A. K. Maloo Nagoya Math. J. Vol. 132 (1993), 37-41

GENERATORS FOR A MAXIMALLY DIFFERENTIAL IDEAL IN POSITIVE CHARACTERISTIC

ALOK KUMAR MALOO

Introduction

In this note we give the structure of maximally differential ideals in a Noetherian local ring of prime characteristic p > 0, in terms of their generators. More precisely, we prove the following result:

THEOREM 4. Let A be a Noetherian local ring of prime characteristic p > 0 with maximal ideal m. Let I be a proper ideal of A. Suppose n = emdim(A) and r = emdim(A/I). If I is maximally differential under a set of derivations of A then there exists a minimal set x_1, \ldots, x_n of generators of m such that $I = (x_1^p, \ldots, x_r^p, x_{r+1}, \ldots, x_n)$.

This result was proved by the author in [3, Lemma 2.2], under the additional hypothesis that A is complete and I is maximally differential under a set of k-derivations of A, where k is a coefficient field of A.

Using the methods we use to prove the above result we give a different proof for Harper's Theorem (as called by H. Matsumura, [Cf. [4, Theorem on p. 206]]). The following formulation of Harper's Theorem is due to S. Yuan [5]:

"Let A be a differentially simple ring of positive characteristic p. Then A is local. Let m be the maximal ideal of A and let $n = \dim_{A/m}(m/m^2)$. If $n < \infty$ then

 $A \cong k[X_1, X_2, \dots, X_n] / (X_1^{\flat}, X_2^{\flat}, \dots, X_n^{\flat}),$

where k is a field and X_1, X_2, \ldots, X_n are indeterminates over k."

Our proof of Harper's Theorem is very straightforward and is much simpler than the original proof by L. Harper [1] and S. Yuan's proof, both of which involve somewhat complicated computations.

Received January 5, 1993.

The results

By a ring we mean a commutative ring with 1.

Let A be a ring.

Let \mathfrak{D} be a set of derivations of A. Then an ideal I is called a \mathfrak{D} -differential ideal if $d(I) \subset I$ for all $d \in \mathfrak{D}$. An ideal I is called a maximally \mathfrak{D} -differential ideal if it is a proper \mathfrak{D} -differential ideal and for every ideal J of A with $I \subsetneq J \subsetneq A$, J is not \mathfrak{D} -differential. An ideal I is called a maximally differential ideal if it is maximally \mathfrak{D} -differential for a set \mathfrak{D} of derivations of A.

A ring is called a *differentially simple ring* if the ideal (0) is maximally differential in it.

For a derivation d of A, by d-differential we mean $\{d\}$ -differential.

. LEMMA 1. Let A be a ring of prime characteristic p > 0. Let δ be a derivation of A and let $x \in A$ such that $\delta(x) = 1$. Then:

(a) Let I be a δ -differential ideal of A. If $a_0, a_1, \ldots, a_{p-1} \in \ker(\delta)$ such that $\sum_{i=0}^{p-1} a_i x^i \in I$ then $a_i \in I$ for all $i = 0, 1, \ldots, p-1$.

(b) Let
$$E = \sum_{i=0}^{p-1} (-x)^i \delta^i / i!$$
. Then:

(i)
$$\delta E = -x^{p-1}\delta^p$$
.

(ii) For every
$$a \in A$$
, $E(xa) = -x^p \delta^{p-1}(a)$.

(iii) For every $a \in A$, $E^{2}(a) \equiv E(a) \pmod{(x^{p})}$.

Proof. (a) Since I is δ -differential, $\delta^{p-1}(\sum_{i=0}^{p-1} a_i x^i) = (p-1)! a_{p-1} \in I$. Hence $a_{p-1} \in I$. By induction, $a_{p-2}, \ldots, a_0 \in I$.

(b) Statements (i) and (ii) are straightforward from the definition of E. Statement (iii) follows from (ii).

PROPOSITION 2. Let A, δ , x and E be as in Lemma 1. Suppose, in addition, $x^{p} = 0$. Then E is a ring homomorphism. Let $A_{0} = E(A)$. Then:

- (i) $A_0 = \{a \in A \mid E(a) = a\} = \ker(\delta + x^{p-1}\delta^p).$
- (ii) $A^{p} = \{a^{p} \mid a \in A\} \subset A_{0}$ and A is a free A_{0} -module with basis 1, x, \ldots, x^{p-1} .
- (iii) Let \mathfrak{D} be a set of derivations of A such that $\delta \in \mathfrak{D}$ and let I be a maximally \mathfrak{D} -differential ideal of A. Then $I_0 = I \cap A_0$ is a maximally differential of A_0 and $I_0A = I$.

Proof. Since $x^{p} = 0$, by Leibnitz rule, E is a ring homomorphism. Put $\delta' = \delta + x^{p-1}\delta^{p}$, then δ' is a derivation of A.

