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Abstract

We construct a new stochastic interest rate model with two stochastic factors, by
introducing a stochastic long-run equilibrium level into the Vasicek interest rate model
which follows another Ornstein–Uhlenbeck process. With the interest rate under the
Black–Scholes model being assumed to follow the newly proposed model, a closed-form
representation of European option prices is successfully presented, when the analytical
characteristic function of the underlying log-price under a forward measure is derived.
To assess the model performance, a preliminary empirical study is conducted using S&P
500 index and its options, with the Vasicek model and an alternative two-factor Vasicek
model taken as benchmarks.

2020 Mathematics subject classification: 91G20.
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1. Introduction

The area of option pricing has achieved great development ever since Black and
Scholes [3] innovatively proposed to use a geometric Brownian motion [46] for
the modelling of the underlying price, so that European options could be evaluated
efficiently with a closed-form solution. Although this well-known model is still widely
used in today’s finance practice, mainly due to its analytical simplicity and tractability,
it actually suffers from mis-pricing problems caused by some simplified assumptions.
For example, the phenomenon of “volatility smile” [12] observed in real markets is
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at odds with the assumption made under the Black–Scholes (B-S) model that the
volatility is constant, and volatility should be assumed to randomly change [38].
Thus, stochastic volatility has already been incorporated into the B-S model in pricing
options [19, 21, 24, 44].

Another strong assumption under the B-S model, that is, the constant interest rate,
is also not appropriate, since interest rates normally display a term structure [16]
and option pricing models employing stochastic interest rate are shown to perform
better [1, 42]. In particular, Merton [39] is believed to be the first one to make the
interest rate another stochastic source, assuming the interest rate is governed by the
Gauss–Wiener process, and European options can still be analytically determined by
the Merton model. Later on, Vasicek [47] proposed to use an Ornstein–Uhlenbeck
(OU) process for the stochastic interest rate. A similar model with a time-dependent
long-run interest rate was used by Hull and White [26] when pricing interest rate
derivatives (the so-called Hull–White model), and the analytical solution to European
option price under this particular model was presented by Rabinovitch [41]. Other
stochastic interest rate models include the Cox–Ingersoll–Ross (CIR) model [11, 32]
and the Heath–Jarrow–Morton (HJM) model [23] among many others, and all of these
models are also known as single-factor term structure models.

However, note that there will be a perfect correlation among the instantaneous
bond returns across all maturities when single-factor models are adopted, which is
not consistent with market observations, prompting to establish multi-factor stochastic
interest rate models. For example, the term structure of the interest rate was captured
by a two-factor general equilibrium model as shown by Longstaff and Schwartz [37],
while Hull and White [27] proposed to make the long-term mean of the Hull–White
interest rate be stochastic, forming a two-factor Hull–White model. Moreover, Chen
[7] introduced a three-factor model with both the volatility and long-run level of the
the CIR rate assumed to follow different CIR processes. Recently, stochastic interest
rate models have also been combined with various factors, typical examples of which
are the combination of stochastic interest rate and regime switching [13–15], the
combination of stochastic interest rate and stochastic volatility [17, 20, 34], and the
combination of stochastic interest rate and transaction costs [5, 6].

In this article, we assume that the long-term mean of the Vasicek model
(single-factor) follows another OU process to formulate a new stochastic interest
rate model. To demonstrate the advantages of the new model, it is used to formulate a
new option pricing model through the combination with the B-S model. Fortunately,
the analytical tractability associated with pricing European options is maintained,
with a closed-form representation being presented after successfully deriving the
characteristic function using numéraire change. We numerically implement the new
formula so that its correctness can first be verified, and the influence of introducing the
stochastic long-run interest rate level is also shown. To further justify the introduction
of the stochastic long-term mean, we have also empirically compared the performance
of the BSV model, which is the combination of the Black–Scholes and Vasicek
model with S&P 500 index options. We also demonstrate the necessity to include the
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mean-reversion property for the long-term mean of the Vasicek model, by constructing
another two-factor Vasicek model in the empirical comparison, which uses a normal
distribution to describe the stochastic long-term mean.

