
7

Diffraction at high energy

The observables discussed in this book so far have been limited to total cross sections
and the related structure functions. To calculate these quantities one does not need to
impose any constraints on the final state. We now present a small-x calculation of a more
exclusive quantity, the cross section for diffractive dissociation, where one requires that
the final state has at least one rapidity gap, i.e., a region of rapidity where no particles
are produced. We again tackle the problem using the two-step formalism of Chapters 4
and 5: we first calculate the cross sections for quasi-elastic processes using the classical
MV/GGM approximation and then include small-x evolution corrections in the resulting
expression. For diffractive dissociation where the produced hadrons have large invariant
mass, we develop a nonlinear evolution equation that describes the process.

7.1 General concepts

7.1.1 Diffraction in optics

Diffraction is a typical process in which we can see the wave nature of particles. When
thinking of diffraction one usually pictures the diffraction of light, when a plane wave is
incident on an aperture or an obstacle (see Fig. 7.1) and forms a diffraction pattern on the
screen behind. The diffraction pattern consists of a bright spot in the middle and a series of
maxima and minima of light intensity around it, as shown schematically in Fig. 7.1. The
positions of these maxima and minima depend on the size R of the obstacle or aperture
(the target), the distance d between the target and the screen (the detector), and the light
wavelength λ. Depending on the values of these three parameters one usually distinguishes
three types of diffraction, as follows.

(i) Fraunhofer diffraction, when R2/(λ d) � 1, which corresponds to the scattering at
very small angles;

(ii) Fresnel diffraction, when R2/(λ d) ≈ 1, which corresponds to the scattering at small
(but not very small) angles;

(iii) geometrical optics, when R2/(λ d) � 1 and we recover the light-ray picture.

Keeping λ and R fixed, one can see that when the screen is close to the obstacle or aperture
(i.e., at small d) we have geometrical optics. As we move the screen further away from the
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Fig. 7.1. The diffraction pattern for the scattering of light.
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Fig. 7.2. The diffraction of a plane wave with momentum (wave vector) k by a circular
aperture of radius R in a plane screen at z = 0. We observe the diffraction pattern on another
plane screen at z = d .

target we go through a region of Fresnel diffraction, and, far away from the target, we enter
the region of Fraunhofer diffraction. As our goal here is to build an optical analogy to the
high energy scattering of particles, when the detector is far from the target (compared with
the particle size and wavelength), we see that we need to study Fraunhofer diffraction.

To be more specific, consider diffraction on a circular aperture in an infinite plane screen,
with the detector also an infinite plane screen, as shown in Fig. 7.2. We are interested in
the shape of the diffraction pattern on the screen. Our calculation is going to be rather
brief, as we assume that the reader is familiar with the theory of diffraction in optics.
For a more detailed theoretical discussion of the diffraction of light we refer the reader
to the book of Jackson (1998) (Sections 10.5–10.11). For simplicity we also imagine that
instead of electromagnetic light we have some massless scalar field φ(t, �r). The plane
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252 Diffraction at high energy

wave is incident along the z-axis and is described by φinc(t, �r) = e−iωt+ikzφ0, where ω

is the frequency and k = 2π/λ is the wave number. According to the Huygens–Fresnel
principle, the field at the detector screen located at z = d, is given by the sum of the
spherical waves exp(ik|�r − �b|)/(4π |�r − �b|) coming from every point in the aperture. Here
�r − �b is the distance vector connecting point �b in the aperture and point �r on the screen
(see Fig. 7.2). For d � λ the field at the screen (the scattered field) can be written in terms
of a generalized Kirchhoff integral as

φsc(�r ) = k

2πi

∫
aperture

d2b⊥
eik|�r−�b|

|�r − �b|
(�r − �b)z
|�r − �b| φinc

(
�b⊥, z = 0

)
, (7.1)

where the integral is over the two-dimensional surface of the aperture located at z = 0 and
φsc(t, �r) = e−iωtφsc(�r).

For Fraunhofer diffraction we can expand the exponent of Eq. (7.1) to give |�r − �b| =
r − b sin θ + O(b2/r), where θ is the angle between �r and the z-axis, r = |�r|, and b = |�b|.
Using this expansion along with (�r − �b)z/|�r − �b| ≈ 1 we can rewrite the Kirchhoff integral
of Eq. (7.1) in the form

φsc (�r) = k

2πi

eikr

r

∫
aperture

d2b⊥e−ikb sin θφ0

= k

2πi

eikr

r

∫
aperture

d2b⊥e−i �q·�bφ0 = eikr

r
f (�q) , (7.2)

where �q = �k′ − �k is the recoil momentum (wave vector) and �k′ is the wave vector of the
scattered spherical wave with magnitude equal to k and direction parallel to �r . Note that
�b = (�b⊥, z = 0). The function f (�q) is defined as

f (�q) = k

2πi

∫
aperture

d2b⊥e−i �q·�bφ0 (7.3)

and corresponds to the scattering amplitude.
The (time-averaged) energy densities in the incident and scattered waves are given by

Iinc = ω2|φinc|2
2

= ω2φ2
0

2
and Isc = ω2|φsc|2

2
= ω2φ2

0

2

|f (�q) |2
r2

. (7.4)

Defining the differential scattering cross section as the ratio of the outgoing energy in an
infinitesimal solid angle d� and the flux of energy in the incoming wave we obtain

dσ = Iscr
2d�

Iinc

= |f (�q)|2d�. (7.5)

For the circular aperture of radius R in Fig. 7.2 we have

f (�q) = k

2πi

∫
d2b⊥e−i �q·�b θ (R − b) = −ik

R∫
0

dbbJ0(bq) = −i
kR

q
J1 (qR) , (7.6)
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where q = |�q| and b = |�b⊥|. Using this result in Eq. (7.5) and writing d� = 2πd cos θ

with sin θ ≈ θ ≈ q/k leads to the cross section

dσ

dt
= πR2 J 2

1

(√|t |R)
|t | , (7.7)

where we have introduced the Mandelstam variable t = −�q 2 in direct analogy with the
scattering of particles.

From Eq. (7.7) one can see that the differential cross section has a series of minima
(zeroes) at R

√|t | = Rq = Rk sin θ = x1n, where x1n are the zeroes of J1(z), and a series
of maxima between the minima. These minima and maxima give the diffraction pattern
shown in Fig. 7.1. In t-space the positions of the minima and maxima are determined solely
by the target size R.