38

(i) Let $a \in A_0$. Then a = E(b) for some $b \in A$. Therefore by Lemma 1 E(a) = EE(b) = E(b) = a, as $x^p = 0$. Hence $A_0 = \{a \in A \mid E(a) = a\}$. Now we prove the other equality. Let $a \in A$ such that a = E(a). Then, by Lemma 1, $\delta(a) = \delta E(a) = -x^{p-1}\delta^p(a)$. Therefore $\delta'(a) = 0$. Conversely, let $a \in \ker(\delta')$. We show by induction that $x^i\delta^i(a) = 0$ for $i = 1, \ldots, p-1$. Since $x^p = 0$, $x\delta(a) = 0$. Suppose $x^i\delta^i(a) = 0$ for $1 \le i < p-1$. Then $0 = \delta(x^{i+1}\delta^i(a)) = x^{i+1}\delta^{i+1}(a) + (i+1)x^i\delta^i(a) = x^{i+1}\delta^{i+1}(a)$. Hence E(a) = a. Therefore $A_0 = \ker(\delta')$.

(ii) Since $\delta(a^p) = 0$ for all $a \in A$, $A^p \subset A_0$. Now we show that A is generated by $1, x, \ldots, x^{p-1}$ over A_0 . Let $a_0 \in A$. By induction on i we construct $a_i \in A_0$ for $i = 0, 1, \ldots, p-1$ such that $a = \sum_{i=0}^{p-1} a_i x^i$. Now $a = E(a) + xb_1$ for some $b_1 \in A$. Take $a_0 = E(a)$ and $a_1 = E(b_1)$. Again $b_1 = E(b_1) + xb_2$ for some $b_2 \in A$. Take $a_2 = E(b_2)$ and so on. Since $x^p = 0$ we have $a = \sum_{i=0}^{p-1} a_i x^i$. As $A_0 = \ker(\delta')$ by (i) and $\delta'(x) = 1$, by Lemma 1, 1, x, \ldots, x^{p-1} are linearly independent over A_0 .

(iii) Let $a \in I$. Then, by (ii), $a = \sum_{i=0}^{p-1} a_i x^i$, for some $a_0, a_1, \ldots, a_{p-1} \in A_0$. Since I is δ' -differential, $\delta'(x) = 1$ and $A_0 = \ker(\delta')$, by Lemma 1, $a_i \in I$ for all $i = 0, 1, \ldots, p-1$. Hence $I = I_0 A$.

Let $d \in \mathfrak{D}$. For $a \in A_0$, let $d_i(a)$ denote the coefficient of x^i in the expression of d(a), $i = 0, 1, \ldots, p-1$. Then d_i 's are derivations of A_0 . (We have borrowed this construction from [2].) Let $\mathfrak{D}_0 = \{d_i \mid d \in \mathfrak{D}, i = 0, 1, \ldots, p-1\}$. We show that I_0 is maximally \mathfrak{D}_0 -differential. First we show that I_0 is \mathfrak{D}_0 -differential. Let $a \in I_0$ and $d \in \mathfrak{D}$. Since $a \in I$, $d(a) = \sum_{i=0}^{p-1} d_i(a)x^i \in I$. Therefore by Lemma 1 $d_i(a) \in I$. Hence $d_i(a) \in I_0$ for all $i = 0, 1, \ldots, p-1$ and $d \in \mathfrak{D}$. Therefore I_0 is \mathfrak{D}_0 -differential. Let J be a \mathfrak{D}_0 -differential ideal of A_0 containing I_0 . Let $a \in J$ and $d \in \mathfrak{D}$. Then $d(a) = \sum_{i=0}^{p-1} d_i(a)x^i \in JA$. Therefore JA is \mathfrak{D} -differential. Since Iis maximally \mathfrak{D} -differential and $I = I_0A \subset JA$ either JA = I or JA = A. Since Ais faithfully flat over A_0 , $J = I_0$ or $J = A_0$ accordingly. Hence I_0 is a maximally differential ideal of A_0 .

COROLLARY 3 [Harper's Theorem, Cf. [1]]. Let A be a differentially simple ring of positive characteristic p. Then A is local. Let \mathfrak{m} be the maximal ideal of A and let $n = \dim_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$. If $n < \infty$ then

$$A \cong k[X_1,\ldots,X_n] / (X_1^p,\ldots,X_n^p),$$

where k is a field and X_1, X_2, \ldots, X_n are indeterminates over k.

Proof. Let \mathfrak{D} be the set of all derivations of A. Then (0) is maximally \mathfrak{D} -differential.

Let $K = \{a \mid d(a) = 0 \text{ for all } a \in \mathfrak{D}\}$. By differential simplicity of A it follows that K is a field. Hence p is prime.