We organize the remaining part of this article as follows. In Section 2, our newly
proposed stochastic interest rate model is introduced first, with which we perform
a measure transformation so that a closed-form formula used for European option
pricing is obtained. We show the numerical implementation of the formula and the
corresponding empirical analysis in Sections 3 and 4, respectively. The last section
concludes the paper.

2. European option pricing

First, we propose a new stochastic interest rate model with stochastic long-term
mean in this section, and then the pricing of European options is discussed under
measure transform, after deriving T-maturity (maturity time T) zero coupon bond
prices. The presented option pricing formula involves the unknown characteristic
function defined as the Fourier transform of the underlying density, which is finally
analytically derived after finding out the T-forward measure (the forward time is T)
and the relevant model dynamics.

2.1. A new stochastic interest rate model We now introduce the newly proposed
stochastic interest rate model dynamics, which is formulated by making the long-run
interest rate level of the Vasicek model another random variable following another OU
process. Before that, the Vasicek interest rate model will be presented first, since our
model can be viewed as one of its modified versions, and its risk-neutral dynamics
under measure Q are given by

dSt

St
= rt dt + σ dWS

t ,

drt = α(β − rt) dt + η dWr
t ,

where St and rt are used to denote the underlying price and interest rate, respectively;
σ and η are the constant volatility of the underlying and that of the interest rate,
respectively; while α and β are the so-called speed of mean-reversion and long-run
interest rate level, respectively. Note that WS

t and Wr
t , being two Wiener processes [48],

are correlated with each other such that dWS
t dWr

t = ρ dt with ρ being the correlation
coefficient. As mentioned earlier, we propose to incorporate a stochastic long-run
interest level into the Vasicek model so that β becomes βt instead of being a constant,
and the dynamics of the new model are

dSt

St
= rt dt + σ dWS

t ,

drt = α(βt − rt) dt + η dWr
t ,

dβt = k(θ − βt) dt + λ dWβt .
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Clearly, the long-run interest level is modelled by an OU process, with its
mean-reversion speed, long-run level and volatility being respectively represented
by k, θ and λ. We assume that the Wiener process Wβt does not depend on the other
two. To facilitate the computation in the next subsection, the model dynamics that we
have just established can be reformulated in a more systematic way as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dSt

St
drt

dβt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = μ
Q dt + Σ × C ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dW1,t
dW2,t
dW3,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.1)

Here, we introduce three independent Wiener processes, W1,t, W2,t and W3,t. Here, μQ

and Σ have the form

μQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
rt

α(β − rt)
k(θ − βt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Σ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ 0 0
0 η 0
0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

and C can be expressed as

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
ρ
√

1 − ρ2 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

with which the correlation matrix can be calculated as

CCT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 ρ 0
ρ 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

After establishing the new stochastic interest rate model, we are going to show how
European options can be analytically evaluated under this particular model, the details
of which are presented below.

2.2. A closed-form solution We begin by expressing U(S, r, β, t), the European
option price, by taking the expected value of the option return discounted to the current
time

U(S, r, β, t) = EQ[e−
∫ T

t r(s) ds max(ST − K, 0)|St], (2.2)

where K denotes the delivery price of the option. The pricing formula presented in
(2.2) can be alternatively expressed as

U(S, r, β, t) = P(r, β, t, T)EQT
[max(ST − K, 0)|St], (2.3)

if the T-forward measure, QT , is introduced [4], with P(r, β, t, T) being the value of the
bond expiring at time T paying no coupons under the risk-neutral measure. Clearly, in
this case, apart from the expectation involved in (2.3), P(r, β, t, T) is also an unknown
function that needs to be determined before the option pricing formula can be finally
obtained, and its expression is presented in the following theorem.
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THEOREM 2.1. With the stochastic interest rate following the two-factor model as
specified in (2.1), we can compute the value of the bond expiring at time T paying
no coupons through

P(r, β, t, T) = eC(τ)+D(τ)rt+E(τ)βt , (2.4)

where

C(τ) = p1(τ) + p2(τ) + p3(τ) + p4(τ) + p5(τ) + p6(τ),

D(τ) = − 1
α

(1 − e−ατ),

E(τ) = − α

k(k − α)
e−kτ +

1
k − αe−ατ − 1

k
,

p1(τ) =
1

4α

[
η2

α2 +
λ2

(k − α)2

]
(1 − e−2ατ), p2(τ) =

α2λ2

4k3(k − α)2 (1 − e−2kτ),

p3(τ) = − αλ2

k(k − α)2(k + α)
[1 − e−(k+α)τ],

p4(τ) =
1
α

[
− η

2

α2 −
λ2

k(k − α)
+

kθ
k − α

]
(1 − e−ατ),

p5(τ) =
1
k

[
αλ2

k2(k − α)
− αθ

k − α

]
(1 − e−kτ), p6(τ) =

(
η2

2α2 +
λ2

2k2 − θ
)
τ,

with τ = T − t.