Diffraction in the context of optics, as discussed here, demonstrates that the diffraction
is a direct consequence of the wave nature of light and has the characteristic structure
of a differential cross section dσ/dt as a function of t , with minima and maxima whose
positions depend only on the inverse size of the target.

Certainly this introduction to the subject of light diffraction is rather short, and the
analogy between optics and particle scattering is much richer and more instructive than has
been demonstrated here. For the interested reader we recommend the book of Barone and
Predazzi (2002), which presents the fascinating history of diffraction in optics along with
discussions of optical diffraction in a framework that corresponds to particle scattering.

7.1.2 Elastic scattering and inelastic diffraction

Now we return to high energy scattering in QCD. Let us begin by considering the scattering
of a projectile such as a color dipole on a nuclear target. The elastic, inelastic, and total
scattering cross sections for the process can be found using Eqs. (3.119) if one knows the
S-matrix for the process in impact parameter space. Equation (3.119b) can be rewritten as

dσel

d2b
=
∣∣∣1 − S(s, �b⊥)

∣∣∣2 =
∣∣∣T (s, �b⊥)

∣∣∣2 , (7.8)

where T is the T -matrix. Going into momentum space we obtain

T (s, �b⊥) =
∫

d2q

(2π )2
ei �q⊥·�b⊥ T̃ (s, �q⊥) (7.9)

and, noticing that t = −q2
⊥, one can readily derive that

dσel

dt
= 1

4π

∣∣T̃ (s, �q⊥)
∣∣2 = 1

4π

∣∣∣∣
∫

d2be−i �q⊥·�b⊥T (s, �b⊥)

∣∣∣∣2 . (7.10)

Now consider the scattering on a target that is circular with radius R in the impact
parameter plane. Moreover, assume that the black-disk limit has been reached for all impact
parameters inside the target, i.e., for all b⊥ < R. By analogy with the dipole scattering
studied earlier, we see that in this limit T (s, �b⊥) = iN (s, �b⊥) = iθ (R − b⊥), where N is
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Fig. 7.3. The main types of diffraction. The double wavy lines denote pomeron exchange.

the generalization of the imaginary part of the dipole forward scattering amplitude to the
case of an arbitrary projectile. Using this in Eq. (7.10) we obtain

dσel

dt
= πR2 J 2

1

(√|t |R)
|t | , (7.11)

in complete agreement with Eq. (7.7). We see that elastic scattering on a black disk in high
energy physics is mathematically identical to the diffraction of light.

Indeed, in arriving at Eq. (7.7) we considered scattering on an aperture while here we
have analyzed scattering on a disk, which is a different object but of a complementary shape
(that is, the disk and the plane with the aperture together form a complete plane). However,
Babinet’s principle in optics tells us that diffraction patterns for recoil momentum q �= 0
are identical for the obstacle and its complement: hence the optical diffraction pattern (7.7)
is the same for a black disk of radius R, as can be verified by an explicit calculation.

The term “diffraction” in high energy scattering and the first theoretical ideas on the sub-
ject were introduced in the early 1950s by Landau, Pomeranchuk, Feinberg, Ahiezer, Ter-
Mikaelyan, and Sitenko (see the review by Feinberg and Pomeranchuk (1956)). These ideas
were crystallized and put into an elegant theoretical framework by Good and Walker (1960).

At high energy the term diffraction covers a much broader range than the elastic processes
considered so far in this chapter. An event is considered diffractive if it contains a rapidity
gap. A rapidity gap is an interval in rapidity (usually at least a few units wide) over which
no particles are produced. Clearly, in elastic collisions no new particles are produced in the
rapidity interval between the target and the projectile; in this case the rapidity gap covers
the whole interval in rapidity.

Scattering amplitudes for the main types of diffractive event are shown in Fig. 7.3
for hadron–hadron scattering. The elastic process we have discussed above is presented
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Fig. 7.4. Single diffractive dissociation in DIS: (A) a general representation of the process
and (B) an explanation of the kinematic variables. The double wavy lines represent pomeron
exchange, while the single wavy line denotes a virtual photon.

in panel A. The double wavy line denotes the exchange of a color-singlet object (the
pomeron). Panels B through D represent various cases of inelastic diffraction, where one or
both hadrons break up in the collision, that still lead to a rapidity gap or gaps. Panel B shows
the process of single diffractive dissociation, where one hadron breaks up into several other
hadrons denoted by X while the other stays intact. A single rapidity gap is generated in this
process. One also distinguishes low- and high-mass diffraction, depending on whether the
invariant mass MX of the produced particles X is small or large. Processes with a single
rapidity gap in which both hadrons dissociate, as shown in panel C of Fig. 7.3, are referred
to as double diffractive dissociation. Finally, one may have more than one rapidity gap
in the event: an example of a process with two rapidity gaps is shown in panel D, where
hadrons are produced at mid-rapidity and are flanked by a rapidity gap on either side. Such
processes are called central diffraction. If a single particle is produced at mid-rapidity then
the process is referred to as central exclusive diffraction.

While diffraction in hadronic scattering represents an interesting and often challenging
problem in itself, here we will concentrate on diffractive dissociation in DIS.

7.2 Diffractive dissociation in DIS

Consider single diffractive dissociation in DIS. This is a process in which a virtual photon
interacts with the target, producing a number of hadrons and jets in the final state (denoted
by X) but leaving the target intact and generating a rapidity gap. The process is illustrated
in Fig. 7.4A. The particles X with net invariant mass MX produced as a result of the
target’s breakup do not fill the whole rapidity interval; they leave a rapidity gap between the
target and the “slowest” produced particle. This rapidity gap is of order �Ygap = ln[(ŝ +
Q2)/(M2

X + Q2)], where ŝ is the center-of-mass energy squared of the virtual photon–target
collision (see Eq. (2.5)). (The net rapidity interval for ŝ � Q2 is Y = ln(ŝ/Q2), while the
produced hadrons fill in the rapidity range �Yfilled = Y − �Ygap = ln[(M2

X + Q2)/Q2].)
No particles are produced in the rapidity gap; the existence of such a rapidity gap is indeed
the characteristic signature of diffractive processes.
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256 Diffraction at high energy

Diffractive dissociation in DIS is usually described in terms of the kinematic variables
xP and β, which originate in pomeron phenomenology and are explained by Fig. 7.4B.
Treating the pomeron as an effective “parton” one may describe it as carrying a fraction
xP of the incoming proton’s light cone momentum. Neglecting the mass of the proton and
working in the IMF with the proton moving in the light cone plus direction, we see that the
pomeron will carry momentum xP P μ, with P μ given by Eq. (2.26) with m = 0. Requiring
that (xP P + q)2 = M2

