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1. Introduction

A number of oscillation criteria have already been derived for pairs of coupled differential
equations of the form

x'(t)=a(t)f(y(t)), 1

y'(t) = -b(t)g(x(t))f

(see, for example, Kordonis and Philos [2], Kwong and Wong [5], Morzov [8-10]). Since
non-oscillation theorems do not seem to be available, we will provide several such the-
orems. More specifically, we will classify the non-oscillatory solutions according to their
limiting behaviours and then provide necessary and/or sufficient conditions for their
existence.

We will assume that

(HI) a(t) and b(t) are non-trivial, non-negative and continuous functions defined on an
interval [to,oo); and

(H2) f(u) and g(u) are real, non-decreasing and continuously differentiable functions
defined on R such that xf{x) > 0 and xg{x) > 0 for x ^ 0.
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We will also restrict our attention to those solutions of the differential system (1.1)
that exist on some ray [To,oo), where To ^ to may depend on the particular solution
involved. Note that under quite general conditions there will always exist solutions that
are continuable to an interval of the form [To,oo), even though there will also exist
non-continuable solutions [2].

As usual, a continuous real-valued function defined on an interval [To,oo) is said to
be oscillatory if it has arbitrary large zeros, otherwise it is said to be non-oscillatory. A
solution {x(t),y(t)} of the system (1.1) will be called oscillatory if both x(t) and y(t) are
oscillatory, otherwise it is said to be non-oscillatory.

Non-oscillation criteria for solutions of (1.1) are interesting for many reasons. In par-
ticular, since several standard second-order ordinary differential equations such as

x"{t) + b(t)g(x(t)) = 0,

x"(t) + b{t)\x{t)\x sign x(t) = 0,

+ b(t)g(x(t)) = 0,
a(t)

can be written in the form (1.1), these criteria will also provide information on the
asymptotic behaviours of these equations. Indeed, we will see that our criteria have
contact with those of Kusano and Singh [5], Kusano and Naito [3], Li [6], Lu [7], Naito
[11-13], Ruan [14] and others who deal with these equations.

System (1.1) is naturally classified into four classes according to whether

/•OO rOO I-OO I-OO

I a(s) ds < oo, / a(s)ds = oo, / b(s)ds<oo or / b(s) ds = oo.
J to •* to "to •'to

By symmetry considerations, we will, however, restrict our attention to the cases where

/•OO /-OO

/ a(s) ds < oo or / a(s) ds = oo.
Jtn Jto' to

For this reason, we will employ the following notation:

f°°
A(s) = / a(u) du,

J s

and

/"*
A(s,t) = / a(u)du, t o ^ s ^ t ,

Js

Lemma 1.1. Suppose conditions (HI) and (H2) hold. Suppose further that the func-
tion a(t) is not identically zero on any interval of the form [TO, OO), where TO ^ to, then
the component function x(t) of a non-oscillatory solution {x(t),y(t)} of (1.1) is also
non-oscillatory.
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For the proof, assume to the contrary that x(t) is oscillatory but that y(t) is eventually
positive, then, in view of (1.1), x'(t) = a(t)f(y(t)) ^ 0 for all large t, and x'(tj) =
a(ti)f(y(ti)) > 0 for an increasing and divergent sequence {U}. Thus, x(t) > 0 for all
large t, or x(t) < 0 for all large t. This is a contradiction. The case where y(t) is eventually
negative is similarly proved.

Similarly, if b(t) is not identically zero on any interval of the form [ro,oo), then the
component function y(t) of a non-oscillatory solution {x(t),y(t)} is also non-oscillatory.
Therefore, under the additional condition

(H3) a(t) and b(t) are not identically zero on any interval of the form [ro,oo), where
TO $= t0,

each component function of a non-oscillatory solution {x(t),y(t)} of (1.1) is eventually
of one sign.