Proof of Theorem 2.1 is provided in Appendix A.
With P(r, β, t, T) being successfully worked out, the task left is to evaluate the

expectation in (2.3). Note that the target expectation is considered under QT , the
T-forward measure, and thus the model under this particular measure needs to be
figured out first, by making use of the dynamics (2.1) under the measure Q. To
conduct measure transformation, it is necessary to find out the numéraires under the
two measures. On one hand, N1,t = e

∫ t
0 r(s) ds is actually the numéraire used under Q,

yielding

dN1,t = N1,tr(t) dt,

from which one can easily deduce that σN1,t = (0, 0, 0)T is the volatility of N1,t. On the
other hand, the numéraire under QT is N2,t = P(r, β, t, T), which further gives

dN2,t = N2,t

[{dC
dt
+

dD
dt

r +
dE
dt
β + α(β − r)D + k(θ − β)E + 1

2
η2D2 +

1
2
λ2E2
}

dt

+ ηD dWr
t + λE dWβt

]
.
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As a result, the volatility term of N2,t is σN2,t = (0, ηD, λE)T . Applying the techniques
illustrated in [4] would certainly lead to the drift term under QT being expressed as

μQT
= μQ − Σ × CCT ×

(
σN1,t

N1,t
− σ

N2,t

N2,t

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
rt

α(β − rt)
k(θ − βt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ 0 0
0 η 0
0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ 0
ρ 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−ηD(τ)
−λE(τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
rt − ρσηD(τ)

α(β − rt) + η2D(τ)
k(θ − βt) + λ2E(τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

In this case, we are able to express our model dynamics under QT through

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dSt

St
dvt

drt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rt − ρσηD(τ)
α(β − rt) + η2D(τ)
k(θ − βt) + λ2E(τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ dt + Σ × C ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dWQT

1,t

dWQT

2,t

dWQT

3,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.5)

With the model dynamics being presented in (2.5), the option pricing formula (2.3)
can be rearranged as

U(y, r, β, t) = P(r, β, t, T)[P1 − KP2]. (2.6)

Here,

P1 =

∫ +∞
ln K

eyT p(yT ) dyT and P2 =

∫ +∞
ln K

p(yT ) dyT

with yt = ln(St) and p(yT ) denoting the yT density when the current time is t. By
denoting the characteristic function as f (φ; t, T , y, r, β), we find that

eyT p(yT )
f (−j; t, T , y, r, β)

with j =
√
−1

is also a density function, which results in the identity
∫ +∞
−∞

eyT p(yT ) dyT = f (−j; t, T , y, r, β).

Therefore, we can directly formulate P1 using the connection between the characteris-
tic function and the density through

P1 = f (−j; t, T , y, r, β)
{1

2
+

1
π

∫ +∞
0

Real
[e−jφ ln Kf (φ − j; t, T , y, r, β)

jφf (−j; t, T , y, r, β)

]
dφ
}
. (2.7)
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Similarly,

P2 =
1
2
+

1
π

∫ +∞
0

Real
[e−jφ ln Kf (φ; t, T , y, r, β)

jφ

]
dφ. (2.8)

Obviously, European call prices under the newly proposed model can be calculated
through the derived equations (2.6)–(2.8), whose solution is provided below.