X (see Fig. 7.4B) and remembering that ŝ = (P + q)2, we obtain

xP = Q2 + M2
X

Q2 + ŝ
. (7.12)

The variable β is defined as the fraction of the pomeron’s light cone momentum carried by
the quark that is struck by the virtual photon; thus (see Fig. 7.4B again)

β = xBj

xP

= Q2

Q2 + M2
X

. (7.13)

Below we will distinguish low- and high-mass diffraction in DIS. When the invariant
mass of the produced hadrons, MX, is low, MX � Q, which is usually the case when
few hadrons are produced, we see that β ≈ 1 and xP ≈ xBj , so that �Ygap = ln 1/xP ≈
ln 1/xBj = Y ; the rapidity gap covers much of the net rapidity interval, as expected. When
the mass MX is large, MX � Q, we have β � 1 and xP ≈ M2

X/ŝ ≈ e−�Ygap ; the rapidity
gap may still be large but the rapidity interval filled by the produced hadrons is large as well.

A particularly interesting aspect of diffraction is that the typical momentum transfer
appears to be of order |t | ∼ 1/R2, as follows from Eq. (7.11). The momentum is of order
the inverse size of the target, which is in the nonperturbative QCD region (This is why t

was neglected in the derivation of Eqs. (7.12) and (7.13).). It would seem, on the one hand,
that diffraction is a non-perturbative process and cannot be studied within the perturbative
QCD framework. On the other hand, a main postulate of the saturation or CGC approach
is that saturation effects generate the saturation scale Qs(Y ); this screens the IR physics,
making the cross sections and other observables perturbative. On top of that, in DIS one has
a hard scale Q2, which may also be perturbatively large. We see that diffraction becomes a
cross-check of the saturation approach, the main question being whether saturation physics
makes diffraction a perturbative process.

7.2.1 Low-mass diffraction

To describe low-mass diffraction in DIS at high energies it is natural to start with the dipole
picture of DIS presented in Sec. 4.1. Again we have a separation of scales: a virtual photon
will decay into a qq̄ pair long before hitting the target and the qq̄ dipole interacts with the
target in due course. The dipole–target interaction can be either inelastic or elastic. In Chap-
ter 4 we showed that the total DIS cross section can be written as (see Eqs. (4.6) and (4.24))

σ
γ ∗A
tot =

∫
d2x⊥
2π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2 N (�x⊥, �b⊥, Y ). (7.14)

https://doi.org/10.1017/9781009291446.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.008


7.2 Diffractive dissociation in DIS 257
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Fig. 7.5. The quasi-elastic DIS amplitude that leads to Eq. (7.17).

Omitting the part of the expression related to the virtual photon wave function, we obtain
for the dipole–nucleus total cross section

σ
qq̄A
tot (�x⊥, Y ) = 2

∫
d2b N (�x⊥, �b⊥, Y ) = 2

∫
d2b
[
1 − S(�x⊥, �b⊥, Y )

]
. (7.15)

We see that this is exactly Eq. (3.119a) (as S is real). By analogy with Eq. (3.119b) the
elastic dipole–nucleus cross section is then

σ
qq̄A
el (�x⊥, Y ) =

∫
d2b
[
1 − S(�x⊥, �b⊥, Y )

]2
=
∫

d2b N2(�x⊥, �b⊥, Y ). (7.16)

The corresponding quasi-elastic DIS cross section is obtained by convoluting (7.16) with
the square of the virtual photon’s wave function:1

σ
γ ∗A
el =

∫
d2x⊥
4π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2N2(�x⊥, �b⊥, Y ). (7.17)

Equation (7.17) was derived in the quasi-classical GGM/MV approximation, that is, with N

given by Eq. (4.51), by Buchmuller, Gehrmann, and Hebecker (1997) (see also Buchmuller,
McDermott, and Hebecker (1999)) and by Kovchegov and McLerran (1999). However, one
can see that our derivation assumes only the decomposition of the interaction into the
virtual photon’s wave function and the amplitude N , with the latter independent of the light
cone momentum fraction z. This assumption is also true in the LLA: hence the elastic DIS
cross section (7.17) is also valid in the case when the LLA quantum evolution is included.
Therefore Eq. (7.17) is true whether N is found from the BK equation (4.138) in the large-
Nc limit or from the JIMWLK equation for the dipole S-matrix (5.98) when the large-Nc

limit is relaxed.
The quasi-elastic DIS process corresponding to Eq. (7.17) is illustrated in Fig. 7.5. Here

the virtual photon splits into a qq̄ pair, after which the pair interacts with the target nucleus

1 Note that the high energy γ ∗A cross section at order αEM cannot be elastic, since we do not have a photon in the final
state (see Fig. 7.5): we will refer to this process as quasi-elastic, to distinguish it from high-mass diffraction.
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elastically, as denoted by the oval labeled N . In the LLA approximation this means that
before the interaction the dipole develops a gluon cascade, as in, say, Fig. 4.23; this cascade
interacts with the target by GGM coulomb–gluon exchange and after the interaction is
reabsorbed into the dipole, so that in the final state one finds only the original qq̄ pair along
with the intact nucleus. One may expect that such a process would be very rare, since it
would appear highly unlikely that the gluon cascade would recombine back into the original
dipole. An amazing property of elastic scattering and diffraction is that it demonstrates that
such an intuition is incorrect when it comes to cross sections. Indeed, in the saturation
regime, when the black-disk limit is reached and N = 1, we see from Eqs. (7.15) and
(7.16) that

σ
qq̄A
el

σ
qq̄A
tot

=
∫

d2bN2

2
∫

d2bN
−→ 1

2
. (7.18)

Elastic dipole–nucleus scattering constitutes half the total cross section in very high energy
collisions!

Note that in Fig. 7.5 we have two quarks in the final state: they are likely to fragment
into one or several hadrons, leading to a low-MX diffractive final state.