If we now interpret (1.1) as a (time-varying) vector field in the plane and its solutions
as trajectories, then we see that each non-oscillatory solution corresponds to a trajectory
which ultimately lies in one of the four open quadrants of the plane. In view of the
directions of the vector field in each open quadrant, it is also clear that the component
functions of a non-oscillatory trajectory must be monotone.

2. The case A(t0) = oo

We now impose an additional condition on (1.1), namely that A(to) = oo. We assert that
any non-oscillatory solution {x(t),y(t)} of (1.1) must ultimately lie in the first or the
third open quadrant.

Lemma 2.1. Suppose conditions (H1)-(H3) hold. Suppose further that A(*o) = oo.
Then any non-oscillatory trajectory {x(t),y(t)} of (1.1) must ultimately lie in the first or
the third open quadrant and the function y(t) must converge. Furthermore, there exist
Ci > 0, C2 > 0 and T ^ to such that ci ^ x{t) ^ C2A(to,t), or -C2A(to,t) ^ x(t) ^ c\
for t ^ T.

Proof. Assume without loss of generality that x(t) > 0 and y(t) > 0, or x(t) > 0 and
y(t) < 0 for t > TQ. The latter case cannot happen. Otherwise, x'(t) ^ 0 and y'(t) ^ 0
for t > To- Hence,

x'(t) = a(t)f(y(t)) < a(t)f{y(T0)), t>T0, (2.1)

which implies

0 < x{t) < x{T0) + f{y(T0)) [ a(s) ds = x(T0) + f(y{T0))A(T0,t) -> -oo ,

a contradiction. Thus, x{t) > 0, y(t) > 0, x'{t) > 0 and y'(t) < 0 for t ^ To. It follows
that y(t) monotonically decreases to a non-negative constant, and x(t) monotonically
increases. Furthermore, since (2.1) holds in this case, we see that

0 < x(T0) ^ x(t) < x(T0) + f{y(T0))A{T0, t) ^ c2A(t0, t), t > To,

for some c2 > 0 since A(to) = oo. The proof is complete. •
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We have shown that a non-oscillatory solution {x(t),y(t)} must ultimately lie in the
first or the third quadrant, and that the function y(t) must converge. Note that since
x'{t) ^ 0 or x'(t) ^ 0 for all large t, we see further that x(t) either converges to some non-
zero constant or diverges to positive infinity or to negative infinity as t —> oo. However,
if x(t) converges to some non-zero constant, then y(t) must converge to 0. Indeed, if
limt->oo y(t) = d > 0, then since

x'(t) = a(t)f(y(t)) ^ a(t)f(d)

for all large t, we have

x{t) > x(M) + f{d) f a(s)di
J M

OO,

which is a contradiction.
In view of the above considerations, we may now make the following classification. Let

Q be the set of all non-oscillatory solutions of (1.1) and fi+ be the subset of fl containing
those which ultimately lie in the first open quadrant. Suppose conditions (H1)-(H3) hold
and A(to) = oo. Then any non-oscillatory solution in Q+ must belong to one of the
following three classes:

J?+(+,0) = {{x,y} e H+ | lim x(t) G (0,oo), lim y(t) = 0},
t—^oo t—>oo

f2+(oo,0) = {{x,y} e Q+ | lim x(t) = oo, lim y(t) = 0},
t—too t—too

i?+(oo,+) = {{x,y} 6 Q+ I lim x(t) = oo, lim y(t) £ (0, oo)}.
t—*oo t—*oo

A similar classification is also available for non-oscillatory solutions that lie, ultimately,
in the third open quadrant.

In order to further justify our classification scheme, we derive several necessary and
sufficient conditions for the existence of each type of non-oscillatory solutions.

Theorem 2.2. Suppose conditions (H1)-(H3) hold and A(to) = oo. A necessary and
sufficient condition for (1.1) to have a non-oscillatory solution {x(t),y(t)} which belongs
to n+(+,0) is that

f( fO°b(s)g{c)ds)\dt<oO (2.2)a(t)

for some c > 0.