THEOREM 2.2. With (2.5) providing the dynamics of the underlying price process, we
can compute the objective characteristic function with

f = eC̄(φ;τ)+D̄(φ;τ)rt+Ē(φ;τ)βt+jφyt , (2.9)

where

D̄ = −jφD(τ),
Ē = −jφE(τ),

C̄ = −(φ2 + 2jφ)[p1(τ) + p2(τ) + p3(τ)] + p7(τ) + p8(τ) + p9(τ),

p7(τ) =
1
α

[
(φ2 + 2jφ)

{
η2

α2 +
λ2

k(k − α)

}
+

(φ2 + jφ)ρση
α

− kθjφ
k − α

]
(1 − e−ατ),

p8(τ) =
1
k

[
− (φ2 + 2jφ)

αλ2

k2(k − α)
+
αθjφ
k − α

]
(1 − e−kτ),

p9(τ) =
[
− (φ2 + 2jφ)

(
η2

2α2 +
λ2

2k2

)
− (φ2 + jφ)ρση

α
+ θjφ − 1

2
σ2(φ2 + jφ)

]
τ.

We prove Theorem 2.2 in Appendix B.
Till now, one can easily find that European options under the newly constructed

stochastic interest rate model can be evaluated with the presented closed-form exact
solution. Before the new formula is applied in practice, it is necessary to address two
important issues in advance: the first is whether the formula is correct, and the second
is how the newly introduced stochastic long-run interest level influences option prices.
These results are illustrated in the next section.

3. Numerical implementation

In this section, we implement our formula numerically so that its validity can be
shown by making sure that there was no algebraic errors during its derivation process.
Then, option price properties under the newly proposed model will be investigated.
We list the parameter values used to generate different plots of this section here. The
mean-reverting speed of the interest rate α and that of the long-run interest level k take
the values of 10 and 5, respectively, while we choose 0.2 for the long-term mean of
the long-run interest level θ. The volatility of the interest η and that of the long-run
interest level λ are allocated as 0.1 and 0.2, respectively. The initial levels of both the
interest rate and the long-term mean, r0 and β0, equal to 0.1, and −0.5 is selected as
the value of the correlation parameter ρ. The default for the time to maturity τ is 1,
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FIGURE 2. Comparison of our model with both the BSV model and the B-S model.

and the volatility of the underlying price σ is 0.15. Both the current underlying price
St and the strike K take the value 100.

We numerically compare option prices calculated using our formula and Monte
Carlo simulation in Figure 1. It is clear from Figure 1(a) that our price agrees very
well with the Monte Carlo result [35] across all moneyness point-wise, and such a
kind of closeness can be further demonstrated through Figure 1(b), where their relative
difference is plotted. One can of course reach the conclusion that our new formula is
accurate, with the relative difference being no greater than 0.45%, and the formula is
safe to be implemented in practice.

With the accuracy of the formula being ensured, the next step naturally is the
investigation of its relationship with other models. Depicted in Figure 2 is the
comparison of option prices under the B-S model, BSV model and our model1. One
can easily observe that option prices of our model increase monotonically with the
initial value of the long-run interest level, which can be understood from the fact that a
larger initial value of the long-run interest level tends to result in a larger interest rate.
One may also be interested in the phenomenon that the B-S price is higher than the
BSV price when the interest rate and the long-run interest level are equal to each other,
the main reason for which could be the possibility of the decrease in the stochastic
interest rate of the Vasicek model.

1Hereafter, option prices under the three models are calculated by assuming that the values of the parameters are
equal to each other for comparison purposes, with the constant long-run interest level of the BSV model and the
constant interest rate of the B-S model taking the initial values of the stochastic long-run interest level and that
of the stochastic interest rate under our model, respectively.
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FIGURE 3. Influence of different parameters on option prices.

In particular, Figure 3(a) displays how option prices are affected by the changing
values of the mean-reversion speed k associated with the stochastic long-run interest
level, and our price monotonically increases (decreases) with the mean-reversion speed
when the initial value of the stochastic long-run interest level is smaller (greater)
than its long-run mean θ. This is because with a larger k, the long-run mean would
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experience a higher speed to reach its long-run mean, leading to a higher (lower)
interest rate. Note that when the long-run mean of the stochastic long-run interest level
equals its initial value, our price turns out to show an opposite trend of k, a possible
explanation for which is that expectation of the stochastic long-run mean is decreasing
with respect to k. However, it is clear from Figure 3(b) that option prices increase when
we enlarge the volatility of the stochastic long-run interest level λ, irrespective of the
value of θ. This is financially reasonable, since the enlargement of the volatility of the
long-run interest level would make the interest rate more volatile, leading to a higher
premium of the option contract.