Using Eqs. (7.14) and Eq. (7.17) we can compare the main properties of the total
and diffractive (quasi-elastic) DIS cross sections, looking for their common and different
features. The large-Q2 behavior is particularly instructive. Analyzing the virtual-photon
wave functions squared in Eqs. (4.18) and (4.21) we see that, since the modified Bessel
functions K1 and K0 fall off exponentially at large values of the argument, at large Q2 the
main contribution to the z-integral in both Eqs. (7.14) and (7.17) comes from the region
af x⊥ ≤ 1 with af given by Eq. (4.17). Neglecting for simplicity the quark masses mf we see
that this implies

√
z(1 − z) ≤ 1/(Qx⊥), and, since z(1 − z) < 1/4, we either have z � 1 or

1 − z � 1 if Qx⊥ � 2. Either the quark or the antiquark carries most of the virtual photon’s
light cone momentum. This configuration is known as the aligned-jet configuration and is
the basis for the aligned-jet model (Bjorken and Kogut 1973, Nikolaev and Zakharov 1975,
Frankfurt and Strikman 1988) since, in the case when the produced quark and antiquark
in, say, Fig. 7.5, fragment into jets, one jet is aligned with the momentum of the virtual
photon.

Concentrating on the z � 1 region (and multiplying the expression by 2 to account for
the 1 − z � 1 region), we can integrate over z explicitly with the help of Eqs. (4.18) and
(4.21) to obtain (note that N is z-independent)

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄

T (�x⊥, z)|2 ≈ 4Nc

∑
f

αEMZ2
f

π
Q2

∞∫
0

dz z
[
K1(x⊥Q

√
z)
]2

= 16Nc

3

∑
f

αEMZ2
f

π

1

Q2x4
⊥

(7.19)
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and

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄

L (�x⊥, z)|2 ≈ 16Nc

∑
f

αEMZ2
f

π
Q2

∞∫
0

dz z2 [K0(x⊥Q
√

z)
]2

= 512

15
Nc

∑
f

αEMZ2
f

π

1

Q4x6
⊥

. (7.20)

One can show that for N ∼ x2
⊥ at small x⊥, which is true in the GGM (4.51) and DLA

(4.150) approximations, the longitudinal contribution (7.20) is more suppressed at high Q2

than the transverse contribution, both for σ
γ ∗A
tot and σ

γ ∗A
el ; therefore, we can neglect it in the

large-Q2 limit.
Noting that Qx⊥ � 2 and using Eq. (7.19) in Eqs. (7.14) and (7.17) yields, after inte-

gration over the angles of �x⊥,

σ
γ ∗A
tot ≈ 4NcαEM

3πQ2

∑
f

Z2
f

∞∫
4/Q2

dx2
⊥

x4
⊥

∫
d2b⊥2N (x⊥, �b⊥, Y ), (7.21a)

σ
γ ∗A
el ≈ 4NcαEM

3πQ2

∑
f

Z2
f

∞∫
4/Q2

dx2
⊥

x4
⊥

∫
d2b⊥N2(x⊥, �b⊥, Y ), (7.21b)

where we have assumed that N is independent of the direction of �x⊥.
To evaluate the integrals in Eqs. (7.21) we use the explicit leading-twist expression for

the dipole amplitude N from Eq. (4.32), which is valid for x⊥ � 1/Qs , obtaining

σ
γ ∗A
tot ≈ 4αsαEMπ

3NcQ2

∑
f

Z2
f

1/Q2
s∫

4/Q2

dx2
⊥

x2
⊥

xGA

(
x,

1

x2
⊥

)
, (7.22a)

σ
γ ∗A
el ≈ α2

s αEMπ3

3N3
c Q2

∑
f

Z2
f

1/Q2
s∫

4/Q2

dx2
⊥

[
xGA

(
x,

1

x2
⊥

)]2

, (7.22b)

where we have used the fact that
∫

d2bT (�b⊥) = A and, in the spirit of the GGM approxi-
mation, replaced AxGN with the nuclear gluon distribution xGA.

Assuming that xGA is a slowly varying function of x⊥, we can see from Eqs. (7.22) that
the total cross section depends on the upper limit of the x⊥-integral logarithmically, while
the quasi-elastic cross section depends on it quadratically. In the absence of saturation
effects the integrals would have to be cut off by the nonperturbative physics in the IR,
that is, we should replace Qs by �QCD: in such a case both cross sections would be
nonperturbative, the elastic one being more so than the total. We see that saturation effects
make both cross sections perturbative, even for t = 0 in the diffractive case, yet again
justifying the perturbative QCD approximation.
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ρ, ω, φ, J/ψ, . . .

b⊥

Fig. 7.6. Exclusive vector meson production amplitude in DIS.

We can make another crude approximation leading to a physical insight if we notice that
in the GGM model the saturation scale squared Q2

s is proportional to the gluon distribution
function, as follows from Eq. (4.47). Assuming that xGA is a slowly varying function of
x⊥, we integrate over x⊥ in Eqs. (7.22) to obtain2

σ
γ ∗A
tot ∝ xGA(x,Q2

s ) ln
Q2

4Q2
s

, (7.23a)

σ
γ ∗A
el ∝ 1

Q2
s

[
xGA

(
x,Q2

s

)]2 ∝ xGA

(
x,Q2

s

)
, (7.23b)

so that, neglecting logarithms, which are outside the precision of our approximation, the
ratio σ

γ ∗A
el /σ

γ ∗A
tot is approximately independent of Bjorken x (Kovchegov and McLerran

1999). This appears to be in approximate agreement with the data collected at HERA (see
Fig. 9.2 along with Abramowicz and Dainton (1996), H1 collaboration (1997), and ZEUS
collaboration (1999)).

Another important low-mass diffractive DIS process to consider is exclusive vector
meson production. It is related to the quasi-elastic scattering of Eq. (7.17): in exclusive
vector meson production the outgoing quark and antiquark recombine into a single vector
meson. One still has a rapidity gap with the target intact in the final state. This is illustrated
in Fig. 7.6. More precisely the reaction is

γ ∗ + p → V (ρ, ω, φ, J/�, . . .) + p (7.24)

for DIS on a proton; V denotes a vector meson.
The cross section of this reaction can be easily calculated using LCPT; one simply needs

to find the overlap of the qq̄ state with the (complex conjugate) light cone wave function
of the vector meson �V . To see this, let us calculate the diagram in Fig. 7.6 in LCPT. The
additional contributions, not present in Eq. (7.17), come from the qq̄ → V process: this is
exactly the reverse of what is described by the vector meson’s light cone wave function.