Proof. Let {x(t),y(t)} be a solution in i?+(-F, 0) such that lim^oo x(t) = a > 0.
Then there exist ci > 0 and T such that c\ < x(t) for t ^ T. In view of (1.1),

/•OO

y(t) = J b{s)g{x{s)) As, t > T,
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and

oo > a - x(T) = [ a{s)f(y{s)) ds
JT

r°° / r°° \
= a(«)/( / b(u)g{x(u))du)ds

^ / a(s)f( / b(u)g(ci)du) ds.
JT \JS J

Conversely, choose a number M so large that

/ a(s)f ( rb(u)9(c)du] ds < c/2.
JM \JS J

Let X be the set of all bounded continuous real-valued functions x = x(t) defined on
[M, oo) with norm ||x|| = supt^M \x(t)\. Let $? be the subset of the Banach space X
defined by

^ = {x(t) e X | c/2 < x{t) < c, t ^ T}.

Then <f is a bounded, convex and closed subset of X. Let us define an operator F :<P -t X
as follows:

(Fx)(t) = c- I a(s)f( [ b(u)g(x{u))du) ds, t ^ M.

The mapping F has the following properties. First of all, F maps SP into &. Indeed, if
x S #•, then

c^(Fx)(t) = c- a{s)f( 6(u)5(z(u))du)ds
Jt \J s /

^ c - / a(s)f[ b(u)g(x(c))du)ds^c/2.
JM \JS /

Next, we show that F is continuous. Let {xi} be a convergent sequence of functions in \fr
such that linij-Kxj ||x, — x|| = 0. Since & is closed, 16 !? . By the definition of F, we have

\(FXi)(t)-{Fx){t)\

bMgixiiu^du^ds

By the continuity of / and g and Lebesgue's Dominated Convergence Theorem, it follows
that lim^oo \\Fxi - Fx\\ = 0.

Finally, we show that F\P is precompact. Let x e & and s,t ^ M. Then, assuming,
without loss of generality, that s > t,

\(Fx)(s)-(Fx)(t)\ = ['a(u)f irb(v)g(x{v))dv) du

a{u)f(f b{v)g(c)dvjdu.
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In view of (2.2), for any e > 0, there exists a 8 > 0 such that \s — t\ < S, thus we have

\(Fx)(s) - (Fx)(t)\ < e.

This means that F\P is precompact.
By Schauder's Fixed Point Theorem, we may conclude that there exists a n i g i J ' such

that x = Fx. Set ^
y(t) = f b(v)g(x(v)) dv, t > M,

Jt
then limt-KX) y(t) — 0 and y'(t) = —b(t)g(x(t)). On the other hand,

x(t) = (Fx)(t) = c - | ° ° a(s)f ^ ° ° 6(«)5(x(u)) du) ds

= c -

and thus lim^oo x(i) = c and x'(i) = a(t)f(y(t)), as required. The proof is complete. •

Theorem 2.3. Suppose conditions (H1)-(H3) hold and A(to) = oo. A necessary and
sufficient condition for (1.1) to have a non-oscillatory solution {x(t),y(t)} which belongs
to i?+(oo, +) is that

/•OO

/ 6(i)|</(cA(i0)s))|dt<oo (2.3)

for some c > 0.

Proof. Let {x(t),y(t)} be a solution in i?+(oo,+) such that limt^oot/(<) = f3 > 0.
Then there exist four positive constants, ci, c%, d\, d,2, and T ^ to such that

ci ^ x(t) ^ c2A{t0,t), dx < y(t) < d2

for t ^ T. In view of (1-1), we have

x(t)=x(t0) + I a(s)f(y(s))ds
Jt0

= cA(to,t),

and
/•oo yoo

oo> y(T)-0= / b(s)g(x(s))ds> / b{s)g(cA{to,s))ds.
JT JT

Conversely, pick a number T ^ to so that

f b{s)g(cA(T,s))ds<d,
JT
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where d = f~1(c)/2. Let X be the partly ordered Banach space of all continuous real-
valued functions x{t) with the norm

II II

||x|| = sup

and the usual pointwise ordering. Let ̂  be the subset of X defined by

9 = {x e X | f(d)A(T,t) < x{t) < f(2d)A(T,t), t > T}.