From the results presented in this section, one can easily find that with the
corresponding parameters under our model and the BSV model chosen to be the same,
the newly introduced stochastic long-run interest level significantly impacts option
prices, which demonstrates the rational of proposing this new model. Of course, what
we did here is different from market practice, where model parameters need to be
extracted with real data and the estimated values of the corresponding parameters in
two models will probably be different. Therefore, a natural question arises, whether
the newly proposed model can perform better than the BSV model in real markets, and
this issue is discussed below.

4. Empirical studies

In this section, empirical studies are conducted, with the BSV model being taken as
a benchmark, to justify the introduction of the stochastic long-term mean. In particular,
the used market data will first be described, after which the method adopted for
the estimation of model parameters will be illustrated, and the results will then be
presented. Finally, the performance of the two models will be assessed through option
prices computed from the determined parameters.

4.1. Data description S&P 500 index options within the period of January–June
2018 are selected for carrying out empirical analysis. For parameter estimation
purposes, it is necessary to first figure out what is the price of an option, which is
actually selected as the mean of ask and bid prices, by conversion. The U.S. Treasury
Bill Rate of three months that is announced every day is selected as the value of the
current interest rate [43]. Moreover, before the parameters are estimated, we need to
apply several filters on the raw data so that market data noise can be eliminated [2].

First, only one-day data of a week are used for parameter estimation, because
calibrating option pricing models can be time costly and this would enable a longer
period to be studied. In particular, we choose Wednesday options data since among
the five working days of each week, there is a least probability that Wednesday is a
holiday and the day-of-the-week effect can be possibly eliminated. Thursday options
data are also adopted, but for the purpose of assessing the model performance in the
out-of-sample manner, that is, comparing the Thursday prices calculated using the
parameters determined for Wednesday and those listed in real markets. Second, options
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far from the maturity (more than 90 days) and with less than 7 days to maturity are both
discarded because the former category is not popular in real markets due to their high
prices while the latter has less time value. Third, as a result of the illiquidity associated
with very deep out-of-money and in-the-money options, options with more than 10%
moneyness1 and less than −10% moneyness are all deleted. At last, due to the price
instability, we remove options whose values are less than $1/8.

Having applied all the filters to the raw data set, we can now proceed to determine
model parameters through the filtered data, and the related issues are discussed below.

4.2. Parameter estimation Parameter estimation is always the first and also one
of the most important steps in assessing model performance. One common approach
in estimating model parameters is to determine a set of “optimal” parameters, with
which the produced model prices are the “closest” to corresponding market option
prices. Thus, to measure the “closeness”, we actually need an appropriate function
to calculate the “distance” between market and model prices. Following [10], dollar
mean-squared errors are selected for such a distance, the expression of which can be
written as

MSE =
1
N

N∑
i=1

(CMarket − CModel)
2, (4.1)

where CModel and CMarket respectively represent the option price produced by the
model and that listed on the market, and N denotes the number of options used when
estimating the parameters of that day.

Clearly, the parameter determination problem reduces to finding the optimal
parameters that can lead to the objective function (4.1) to be minimized, solving which
requires the selection of an appropriate optimization approach. In particular, local
minimization algorithms are not appropriate, since the convexity of (4.1) cannot be
guaranteed and the existence of different local minima is possible. To avoid ending up
with a local minimum, global optimization algorithms are much more preferred.

What we choose is adaptive simulated annealing (ASA) [31], an improved version of
simulated annealing. The history of this algorithm dates back to 1983, when simulated
annealing was initially established for highly nonlinear problems [33]. It was then
improved in [45] by developing fast simulated annealing, an algorithm that ensures
attainability of the global minimum in a finite time period. A further improvement was
made in [28] by proposing ASA, formerly known as “very fast simulated reannealing”,
and it is able to adjust random step selection automatically based on the actual progress
of the algorithm so that the speed of the algorithm can further be accelerated. In fact,
ASA has already been implemented in different areas [8, 9], including the application
in calibrating models used to price options [29, 40]. Furthermore, the open-source

1We define moneyness by (S − K)/K.

https://doi.org/10.1017/S1446181124000130 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000130


144 X.-J. He and S. Lin [13]

TABLE 1. Estimated parameters.