2 Note that, while in Eq. (4.45) xGN does not depend on x, Eq. (4.32) is still valid in the DLA region even after small-x
evolution is included (cf. Eq. (4.150)), with xG depending on x.
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The cross section for exclusive vector meson production is equal to (see Ryskin (1993)
for the J/� production case and Brodsky et al. (1994) for the general case of vector meson
production)

σγ ∗+A→V +A

=
∫

d2b⊥

∣∣∣∣
∫

d2x⊥
4π

1∫
0

dz

z(1 − z)
�γ ∗→qq̄(�x⊥, z) N (�x⊥, �b⊥, Y )�V (�x⊥, z)∗

∣∣∣∣2. (7.25)

Note that now the dipole transverse sizes in the amplitude and in the complex conjugate
amplitude are different, and are integrated over separately.

In general the wave function �V is nonperturbative. In practice the main contribution of
the x⊥-integral in Eq. (7.25) comes from short distances, owing to the large values of Q2

and Q2
s there; thus we can approximate �V (�x⊥, z) by �V (0, z) (the wave function at the

origin). For vector mesons �V (0, z) is known from their decay into an electron–positron
pair, V → e+e−.

One can also show that the typical transverse distances in this process are of order 1/Qs

and so the process is, therefore, perturbative. However, the diffractive minima and maxima
in the corresponding t-distribution are determined by the size of the target. To see this, we
write (analogously to the transition from Eq. (7.8) to Eq. (7.10))

dσγ ∗+A→V +A

dt
= 1

4π

∣∣∣∣
∫

d2be−i �q⊥·�b⊥T qq̄A(ŝ, �b⊥)

∣∣∣∣2 , (7.26)

where now the T -matrix element is given by

T qq̄A(ŝ, �b⊥) = i

∫
d2x⊥
4π

1∫
0

dz

z(1 − z)
�γ ∗→qq̄(�x⊥, z) N (�x⊥, �b⊥, Y )�V (�x⊥, z)∗, (7.27)

with Y = ln ŝx2
⊥. We see that the �b⊥-dependence of the T -matrix in Eq. (7.27) is given by

that of N , which in turn is largely determined by the geometry of the target. Hence the
positions of the diffractive maxima and minima of vector meson production are proportional
to 1/R, with R the nuclear radius. In addition, the size of the target (or, more precisely, the
size of the interaction region) increases with energy; however, this increase depends mostly
on nonperturbative corrections as we will discuss later.

As suggested by Munier, Stasto, and Mueller (2001), we can use Eq. (7.26) to extract the
�b⊥-dependence of the T -matrix (and, consequently, the S-matrix) from the experimental
data, since we can invert it to write

T qq̄A(ŝ, �b⊥) = i

2π3/2

∫
d2qei �q⊥·�b⊥

√
dσγ ∗+A→V +A

dt
. (7.28)

This relation relies on the assumption that the T -matrix is purely imaginary at high energies
(and hence the S-matrix is real). This assumption is certainly correct for small t , in the
LLA, but at large values of t the real part of the T -matrix may not be small. In spite of this
uncertainty, Eq. (7.28) shows that we can observe the T -matrix at fixed b, which, in turn,
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Fig. 7.7. An example of a diagram contributing to high-mass diffraction in DIS. The vertical
axis on the right measures the rapidities of the particles.

can be calculated in the saturation approach. Note that the nonperturbative light cone wave
function �V enters Eq. (7.27). Above we suggested a rough approximation in which the
vector meson wave function was replaced by its value at the origin. For mesons consisting
of heavy quarks, such as J/�, or even for the ϒ-meson, consisting of a bb̄-pair, one may
hope to improve on that approximation by using perturbative QCD to calculate the wave
functions.

7.2.2 Nonlinear evolution equation for high-mass diffraction

So far we have considered only low-mass diffractive processes, when the gluon cascade
developed by the dipole before the interaction with the nucleus is reabsorbed back into
the dipole after the interaction, so that we only have the original qq̄ dipole in the final
state (along with the target), as shown in Fig. 7.5. The quark and the antiquark in the
pair cannot be far from each other in rapidity, since the quark emission at small x, unlike
that for gluons, is not enhanced by a logarithm of x: this is why we neglected the quark
contribution to small-x evolution in the LLA. Therefore, since the invariant mass of the
produced particles is related to the rapidity interval that they fill by M2

X = Q2(e�Yf illed − 1),
we see that elastic qq̄ pair production mainly leads to low-mass diffraction. If one wants to
produce a high-mass state with a rapidity gap, one has to augment the picture of Fig. 7.5 by
allowing some “fast” gluons to survive in the final state, as shown in Fig. 7.7. The process
is now more complicated than that in Fig. 7.5. While the incoming dipole still develops a
dipole cascade, not all the gluons in the cascade recombine back by the time the system
reaches the final state: only gluons with rapidities between 0 and Y0 recombine back, so
that a rapidity gap �Ygap = Y0 − 0 = Y0 is formed and the target nucleus remains intact,
as illustrated in Fig. 7.7. Gluons with rapidities y > Y0 do not need to recombine back
and thus can become “produced” gluons, as shown in Fig. 7.7. In fact some gluons with
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y > Y0 may even be emitted after the GGM interaction with the target, as we will see
shortly.

First let us define the observable we would like to calculate. Considering dipole–nucleus
scattering, we denote by ND(�x⊥, �b⊥, Y, Y0) the cross section per unit impact parameter for
diffractive dissociation with a single rapidity gap stretching from 0 (the target) to some
rapidity greater than or equal to Y0. The corresponding single diffractive cross section with
rapidity gap greater than or equal to Y0 in the dipole–nucleus scattering is

σ
qq̄A
diff =

∫
d2b ND(�x⊥, �b⊥, Y, Y0). (7.29)

If we want to find the diffraction cross section for a given fixed rapidity gap Y0 we simply
have to differentiate ND with respect to Y0, obtaining

M2
X

dσ
qq̄A
diff

dM2
X

= −
∫

d2b
∂ND(�x⊥, �b⊥, Y, Y0)

∂Y0
, (7.30)

where the minus sign is due to the fact that Y0 = �Ygap ≈ ln ŝ/M2
X for ŝ,M2

X � Q2, so
that dY0 = −dM2

X/M2
X for fixed ŝ.

By analogy with Eq. (7.17) we can use Eq. (7.29) to write down the following expression
for the single diffractive cross section in DIS:

σ
γ ∗A
diff =

∫
d2x⊥
4π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2ND(�x⊥, �b⊥, Y, Y0). (7.31)

The differential cross section is

M2
X

dσ
γ ∗A
diff

dM2
X

= −
∫

d2x⊥
4π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2 ∂ND(�x⊥, �b⊥, Y, Y0)

∂Y0
.