For any subset B of &, it is obvious that inf B € X and sup B € X. Let us further define
an operator F : & -» X as follows:

= / a(s)/( d + / b(u)g(x{u)) du ) ds, t> T.
JT \ Js J

The mapping F satisfies the assumptions of Knaster's Fixed Point Theorem: F maps &
into itself and F is non-decreasing. The latter is easy to see. As for the former statement,
note that, for any x € \P,

(Fx)(t) > A(T,t)f(d), t>T,

and

(Fx)(t)^ f a(s)f(d+ I °° b{u)g(f(2a)A(T, u)) dv\ ds

= I a(s)f(d+ I b(u)g(cA{T,u))du\ ds

for t^T,as desired.
By Knaster's Fixed Point Theorem, we may conclude that there exists a n i E ! ? such

that x = Fx. Set
r°°

y(t) = d+ b{u)g{x{u))du, * ̂  T.
Jt

Then limt^ooy(t) = d and y'(t) = -b(t)g(x(t)). On the other hand,

x(t) = (Fx)(t) = [ a(s)f(y(s))ds>f(d) f a(s)ds = f(d)A(T,t),
JT JT

so that lim^oo x(t) = 00 and x'(t) = a(t)f(y(t)), as required. The proof is complete. •

Finally, we provide a sufficient condition for the existence of a solution in /?+(oo, 0).

Theorem 2.4. Suppose conditions (H1)-(H3) hold and A(t0) = 00. A sufficient con-
dition for (1.1) to have a non-oscillatory solution {x(t),y(t)} in Q+(oo,0) is that

[ b{t)\g{cA(to,s))\dt< 00 (2.4)
Jt0
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for some c > 0, and

/ <̂ (w /1 / ^(^)p(^O ds I dt = oo (2.5)

for any d > 0.

Proof. Let <5 > c be fixed. Denote by C[to, oo) the space of all continuous functions
on [to, oo) with the topology of uniform convergence on every compact subinterval of
[to, oo). Consider the subset \P of C[to, oo) consisting of all x € C[to, oo) such that

/"* ( f°° \
5 ̂  x(t) < 6 + / a(s)f[ / b(u)g(x(u))du\ ds, t ^ T.

JT \JS )
Let us define an operator F : «P -* C[to, oo) as follows:

(Fx)(t) = 6+ [ a(s)f( [ b{u)g(x(u)) dv) ds, t > T.
JT \JS )

It is clear that F is well defined and maps <£ into C[to, oo). By reasoning similar to that in
the proof of Theorem 2.2, we may also show that F maps & into &, that F is continuous
on #', and that F& is relatively compact. Schauder's Fixed Point Theorem then implies
that F has a fixed point x in &. Set

y{t) = I b(u)g(x(u)) dw, t > T.
Jt

Then lim^oo y(t) — 0 and y'(t) = —b(t)g(x(t)). On the other hand,

x{t) = (Fx)(t) =6+ [ a(s)f(y(s))ds, (2.6)
JT

so that x'(t) = a(t)f(y(t)) for t ^ T. We assert that limt^.oox(t) = oo. Indeed, x(t)
either converges to some positive limit or diverges to oo. If lim^oo x(t) = d > 0, then
x(s) > d/2 for s > 5. In view of (2.6),

ft / [CO \
x{t)=6+ a(s)f( b(u)g(x{u))du) ds

JT \JS /

b(u)g(d/2)du)ds = oo,

which is a contradiction. •

3. The case A(t0) < oo

We now impose an additional condition on (1.1), namely that A(t0) < oo. We assert
that the trajectory of any non-oscillatory solution {x(t),y(t)} of (1.1) approaches some
vertical line as t —* oo.

a(s)f f f°
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Lemma 3.1. Suppose conditions (H1)-(H3) hold. Suppose further that A(to) < oo.
Then any non-oscillatory trajectory {x(t),y(t)} of (1.1) tends to some vertical line x = a
as t —¥ oo. Furthermore, there exist C\,C2 > 0 and T ^ to such that c\A(t) ^ x(t) ^ C2,
or - c 2 ^ x(t) < -ciA(t) for t > T.

