4. Hence, 

(3.21) « . ) - -<w.In(^J) . -<«b(^)> 

--<•*"(£)> + <"•"(&)> 
= —L**0^) +Lr*°(we). 

So /e(7r) is a smooth function of x. Note that the second term which we 
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will call L2{j) is constant on leaves of 3- Strict convexity of the log 
again implies 

/ . ( x ) e - l n < x . , ^ ) = 0 

with strict inequality unless dTr/dire is constant a.e. in which case it is 1 
and 7T = 7Te. So IeM > 0 unless w = Te, i.e., x(ir) — e and in that case 

Finally, by Lemma 8 and (3.21): 

dJe(XM) = - d£L*(X0(x)) + 4 L 2 ( I W ) . 

Since L2 is constant on the leaves of 3 and X(ir) is tangent to 3 the 
second term vanishes. On Â, 

— Le(x) = —^2etlnXi 

differs by a constant from 

Ie{x) = — J2 ei In (xt/et). 

So we have 

(3.22) dJe(XM) = d£Ie(Xo(&)). 

(3.19) follows from (3.14). 
(b) Choose b G (Rw+1)o satisfying (3.15). By Lemma 8 we can choose 

M G I satisfying (3.16). Since <Mf 1) = Z bt = 0, M G SOîo. (3.20) follows 
from (3.17) and (3.16). 

Remarks, (a) If e is a weak ESS (cf. the remark after Proposition 7) 
then (3.19) is true with < replaced by ^ . So each ir with x(ir) = e is 
stable in its leaf. 

(b) The function of ir: —L^/^w) is nonnegative and vanishes only 
at 7T0. It is the information function of Kullback [9]. 

There is a special case where the entire pattern of behavior of the 
vectorfield X mimics that of X0. We call the game totally cooperative if the 
payoff matrix is symmetric, i.e., 

(3.23) atj = an. 

In this case the payoffs to the two players are always the same so there 
is a common interest in finding the largest mean payoff. As pointed out 
in [1, Appendix 3] this is the genetic model of natural selection and in 
this case X0 is the gradient on A of \axx with respect to the Shahshahani 
metric. 

10. THEOREM. If the game is totally cooperative then the vectorfield X on 
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$1 is a gradient vector field with respect to the Shahshahani metric. It is the 
gradient of 

ô a™ = ô E E\ir)a „&(*). 

Proof. Since atj is symmetric, direct computation of the gradient of 
\&x% yields the right side of (3.9). 

We now describe a situation where the behavior about an equilibrium 
for Xo can be quite different from the behavior about the equilibria for X 
lying over it. We begin examining the possible values that the covariance 
matrices F a can have. 

Let Sym denote the vector space of symmetric (n + 1) X in + 1) 
matrices. Define the map S: Rn+1 —» Sym by: 

(3.24) S(v)tj = vtvj. 

11. LEMMA. Let G be an open subset of A. For p £ G define b(p) to be the 
Euclidean distance from p to the closed set A — G. 

Let Çij £ Sym such that /^t q^ = 0 for all j . Let p Ç G. //"<?*;• ^a5" #(W-
negative eigenvalues, i.e., the associated form is positive semi-definite and 

(3.25) supJE^g^ : ||z/|| = 1 j < 5(£)7* 

£/&£# /feere &m£ sequences {t(k): k = 1, . . . , N} in [0,1] and 

{*<*>: k = 1,. . . , iV} 

(3.26) £ lW = 1 

k 

Proof. The result is clear if qtj is zero (use x = £), so assume it is not. 
The symmetric matrix g t ; can be diagonalized by an orthonormal basis 
in Rw+1. Since qfj annihilates the constant vector 1, we can find a sequence 
( # : k = 1, . . . , Ni} with iVi g w of vectors in (Rre+1)0 having unit 
length which are the eigenvectors with eigenvalues X̂  > 0. This means 

Ni 

qti = E X*5(»(B)W. 

Furthermore, 
JVl 

0 < X2 ̂  £ X , ^ ^ i s u p {qvv: \\v\\ = 1} < d(p)\ 
* = 1 
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Now let h = \k/\
2 and w<*> = Xv<*>. Then \\u^\\ < ô(p), £ h = 1 and 

It is easy to check that for x, y £ Rw+1: 

5(x) + S(y) = i (5(x + y) + S(x - y)). 

So we get: 

2<i + £<^ = Z ^*(5(tt<*>)„ + S(£)u) 

= £ i**(S(*> + «<*>)„ + Sip - *,&)„). 

Since ||w<*>|| < 8(p),p ± u^ 6 G. 

We saw that the measures of $ are full and interior if the convex hull 
of their support has nonempty interior in A. We now make a stronger 
demand; namely that the support itself have nonempty interior. 

12. PROPOSITION. Suppose that G is an open subset of Â which is contained 
in the support of the measures in ty. In particular, the measures in ty are full 
and interior. 