(7.32)

Sometimes we will use the notation ND(�x1⊥, �x0⊥, Y, Y0) for the diffractive cross section
ND of a dipole with the quark at �x1⊥ and the antiquark at �x0⊥; this is similar to the notation
used in the forward dipole amplitude (see e.g. Eq. (4.141)).

We will assume that Y , Y0, and Y − Y0 are all large, so that αsY ∼ 1, αsY0 ∼ 1 and
αs(Y − Y0) ∼ 1 are all important and one has to devise a small-x resummation procedure
to calculate ND in the LLA by resumming all these parameters. We want to derive a
(nonlinear) evolution equation for ND (Kovchegov and Levin 2000). We will work in the
frame where the nucleus is moving in the light cone plus direction, while the incoming
dipole is moving along the minus axis. We will also employ the A− = 0 light cone gauge
of the (dipole) projectile.

We first observe that when Y0 = Y the rapidity gap becomes equal to the whole rapidity
interval, and we have returned to the case of elastic dipole–nucleus scattering considered
in Sec. 7.2.1. The elastic dipole–nucleus cross section is given in Eq. (7.16), which we can
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x− x

Fig. 7.8. Small-x evolution of the total cross section (upper panel) and the cross section for
diffractive dissociation (lower panel).

use to write

ND(�x⊥, �b⊥, Y = Y0, Y0) = N2(�x⊥, �b⊥, Y0). (7.33)

Again in the LLA, N is given by the solution of the BK/JIMWLK equations. We will use
Eq. (7.33) as the initial condition for the evolution equation that we will construct below.

From the point of view of the space–time picture, the process of diffractive production
is quite different from the total cross section considered above. In calculating the total
cross section we needed to find the forward scattering amplitude. For a dipole moving
along the x−-axis, this means that we had to follow its evolution from x− = −∞ to the
time of the GGM-type interactions at x− = 0 and then again from x− = 0 to the final
state at x− = +∞, which, for the forward amplitude, is identical to the initial state. There
are two main differences in the diffractive case (and, as we will see later, for the inclusive
production cross sections as well). First, the final state at x− = +∞ is no longer identical
to the initial state. Second, we cannot use the optical theorem to find the diffractive cross
section: instead we have to square the scattering amplitude. This means that we have to
follow the evolution of the dipole and its gluon cascade from x− = −∞ to x− = +∞ both
in the amplitude and in the complex conjugate amplitude.

We illustrate the differences between the calculations of the total and diffractive cross
sections in Fig. 7.8. Using the notation of Fig. 5.8 we denote by a vertical dashed line the
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x− = −∞ x− = 0 x− = x = +∞ x = 0 x = −∞
x− x

Fig. 7.9. Diagrammatic representation of the elastic scattering in Eq. (7.33).

GGM interactions with the target (along with the subsequent small-x evolution) for all the
particles that cross the dashed line. The interactions with the target (and the subsequent
evolution) are instantaneous compared with the lifetimes of the s-channel gluons and
quarks. The forward scattering amplitude in the upper panel of Fig. 7.8 is used to obtain
the total dipole–nucleus cross section. There is a single light cone time, which varies from
x− = −∞ to x− = +∞, with the GGM interaction at x− = 0. The lower panel shows the
scattering amplitude squared: the time varies from x− = −∞ to x− = +∞ in the amplitude
and in the complex conjugate amplitude (the light cone time in the latter is denoted by x ′−

to distinguish it from the time in the amplitude). The vertical solid line in the lower panel
of Fig. 7.8 denotes a cut; gluons may be emitted in the amplitude and then, crossing the
cut, be absorbed into the complex conjugate amplitude. Such gluons exist in the final state
and so are “produced”. (Indeed, they fragment into hadrons in the final state: here we are
using perturbative slang, in which the term “produced” implies eventual convolution with
the fragmentation functions, according to the standard perturbative QCD prescription.) The
gluons could be also emitted and then reabsorbed in the (complex conjugate) amplitude:
such gluons are not “produced” and may contribute to the formation of the rapidity gap in
which we are interested. Readers familiar with finite-temperature field theory may draw
an analogy between the two light cone times x− and x ′− and the time contour in the
Schwinger–Keldysh formalism.

To illustrate further this two-time formalism we show a diagram contributing to the
elastic dipole–target scattering given by Eq. (7.33) in Fig. 7.9. No gluon in Fig. 7.9 is
“produced” since none crosses the cut. Instead, the evolution and the interaction with the
target happen separately and independently in the amplitude and in the complex conjugate
amplitude, each giving a factor N generated by the BK/JIMWLK evolution. (The interaction
with the target has been assumed to be elastic in all the diagrams in this subsection; we
have to use the forward, i.e., elastic dipole amplitude in the GGM approximation from
Eq. (4.139) as the initial condition for the evolution for N on each side of the cut.)

An interesting question arises about the connection between the two-time amplitude-
squared approach and the forward amplitude in the upper panel of Fig. 7.8. After all, we
do not have to use the optical theorem to find the total cross section: we can simply square
the sum of all the possible scattering amplitudes. This type of calculation would follow
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Fig. 7.10. Classes of diagrams with final-state interactions that cancel. The dotted vertical
lines denote the intermediate states discussed in the text.

the logic of the lower panel in Fig. 7.8 and would include many more diagrams than the
forward scattering amplitude in the upper panel of the same figure. Yet the answer for the
total cross section should be the same regardless of the calculational strategy. One would
like to see explicitly how a summation over all possible emissions and absorptions in the
lower panel of Fig. 7.8 (without any constraints on the final state such as rapidity gaps)
would lead to the diagram in the upper panel of Fig. 7.8. Understanding this question would
give us a new insight into how the optical theorem works.

The answer to this puzzle is that all the emissions and absorptions for times after the
interaction with the target, x− > 0 and x ′− > 0, simply cancel. This cancellation of the
final-state interactions was first proven by Chen and Mueller (1995) using a diagrammatic
approach. We present the canceling diagrams in the large-Nc language of the dipole model
in Fig. 7.10 using the notation introduced in Figs. 4.18 and 4.20. The cancellations are of
two types. Type-A cancellations, shown in the first line of Fig. 7.10, involve a gluon that
is emitted and absorbed in the final state, i.e., at x− > 0, x ′− > 0. Type-B cancellations,
shown in the second line of Fig. 7.10, involve a gluon that is emitted at x− < 0 but is
absorbed either at x− > 0 or at x ′− > 0. (Cancellations in diagrams that are the complex
conjugates of those of type B take place as well but are not shown, for brevity.)