If $a \in A$ is a nonunit then $a^p = 0$ as the ideal (a^p) is \mathfrak{D} -differential. Hence A is local of Krull dimension zero. We prove the result by induction on n. If n = 0 then $\mathfrak{m} = \mathfrak{m}^2$. Hence $d(\mathfrak{m}) = d(\mathfrak{m}^2) \subset \mathfrak{m}$ for all $d \in \mathfrak{D}$. Therefore \mathfrak{m} is \mathfrak{D} -differential. Hence m = (0), i.e., A is a field. Suppose $n \ge 1$. Then there exist $d \in \mathfrak{D}$ and $x \in \mathfrak{m}$ such that $d(x) \notin \mathfrak{m}$. By replacing d by $d(x)^{-1}d$, we may assume that d(x) = 1. Since $x^p = 0$, by Proposition 2 there exists a local subring A_0 of A such that $A^p \subset A_0$, A is a free A_0 -module with basis $1, x, \ldots, x^{p-1}$ and (0) is maximally differential in A_0 . Then $A \cong A_0[X]/(X^p)$ where X is an indeterminate over A_0 and $A_0 \cong A/(x)$. Let \mathfrak{m}_0 be the maximal ideal of A_0 . Now, $\dim_{A_0/\mathfrak{m}_0}(\mathfrak{m}_0/\mathfrak{m}_0^2) = \dim_{A/\mathfrak{m}}(\mathfrak{m}/(x) + \mathfrak{m}^2) = n - 1$ as $x \notin \mathfrak{m}^2$. Therefore, by induction, we are through.

THEOREM 4. Let A be a Noetherian local ring of prime characteristic p > 0 with maximal ideal m. Let I be a proper ideal of A. Suppose n = emdim(A) and r = emdim(A/I). If I is maximally differential under a set of derivations of A then there exists a minimal set x_1, \ldots, x_n of generators of m such that $I = (x_1^p, \ldots, x_r^p, x_{r+1}, \ldots, x_n)$.

Proof. Let \mathfrak{D} denote the set of all derivations d of A such that $d(I) \subset I$. Then I is maximally \mathfrak{D} -differential.

If $a \in \mathfrak{m}$ then (a^{p}) is \mathfrak{D} -differential and hence $a^{p} \in I$.

We prove the result by induction on r. If r = 0 then there is nothing to prove. Let $r \ge 1$. Then there exist $\delta \in \mathfrak{D}$ and $x \in \mathfrak{m}$ such that $\delta(x) \notin \mathfrak{m}$. By replacing δ by $(\delta(x))^{-1}\delta$ we may assume that $\delta(x) = 1$. Let $B = A/(x^{p})$, $\mathfrak{n} = \mathfrak{m}/(x^{p})$ and $J = I/(x^{p})$. Let y be the image of x in B.

For $d \in \mathfrak{D}$, let d' denote the derivation on B induced by d and let $\mathfrak{D}' = \{d' \mid d \in \mathfrak{D}\}$. Then J is maximally \mathfrak{D}' -differential in B, $\delta'(y) = 1$ and $y^p = 0$. Therefore by Proposition 2 there exists a local subring B_0 of B such that $B^p \subset B_0$, B is a free B_0 -module with basis 1, y, \ldots, y^{p-1} , $J_0 = J \cap B_0$ is maximally differential in B_0 and $J = J_0 B$. It is immediate from above data that $B_0 \cong B/(y) \cong A/(x)$ and $B_0/J_0 \cong B/J + (y) \cong A/I + (x)$. Since $x \notin I + \mathfrak{m}^2$ it follows that $\operatorname{emdim}(B_0) = n - 1$ and $\operatorname{emdim}(B_0/J_0) = r - 1$. Hence by induction $J_0 = (y_1^p, \ldots, y_{r-1}^p, y_r, \ldots, y_{n-1})$ for a minimal set $y_1, y_2, \ldots, y_{n-1}$ of generators of the maximal ideal \mathfrak{n}_0 of B_0 . Therefore $J = (y_1^p, \ldots, y_{r-1}^p, y_r, \ldots, y_{n-1})$ and

40

 $\mathfrak{n} = (y, y_1, \dots, y_{n-1})$. Let x_i be a lift of y_i in A for $i = 1, 2, \dots, n-1$. Then $I = (x^p, x_1^p, \dots, x_{r-1}^p, x_r, \dots, x_{n-1})$ and $\mathfrak{m} = (x, x_1, \dots, x_{n-1})$.

Acknowledgement. I express my deep gratitude to Prof. Balwant Singh, for his constant help and guidance.

REFERENCES

- L. Harper, On differentially simple algebras, Trans. Amer. Math. Soc., 100 (1961), 63-72.
- [2] T. Kimura and H. Niitsuma, On Kunz's conjecture, J. Math. Soc. Japan, 34 (1982), 371-378.
- [3] A. K. Maloo, Maximally differential ideals in positive characteristic, Comm. in Algebra, 20(8) (1992), 2365-2370.
- [4] H. Matsumura, Commutative Ring Theory (Cambridge University Press, 1986).
- [5] S. Yuan, Differentially simple rings of prime characteristic, Duke Math. J., 31 (1964), 623-630.

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road, Bombay-400 005 INDIA