Let aij be a symmetric matrix of rank n} with nonnegative eigenvalues and 
suchthat^iQij — O.Letp £ G. 

There exists eo > 0 depending on qih p and G such that for all positive 
e < €Q one can choose TT £ ^ i satisfying: 

(3.26) X(TT) = p and Fijiir) = eqtj. 

Proof. Let 

eo = h(pY/n sup {qvv: \\v\\ = 1}. 

Associated with S: A —» Sym we define Es: ty —» Sym by: 

(3.27) E (ir)ij = I S(x)ijir(dx) = I XiXjTr{dx). 
J A J A 

When we apply Theorem 2.2 and the remark thereafter to this map, 
we get that the image Es(tyi) is the interior of the convex hull of the 
essential image of 5, where the interior is taken in an affine subspace of 
Sym. Now the essential image of 5 is just the image of 5 on the support 
because 5 is continuous. Let Symx be the affine subspace of Sym defined 
by: 

Symi = {atj 6 Sym: £)*./*** = 1}. 

Note that 5(A) C Symi. 
If qtj is positive semidefinite and annihilates 1, p £ G and e < eo then 

by Lemma 11, cqtj + ptpj is in the convex hull of S(G). If, in addition, 
qtj has rank n and so is positive definite on (Rn+1)0 then any near enough 
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element of Symi is still of the form lqu + pipj and so is still in the convex 
hull of S(G). So if the rank condition is satisfied eqtj + ptpj is in the Symi 
interior of the convex hull and so lies in Es(tyi). This means tha t for 
some 7T G $1 , 

Es(*)ij = Wij + Pipj. 

This completes the proof since 

Fijiv) = £ 5 ( T T ) ^ - pipj. 

We now apply these results to examine Hines' characterization of ESS. 

13. PROPOSITION. Let V be a Euclidean vector space, i.e., a finite dimen
sional space with inner product ( , ). Let L: V —» V be a linear map. If for 
every symmetric positive definite linear map P: V —•> V the composite map 
P o L has only nonpositive eigenvalues, then the quadratic form (Lv, v) is 
negative semidefinite. 

Proof. See the Appendix of [7]. 

14. T H E O R E M . Let e £ A be a linearly asymptotically stable equilibrium 
which is not a weak ESS {for example, see [17, Example 1]). If e is in the 
interior of the support of the measures of $ , then there exist wi, 7r2 G $ i with 
X(TTI) = x(iT2) = e such that ir\ is an asymptotically stable equilibrium for 
the restriction of X to Si^i) while 7r2 is an unstable equilibrium for the 
restriction of X to 3 (^2). 

Proof. Fix a leaf 3(7r0) of the foliation, x = x(w) can be regarded as a 
coordinatization of J?(71-0) with x Ç O, i.e., for x 6 D let 

TT(X) = ( ^ ( T T O ) ) - 1 ^ ) 

be the unique element of the leaf with mean x. Let 

Fij(x) = Ffj(T(x)). 

In this coordinate system, the restriction of X to 3K?ro) yields the 
equation: 

(3.28) -— = X) Fik(x)akx = ] £ Fik(x)(akx - a*x) 
at je je 

where 

a*x = (w + l)"1 X a**. 

The first form is a rewriting of (3.13). The second form is equivalent 
because ]£* Fik = 0. 
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At the equilibrium x = e, the parenthesized term vanishes. So the 
linearization of (3.2) for x = e + v, v £ (Rn+1)0 is given by 

(3-29) ^f= Ç/<«(c)(at,-a.,). 

To determine the stability of 7r(e) in 3(7r0) we have to look at the 
eigenvalues of the m a t r i x ^ k Fik(akj — a*j) regarded as a linear operator 
on (R^+1)o. Proposition 12 says that we can choose the leaf so that up to 
a positive scalar multiple Ftj is any positive definite operator on (Rn+1)0 

that we want. 
Choose 7Ti so that x(in) = e and Ftj is a multiple of e^ij — exe^ (cf. 

Remark (b) after Lemma 4). (3.29) is then the linearization of Xo at e 
(up to positive multiple). So the eigenvalues have negative real parts by 
hypothesis and wi is asymptotically stable in its leaf. 

Since e is not a weak ESS, Proposition 13 implies that we can choose 
7T2 so that x(7T2) = e and ^k Fik(j<i)(akj — a*j) has some eigenvalues 
with positive real parts. So 7r2 is unstable in its leaf. 

Remark. By Proposition 13 we see that by varying P we can change 
the spectrum of P o L from stable to unstable. Since the kernel of the 
operator remains unchanged the only way that such instability can arise 
is by a pair of complex conjugate eigenvalues crossing the imaginary axis. 
This means that as we vary ir in the leaf of 3) over the equilibrium e in 
such a way that IT changes from a stable to an unstable equilibrium, a 
(possibly degenerate) Hopf bifurcation occurs [12; Theorem 3.15]. So 
there are small cycles in some of the leaves whose means stay entirely in 
the basin of the attractor e of X0. 
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