The proof of the cancellations in Fig. 7.10 can be performed diagrammatically, following
the original derivation of Chen and Mueller (1995). This is based on the fact that, for
instance, the only difference between the two diagrams of type B is the sign of the LCPT
energy denominators of the intermediate states denoted by the dotted vertical lines. When
constructing an energy denominator the rules of LCPT require us to subtract the energy
of the incoming state. However, since the energy of the whole process is conserved, the
energy of the incoming state is equal to the energy of the outgoing state and we can equally
well subtract the latter from the energy denominators. Since for x− > 0 the energy of the
target does not change any more, as the interactions with the target are over, we only need
to consider the s-channel gluons. The intermediate state in the diagram on the left in row
B in Fig. 7.10 then brings in a denominator with the energies of the quark and antiquark
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minus the energy of the same qq̄ pair and a gluon in the final state. Since in the LLA the
energies of the quark and antiquark change little, we get

1

p−
1 + p−

0 − p−
1 + p−

0 − k−
2

= − 1

k−
2

, (7.34)

where p−
1 , p−

0 are the quark energies while k−
2 is the gluon light cone energy. Similarly, the

intermediate state denoted by the dotted line on the right in row B gives

1

p−
1 + p−

0 + k−
2 − p−

1 + p−
0

= 1

k−
2

, (7.35)

exactly equal to Eq. (7.34) in magnitude but opposite in sign. Since, as we have already
mentioned, the remainders of the type-B diagrams are identical, we obtain the cancellation
illustrated in Fig. 7.10B.

Similar sign changes in the energy denominators apply in the type-A case along with
symmetry factors; the result is that the second and the third graphs are equal to minus
one-half the first graph. (Note that a complete analysis of the diagrams of type A should
include instantaneous terms like those shown in Fig. 4.14.)

One may also use the language of Chapter 5 to argue for the cancellation. Define
the fundamental Wilson line over an arbitrary interval [x−

1 , x−
2 ] along the x−-axis (see

Eq. (5.78)) by

V�y⊥ [x−
2 , x−

1 ] = P exp

⎧⎪⎨
⎪⎩

ig

2

x−
2∫

x−
1

dx−taAa+(x+ = 0, x−, �y⊥)

⎫⎪⎬
⎪⎭ (7.36)

where the gluon field A+ is either the classical field of the target or an effective field
taking into account the small-x evolution corrections. The contribution of the final-state
part (x− ∈ [0,+∞]) of a dipole–nucleus scattering diagram is then given by

V�x1⊥ [+∞, 0] ⊗ V
†
�x0⊥ [+∞, 0], (7.37)

where, as usual, the quark is at �x1⊥ and the antiquark is at �x0⊥, as shown in Fig. 7.10B.
Squaring the amplitude we get

V�x1⊥ [+∞, 0]V †
�x1⊥ [+∞, 0] ⊗ V

†
�x0⊥[+∞, 0]V�x0⊥ [+∞, 0] = 1 ⊗ 1. (7.38)

All the interactions cancel and we end up with a noninteraction unit contribution. This
cancellation is akin to the unitarity argument presented in Sec. 2.4.2, which was also used
for construction of the dipole wave function in Sec. 4.3.

The cancellation of interactions at x− > 0, x ′− > 0 and the identification of the x ′− < 0
part of the diagram in the lower panel of Fig. 7.8 with the x− > 0 part of the upper
panel reduces the amplitude squared to twice the imaginary part of the forward amplitude
(according to the Cutkosky rules), in agreement with the optical theorem.

We are now ready to construct an evolution equation for the diffractive cross section
ND(�x1⊥, �x0⊥, Y, Y0). As we have seen before, with regard to the derivation of BK evolution,
it is a little easier to construct the equation for the S-matrix than for the T -matrix. The
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SD

c.c. NDN

Fig. 7.11. Diagrammatic representation of the definition of SD in Eq. (7.39). Here the
dashed lines simply denote the times x− = 0 or x ′− = 0. Interactions with the target are
included only when these lines cross the shaded circles.

cross section ND by definition contains the interaction with the target both in the amplitude
and in the complex conjugate amplitude. We can complete it to an S-matrix-like object SD

by adding terms where there is no interaction either in the amplitude or in the complex
conjugate amplitude (which gives −N (�x1⊥, �x0⊥, Y ) for each) and also terms where there is
no interaction on either side of the cut (which gives 1). We thus define

SD(�x1⊥, �x0⊥, Y, Y0) = 1 − 2N (�x1⊥, �x0⊥, Y ) + ND(�x1⊥, �x0⊥, Y, Y0). (7.39)

The quantity SD includes both the interacting and the noninteracting contributions to the
left and to the right of the cut with the constraint that in the final state there is always a
rapidity gap greater than or equal to Y0. The definition (7.39) of SD is illustrated in Fig. 7.11.

When Y = Y0, using Eq. (7.33) we have

SD(�x1⊥, �x0⊥, Y = Y0, Y0) = S2(�x1⊥, �x0⊥, Y0) (7.40)

with S given by the BK/JIMWLK equations. We now want to derive the Y evolution for SD

for Y > Y0, with the initial condition at Y = Y0 given by Eq. (7.40). Suppose that in one
step of the evolution we emit a gluon with rapidity y > Y0. Since there are no final-state
restrictions on gluons with y > Y0 the gluon may or may not cross the cut and be present
in the final state. (The rapidity gap is greater than or equal to Y0; if the y > Y0 gluon is not
present in the final state this would simply extend the gap to rapidity y, which is still included
in the definition of SD .) A gluon with y > Y0 may be emitted and absorbed at x− ≶ 0 and
x ′− ≶ 0. However, owing to the cancellations in Fig. 7.10, all emissions or absorptions at
x− > 0, x ′− > 0 cancel out, and we are left with the normal dipole evolution of the forward
amplitude that we used in deriving the BK evolution equation, with all the emissions and
absorptions taking place at x− < 0, x ′− < 0. We conclude that the evolution for SD is
equivalent to that of the S-matrix, which in the large-Nc limit is given by Eq. (4.137) and
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Fig. 7.12. A graphic form of the equation for the cross section of diffractive production.
The dashed-line notation is the same as in Fig. 7.11.

illustrated in Fig. 4.26. Thus we can write

∂Y SD(�x1⊥, �x0⊥, Y, Y0)

= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

[
SD(�x1⊥, �x2⊥, Y, Y0)SD(�x2⊥, �x0⊥, Y, Y0) − SD(�x1⊥, �x0⊥, Y, Y0)

]
.