Proof. Without loss of generality, suppose x(t) > 0 and y(t) > 0 for t ^ To, or
x(t) > 0 and y(t) < 0 for t ^ To. If the former case holds, then in view of (1.1), x'(t) ^ 0
and y'(t) ^ 0 for t ^ To. Thus,

0 < i'(t) = a(t)f(y(t)) ^ a(t)f(y(T0)), t > To,

which implies that x(t) monotonically increases to a non-negative constant a, since

x{t) ^ x(T0) + f(y(T0)) [ a(s) ds ^ x(T0) + f(y{T0))A(t0) < oo.
JTQ

Furthermore, it is clear that A(t) ^ x(t) < a +1 for all large t, since A(t) —*• 0 as t ->• oo.
Suppose the later case holds. Then in view of (1.1), we see that x'{t) ^ 0 and y'(t) ^ 0

for t ~^T0. Hence, x(t) monotonically decreases to a non-negative constant /3. Since

x'{t) = a(t)f(y(t)) < a(t)f(y(T0)), t > To,

thus

0 ^ P = x{s) + f{y(T0)) f a(u) du = x(s) + f(y(T0))A(s), t > To,
Js

we see further that (3+ 1 ̂  x(s) ^ -f(y(To))A(s) for all large s. The proof is complete.
D

We have shown that a non-oscillatory solution {x(t),y(t)} must ultimately lie in one
of the four open quadrants of the plane. In the case where {x(t),y(t)} is eventually
in the first open quadrant, then in view of our previous lemmas, x(t) monotonically
increases and approaches a positive constant and y(t) decreases and approaches a non-
negative constant. In the case where {x{t), y(t)} is eventually in the fourth quadrant, then
x(t) decreases and converges to a non-negative constant and y{t) decreases and either
converges to a negative constant or diverges to — oo. The other two cases can similarly
be analysed.

In view of the above considerations, we may now make the following classification.
Let Q be the set of all non-oscillatory solutions of (1.1) and O++, J?+_ be, respectively,
the subsets of i? containing those which ultimately lie in the first or the fourth open
quadrant. Suppose conditions (H1)-(H3) hold and A(to) < oo. Then any solution in
J7++ must belong to the following classes

/?++(+,+) = {{x,y} e n++ | lim x(t) € (0,oo), lim y(t) e (0,oo)},
t—too t—>oo

n++(+,0) = {{x,y} e Q++ I lim x(t) e (0,oo), lim y(t) = 0};
I>OO t—¥OO
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while any solution in J?_| must belong to the following classes:

rt+-(+,-) = {{x,v} e n+- | lim x(t) e (0,oo), lim y{t) 6 (-00,0)},
t—>oo t—>oo

/?+_(+,— 00) = {{x,y\ 6 J?+_ I lim x(t) € (0,oo), lim y(t) = —00},
t—tao t—*oc

f2+-{0,-) = {{x,y} E J?+_ I lim x{t) = 0, lim y(t) € (-00,0)},
t-^00 t—»oo

i?+_(0,-oo) = {{z,y} 6 i?+_ I lim x(t) = 0, lim y(t) = -00}.
t—^00 t—^OO

Again, in order to justify our classification scheme, we derive several necessary and/or
sufficient conditions for the existence of each type of non-oscillatory solution.