Parameters α β η k(k̄) θ λ σ ρ

Our model 7.8262 0.1814 1.0861 11.9894 0.2667 0.7523 0.1906 −0.7158
BSV model 7.8077 0.1376 1.3707 0.1857 −0.5115
BSVN model 7.1729 0.2429 1.3250 0.5171 0.5090 0.2003 −0.5504

code listed on Ingber’s homepage [31] is updated regularly according to user feedback
so that its flexibility and powerfulness are promised.

Moreover, as mentioned earlier, we also want to emphasize the mean reversion prop-
erty of the stochastic long-term interest rate. Thus, we construct another two-factor
Vasicek model using a normal distribution, and combine it with the Black–Scholes
model (the BSVN model hereafter) as another benchmark:

dSt

St
= rt dt + σ dWS

t ,

drt = α(βt − rt) dt + η dWr
t ,

dβt = k̄ dt + λ dWβt .

By implementing ASA, we report the extracted parameters (averaged daily) in
Table 11.

4.3. Empirical comparison The assessment of the model performance based on
the parameters estimated from real market data is now provided. If the difference
between market and model prices is lower, we can regard the performance of that
model better. There are mainly two categories in defining such pricing differences,
yielding in-sample and out-of-sample errors. In particular, the difference between
model prices produced using parameters estimated and market prices used for param-
eter estimation are defined as in-sample errors, to serve a guide of whether the target
model can produce a good market fitness. In contrast, the difference between option
prices computed with parameters determined from other sets of data and market option
prices that have not been used to estimate parameters are defined as out-of-sample
errors, to check whether the model can provide consistent results across different data
sets so as to assess its prediction ability.

We compare in-sample as well as out-of-sample errors of the BSV model, the
BSVN model and our model in Table 2. Note that the performance of the BSV
model is generally worse than that of our model, in the sense that both errors are
lower under our model, with a significant 20% improvement in the in-sample errors.
Moreover, although the in-sample fitness of the BSVN model has been improved by
the introduction of an additional normal factor, the out-of-sample performance is much

1The reported value for β under our model actually represents the initial value of the long-run interest level β0 as
it is a random variable under our setting.
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TABLE 2. In- and out-of-sample errors.

Error In-sample Out-of-sample

Our model 0.2601 2.8447
BSV 0.3215 2.9533
BSVN 0.2907 4.0130

TABLE 3. Significance tests of pricing errors.

BSV BSVN

In-sample Out-of-sample In-sample Out-of-sample

t-test (P value) 2.58 × 10−4 3.78 × 10−2 6.30 × 10−2 2.32 × 10−2

TABLE 4. Out-of-sample errors across different moneyness.

Error 0.90 < S/K < 0.97(O) 0.97 ≤ S/K ≤ 1.03(A) 1.03 < S/K < 1.10(I)

Our model 1.0317 3.1661 2.6539
BSV model 1.0080 3.4398 2.7460
BSVN model 1.2961 3.5177 3.5165

worse than the other two models. This is actually strong evidence supporting the use
of a mean reverting process to model the stochastic long-term interest rate. It should
also be pointed out that the magnitude of out-of-sample errors are higher than that of
in-sample errors under both models, which is reasonable since the optimal parameters
obtained from one data set are not necessarily optimal for another set.

We perform a t-test to see if the introduction of a two-factor stochastic interest rate
and the use of a mean-reversion process in modelling the long-run equilibrium level
can significantly reduce the pricing errors. The corresponding results are provided in
Table 3. One can clearly see that the in- and out-of-sample errors differ significantly
between our model and the BSV model at 1% and 4% significance levels, respectively,
while those between our model and the BSVN model also differ significantly at 7% and
3% significance levels, respectively. This demonstrates the overall better performance
of our model over both the BSV and BSVN models.