(7.41)

Substituting Eq. (7.39) into Eq. (7.41) we readily obtain (Kovchegov and Levin 2000)

∂Y ND(�x1⊥, �x0⊥, Y, Y0)

= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

×
[
ND(�x1⊥, �x2⊥, Y, Y0) + ND(�x2⊥, �x0⊥, Y, Y0) − ND(�x1⊥, �x0⊥, Y, Y0)

+ ND(�x1⊥, �x2⊥, Y, Y0)ND(�x2⊥, �x0⊥, Y, Y0)

− 2N (�x1⊥, �x2⊥, Y )ND(�x2⊥, �x0⊥, Y, Y0)

− 2ND(�x1⊥, �x2⊥, Y, Y0)N (�x2⊥, �x0⊥, Y ) + 2N (�x1⊥, �x2⊥, Y )N (�x2⊥, �x0⊥, Y )

]
.

(7.42)

This is a nonlinear evolution equation with the initial condition specified at Y = Y0 in
Eq. (7.33). To solve it one has first to solve the BK equation (4.138) to find the dipole
amplitude N , which is then used in Eq. (7.42) to find ND . Owing to the apparent complexity
of both Eq. (7.42) and the BK equation, no analytic solution of Eq. (7.42) exists.

Equation (7.42) is illustrated diagrammatically (and, perhaps, somewhat schem-
atically) in Fig. 7.12. We can see that in the nonlinear terms the factors 2 arise from
adding diagrams that are mirror-reflected with respect to the cut diagrams shown. The
coefficients in front of the nonlinear terms on the right-hand side of Eq. (7.42) turn out to be
in agreement with the Abramovsky–Gribov–Kancheli (AGK) cutting rules (Abramovsky,
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Gribov, and Kancheli 1973), as was shown by Kovchegov and Levin (2000). The AGK
cutting rules originate from the pomeron theory of high energy strong interactions but
appear to work (almost always) in QCD in the LLA. The interested reader is referred to the
original paper by Abramovsky, Gribov, and Kancheli (1973) and to a more recent paper by
Bartels and Ryskin (1997).

A numerical solution of Eq. (7.42) was performed by Levin and Lublinsky (2001, 2002a).
It was shown that the diffractive cross section resulting from Eq. (7.42) has a geometric
scaling behavior and that the saturation scale for these processes has the same dependence
on energy and atomic number A as the saturation scale for the total cross section. It was also
predicted that the ratio σdiff/σtot has only a mild energy dependence and M2

X-dependence,
in agreement with an estimate from Eqs. (7.23) and, more importantly, with the HERA data
(see Abramowicz and Dainton (1996), H1 collaboration (1997), and ZEUS collaboration
(1999)).

Further reading

For further reading on diffraction we recommend the books by Barone and Predazzi (2002),
Donnachie, Dosch, and Landshoff (2005), and Forshaw and Ross (1997). In these books
a wide spectrum of different problems is discussed, from the wave nature of diffrac-
tive scattering to the practical phenomenology based on the reggeon approach. Several
reviews of diffraction in DIS cover the topics that have been discussed here in more detail:
Wusthoff and Martin (1999) (perturbative QCD), Hebecker (2000) (perturbative QCD and
beyond, including the semiclassical approach to diffraction), and Weigert (2005) (the CGC
approach to diffractive processes). We also recommend the review by Boreskov, Kaidalov,
and Kancheli (2006), which gives an outline of diffractive processes using pomeron phe-
nomenology, as well as the paper by Bartels and Kowalski (2001), where the space–time
picture of diffractive processes is explored.

Low-mass diffraction with the production of a qq̄-pair and a qq̄G state was discussed
originally by Buchmuller, Gehrmann, and Hebecker (1997), Buchmuller, McDermott, and
Hebecker (1999), and Kovchegov and McLerran (1999). We also recommend the papers
by Munier and Shoshi (2004), Marquet (2005), and Golec-Biernat and Marquet (2005),
Kopeliovich, Potashnikova, and Schmidt (2007), and Golec-Biernat and Luszczak (2009).
In them one can find comparisons of the theory with the experimental data on diffraction.

For exclusive vector meson production in DIS we recommend the papers by Ryskin
(1993) and Brodsky et al. (1994), along with the more recent paper of Marquet, Peschanski,
and Soyez (2007).

As we have shown, high-mass diffraction is intimately related to the BFKL pomeron
interaction, and the calculation of this process has been a main subject of interest in the
community over several decades, starting from the Gribov, Levin, and Ryskin (1983) paper
(see also Levin and Wusthoff (1994)).

High-mass diffraction in perturbative QCD was studied in the following papers: Levin
and Wusthoff (1994), Bartels and Wusthoff (1995), Braun and Vacca (1997), Bartels, Braun,
and Vacca (2005), and Bartels and Kutak (2008). Using a dipole approach, high-mass
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diffraction has been considered in papers by Bialas, Navelet, and Peschanski (1998, 1999),
Korchemsky (1999), and Navelet and Peschanski (2001). Equation (7.42) has been rederived
using methods different from those of Kovchegov and Levin (2000) in the following papers:
Kovner and Wiedemann (2001) (using the eikonal approach), Hentschinski, Weigert, and
Schafer (2006) (in the JIMWLK approach, generalizing Eq. (7.42) beyond the large-Nc

limit), Kovner, Lublinsky, and Weigert (2006), and Hatta et al. (2006) (using general CGC
concepts).

Exercises

7.1 Pick any diagram with a specific quark–gluon couplings in the type-B class from
Fig. 7.10 and show explicitly that the cancellation does happen, as shown in the figure.

7.2 (a) Solve the following zero-transverse-dimensional equation for SD(Y, Y0):

∂Y SD(Y, Y0) = αs[S
D(Y, Y0)]2 − αsS

D(Y, Y0) (7.43)

with the initial condition SD(Y = Y0, Y0) = [1 − N (Y0)]2 (see Eq. (7.40)) with
N (Y ) as found in Exercise 4.5(b).

(b) Using the result of part (a) find the diffractive cross section

M2
X

dσdiff

dM2
X

= −∂ND(Y, Y0)

∂Y0
= −∂SD(Y, Y0)

∂Y0
. (7.44)

Plot it as a function of Y0. You should get a function of Y0 that peaks at a large Y0

value that is close to Y : this maximum in the diffractive cross section is a direct
manifestation of the saturation/CGC dynamics.
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