Theorem 3.2. Suppose conditions (H1)-(H3) hold and A(to) < 00. A necessary and
sufficient condition for (1.1) to have a non-oscillatory solution in J?+_(0, —) is that

/•OO

/ b{t)g{cA{t)) di < 00 (3.1)

for some c > 0.

Proof. Let {x(t),y(t)} be a solution in i?+_(0, —) such that \imt-¥oox(t) = 0 and
limt^oo y(t) = /? < 0. Since y(t) is monotone, there exist two positive constants ci, c^
and T ^ to such that — c\ < y(t) ^ —C2 for t > T. On the other hand, in view of the
second equation of (1.1), we have

y{t)=y{T)- f b(s)g(x(s))ds.
JT

Since lim^oo y(t) = (3 < 0, then

/•OO

b(s)g(x(s)) ds < 00.f
JT
IT

Furthermore, we see from Lemma 3.1 that

g(x(t)) > g(cA(t)),

which implies that
r°°
/ b{i)g{cA{t)) dt < 00.

Jt0

Conversely, suppose that (3.1) holds. Then, in view of A(to) < 00, there exists T J5 to
such that

f°°
/ b(t)g(cA{t))dt<d,

JT

where d = f~1(c)/2. Let X be the partly ordered Banach space of all continuous real-
valued functions x(t) endowed with the norm

t>T
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and with the usual pointwise ordering <. Define a subset Q of X as follows:

n = {x E X I f(d)A{t) ^ x(t) ^ f{2d)A(t), t > T}.

For any subset B of Q, it is obvious that inf B G Q and supB € Q. Let us further define
an operator F : Q —¥ X as follows:

(Fx)(t)= a{s)f[d+ b(u)g(x(u))du)ds,
JT \ Js J

The mapping F satisfies the assumptions of Knaster's Fixed Point Theorem [1]: F is non-
decreasing (since / and g are non-decreasing). It maps Q into itself. Indeed, if x G J?,
then

(Fx)(t) > f(d)A(t), t>T

a n d

(Fx)(t)^ [ a(s)f(d+ [ b{u)g(f(2a)A(u))du]ds
JT \ JT J

= j a(s)f (d + 1°° b{u)g(cA(u)) du"\ ds < f{2d)A(t), t > T. (3.2)

By Knaster's Fixed Point Theorem [1], we can conclude that there exists an x G fi
such that x = Fx. Set

y(t) =d+ [ b(u)g(x(u))du, t > T.
Jt

Then

y'{t) = -b{t)g(x{t)) and lira y(t) = d.
t—•OO

On the other hand,

x(t) = (Fx)(t) = / a(s)f(y(s))ds ^ f(2d) [ a(s)ds = f(2d)A(t),
JT JT

x'(t)=a(t)f{y(t)),

and in view of the fact that A(t) -> 0 as t -t oo, we have

lim x(t) = 0.
t-yoo

The proof is complete. •

Theorem 3.3. Suppose conditions (H1)-(H3) hold and A(to) < oo. A necessary and
sufGcient condition for (1.1) to have a non-oscillatory solution in ]?++(+, +) is that

f a(s)f(p+ f b(u)g(c)du\ds<oo (3.3)

for some c > 0 and (3 > 0.
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Proof. Let {x(t),y(t)} be a solution of (1.1) such that limt^oo x(t) = a > 0 and
limt_>ooy(i) = /? > 0. Then there exist two positive constants c\, c2 and T ^ to such
that c\ ^ x(t) ^ c2 for t ^ T. In view of the first equation of (1.1), we have

x(t)=x(T)+ f a(s)f(y(s))ds.
JT

Since limt_yoo x(t) = a > 0, we have

r°°
/ a(s)f(y(s))ds <oo. (3.4)

JT

Furthermore, we see from the second equation of (1.1) that

r°°
= 0+ b(s)g(x(S))ds,

Jt

and

Thus,

P+ f b(s)g(Cl)ds < y(t) ^ p + [ b(s)g(c2)ds.
Jt Jt

/•OO / /*OO \

/ a(s)f ( P + / b(u)g(c2) du J ds < oo.
JT \ Js J

Conversely, suppose that (3.3) holds. Choose T ^ to so large that

' a(s)f[P+ b(u)g(c)du)ds<d,

T V Js )

where d = c/2. Let X be the Banach space of all continuous real-valued functions x(t)
endowed with the norm

and with the usual pointwise ordering ^. Define a subset Q of X as follows:

fi = { i e l | ( f < x(t) ^2d, t^ T}.