One may also be interested in how the three models perform differently when
out-of-sample errors are classified into different moneyness. This is because a series
of strike prices are available even for traded options of a day. We abbreviate “out
of money”, “at the money” and “in the money” in the parentheses by (O), (A) and
(I), respectively, and the results are presented in Table 4. Although the out-of-sample
performance of the BSV model is slightly better than that of our model, as far as out
of money options are concerned, the BSV model provides much worse performance
in the other two categories compared with our model, with the greatest improvement
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FIGURE 4. Implied volatility.
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shown by the at the money options. However, the out-of-sample performance of the
BSVN model is the worst across all the three categories, which again demonstrate the
importance of mean reversion in the stochastic long-term interest rate.

Considering that the accurate determination of implied volatility is a vital issue
in finance practice, we display the ability of the three models in reproducing market
implied volatility in Figure 4. A clear pattern in our model provides a better match to
market-implied volatility, which emphasizes the significance of considering stochastic
long-term interest rate as well as its mean reversion property.

5. Conclusion

In this paper, we assume that the long-run level of the Hull–While interest rate
model is stochastic, following another Ornstein–Uhlenbeck process. The pricing of
European options is discussed when the newly proposed two-factor interest rate
model is introduced into the Black–Scholes model. Upon successfully expressing the
characteristic function under a forward measure in an analytical form, a closed-form
formula which is used to price European options is presented with the measure
transformation. Based on this, the impact of the stochastic long-run interest level is
shown to be significant on option prices through numerical experiments. To further see
the meaning of introducing this stochastic long-run interest level and its mean reversion
property, we have also conducted some empirical analysis, showing how the BSV
model, BSVN model and our model perform differently, and the results demonstrate
the effectiveness of our model over the other two models. It would be interesting to
see how the term structure of interest rates implied by our model behaves. However, as
the main focus of this paper is to check the performance of the proposed model when
pricing equity options, we would like to leave this for future research.
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Appendix A: Proof of Theorem 2.1

The risk-neutral pricing rule requires that P(r, β, t, T) be a solution to the following
partial differential equation (PDE) system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂P
∂t
+

1
2
η2 ∂

2P
∂r2 +

1
2
λ2 ∂

2P
∂β2 + α(β − r)

∂P
∂r
+ k(θ − β)∂P

∂β
− rP = 0,

P(r, β, t, T)|t=T = 1.

(A.1)
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By assuming the expression of P(r, β, t, T) [18, 22, 25, 36] is the same as that of

P(r, t, T) = eC(τ)+D(τ)rt+E(τ)βt ,

we can transform PDE (A.1) into the following system of three ordinary differential
equations (ODEs):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dD
dτ
= −αD − 1, D(0) = 0,

dE
dτ
= −kE + αD, E(0) = 0,

dC
dτ
=

1
2
η2D2 +

1
2
λ2E2 + kθE, C(0) = 0,

(A.2)

where D(τ) and E(τ) can be directly solved as the ODEs governing them are both linear
and first-order, leading to the solution to C(τ) obtained through the integration of its
ODE on both sides. This completes the proof.

Appendix B: Proof of Theorem 2.2

According to the definition of the characteristic function,

f (φ; τ, y, r, β) = EQT
[ejφyT |yt, rt, βt],

we deduce that f (φ; τ, y, r, β) is a solution to

∂f
∂τ
=

1
2
σ2 ∂

2f
∂y2 +

1
2
η2 ∂

2f
∂r2 +

1
2
λ2 ∂

2f
∂β2 + ρση

∂2f
∂y∂r

+

[
r − 1

2
σ2 + ρσηD(τ)

]
∂f
∂y

+ [αβ + η2D(τ) − αr]
∂f
∂r
+ [kθ + λ2E(τ) − kβ]

∂f
∂β

, (B.1)

where f |τ=0 = ejφyT . By assuming

f = eC̄(φ;τ)+D̄(φ;τ)rt+Ē(φ;τ)βt+jφyt ,

it can be shown that the PDE (B.1) is equivalent to the following three ODEs:

dD̄
dτ
= −αD̄ + jφ,

dĒ
dτ
= −kĒ + αD̄,

dC̄
dτ
=

1
2
η2D̄2 +

1
2
λ2Ē2 + η2DD̄ + λ2EĒ + jφρση(D̄ + D) + kθĒ − 1

2
σ2(φ2 + jφ),

where C̄(φ; 0) = D̄(φ; 0) = Ē(φ; 0) = 0. All three ODEs are first-order linear ones, the
solutions to which can be easily determined.
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