For any subset B of i?, it is obvious that inf B € Q and sup B e J?. Let us further define
an operator F : Q —* X as follows:

rt / roo \
(Fx)(t) = d+ I a(s)f[/3+ b{u)g(x(u))du)ds, t^T.

JT \ Js J

The mapping F satisfies the assumptions of Knaster's Fixed Point Theorem [1]: F is
non-decreasing and maps J? into itself. Indeed, \i x E fi, then

(Fx)(t) ^d, t^T,
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and

(Fx)(t) ̂ d+ f a(s)f(f b(u)g(2a)du\ ds

= d+ f a{s)f( I b(u)g(c)du\ ds < 2d, t> T.

By Knaster's Fixed Point Theorem [1], we can conclude that there exists an x € Cl
such that x = Fx. Set

r°°
y(t) = /? + / b(u)g(x(u)) du, t ^ T.

Jt

Then
y'{t) = -b(t)g(x(t)), lim y{t) = /3 > 0,

t—*-OO

and
At) = a(t)f(y(t)).

Hence, {x(t), y(t)} is a solution of (1.1) which belongs to •!?++(+, +). The proof is com-
plete. •

By means of similar reasoning used in the proof of Theorem 3.3, we may prove the
following two theorems.

Theorem 3.4. Suppose conditions (H1)-(H3) hold and A(to) < oo. A necessary and
sufficient condition for (1.1) to have a non-oscillatory solution in /?++(+, 0) is that

f°°a( b(u)g(c) du ) ds < oo

for some c > 0.

Theorem 3.5. Suppose conditions (H1)-(H3) hold and A(to) < oo. A necessary and
sufficient condition for (1.1) to have a non-oscillatory solution in /?+_(+, —) is that

a(s) f°° b{u)g{c) du) I ds oo

for some c > 0 and ft < 0.

Next, we derive two existence criteria for the non-oscillatory solutions in /?+_(+, — oo)
and i?+_(0, -oo).

Theorem 3.6. Suppose conditions (H1)-(H3) hold and A(to) < oo. Suppose fur-
ther that f(—u) = —f{u). A necessary and sufficient condition for (1.1) to have a non-
oscillatory solution in Q^ (+, —oo) is that

/ a(s)f( b{u)g{cA(u))du)ds< oo (3.5)
JT \JT )
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for some c > 0, and

r°°
/ 6(s)ds = oo. (3.6)

Proof. Let {x(t),y(t)} be a solution of (1.1) such that lim^oo x(£) = a > 0 and
limt-voo y(t) = —oo. Then there exist two positive constants ci, C2 and T ^ io such that
C\ ̂  x(i) ^ C2 for t ^ T. In view of the first equation of (1.1), we have

x(t)=x(T)+ fta(s)f(y(s))ds.
JT

Since limt_,.oo x[t) = a > 0, then

/O°a(3)|/(j/(5))|d5<oo.
JT

Furthermore, we see from the second equation of (1.1) that

y(t)=y(T)- f b(s)g(x(s))ds,
JT

and

Since

thus

y(T) - f b(s)g(c2)ds < y(t) < - / b(s)g(Cl)ds. (3.7)
JT JT

I <*( [
On the other hand, in view of (3.7) and the fact that y(t) -* —oo as t -t oo, we have

f°°
/ 6(

JT
s)ds = oo,

JT

which implies that (3.6) holds.
Conversely, suppose that (3.5) holds. Choose T > t0 so large that

a(s)f ((' b(u)g(c) du) ds < d,

where d = c/2. Let X be the partly ordered Banach space of all continuous real-valued
functions x(t) endowed with the norm

||a;|| = sup \x(t)\
>T
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and with the usual pointwise ordering <. Define a subset Q of X as follows:

Q = {x e X | d < x(t) ^2d, t > T).

For any subset £? of Q, it is obvious that inf B € /? and supB G /?. Let us further define
an operator F : Q -¥ X as follows:

{Fx){t) =d+ I a(s)f( J b(u)g(x(u))du\ ds,

The mapping F satisfies the assumptions of Knaster's Fixed Point Theorem [1]: F is
non-decreasing and maps i? into itself. Indeed, if x € i?, then

{Fx){t) >d, t>T,

and

(Fx)(t) ^d+ f a(s)f ( f b(u)g(2d)dv\ ds

= d+ a(s)f( b{u)g{c)du ) ds < 2d, t^T.

By Knaster's Fixed Point Theorem [1], we can conclude that there exists an x € J?
such that x = Fx. Set

y{t) = - [ b(u)g{x{u)) du, t > T.
JT

Then

y'(t) = -b(t)g(x(t)),

-g(2d) f b(s)ds ^ y(t) ^ -g(d) f b(s)ds,
JT JT

thus, in view of our assumption,
/•OO

b(s)ds = oo,

i.e. (3.6), we see that

x'{t) = -a(t)f{-y(t)) = a(t)f{y{t)) and lim y(t) = -oo,
t->oo

where we have used the assumption that f{—u) — —f(u). Hence, {x(t), y(t)} is a solution
of (1.1) which belongs to /?+_(+, -oo). The proof is complete. •

Theorem 3.7. Suppose conditions (H1)-(H3) hold and A(t0) < oo. If

/ a(s)f( b(u)g(cA(u)) duj ds < oo

https://doi.org/10.1017/S0013091500021131 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021131


472 W.-T. Li and S. S. Cheng

for some c > 0, and
TOO

/ b(s)g(dA(s)) ds = oo

for any d > 0, then (1.1) has a non-oscillatory solution in /2+_(0, —oo).

The proof is similar to that of Theorem 3.6 and is thus omitted.
Finally, we derive a necessary condition for (1.1) to have a non-oscillatory solution in

Theorem 3.8. Suppose conditions (H1)-(H3) hold and A(to) < oo. A necessary con-
dition for (1.1) to have a non-oscillatory solution in i?H (0, —oo) is that

f a(s)f( f b{u)g(cA(u))du)ds < oo (3.8)
JT \JS )

for some c > 0, and
/•OO

/ 6(s)ds = oo. (3.9)
Jt0

Proof. Let {x(t), y(t)} be a solution of equations (1.1) such that limt_>0O x(t) = 0 and
limt_>ooy(i) = —oo. Then, by Lemma 3.1, there exist two positive constants c\, c^ and
T ^ t0 such that c\A{t) < x(t) ^ c2 for t ^ T. In view of the first equation of (1.1), we
have

oo > x(t) = - f a(s)f{y(s)) ds > 0,
Jt

That is to say
fOO

' '' < oo.
I to

Furthermore, we see from the second equation of (1.1) that

and

f°a(S)|/a/(S))|dS
Jto
second equation of (1

y(t) = y(T)- f b(s)g(x(s))ds,
JT

y(T) - f b(s)g(c2)ds < y(t) < - f b(s)g(clA(s))ds. (3.10)
JT JT

Since

l/(2/(*))l ^ / ( / Hs)9(ciA(s))dsJ,

thus

/ a(s)f( b(u)g(ciA(u))du 1 ds < oo.

On the other hand, in view of (3.10) and y(t) -¥ —oo as i —̂  oo, we have

r°°
/ b(s)ds = oo,

JT

which implies that (3.9) holds. The proof is complete. •
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