A NOTE ON GAYLEY LOOPS

A. GINZBURG

Introduction. In § 1 the existence of two non-isotopic loops satisfying the same system of relations is proved: C_{1} is isomorphic to the well-known Cayley loop (see $\mathbf{1}$ or $\mathbf{6}$); C_{2} seems not to have been mentioned in the literature. In § 2 a characterization of the second type is given in terms of Tamari's generalized normal multiplication table $(\mathbf{7} ; \mathbf{8})$ as a complete symmetric quasiregular partition, i.e., a quasi-associative loop $(4,5)$, or a so-called near-group (9). In $\S 3$ these distinctions are followed by comparing the corresponding algebras.

1. The Cayley numbers can be written in the form $x=a+b e$, where a and b are real quaternions and e is an indeterminate (3, p. 237). These numbers are combined according to the rules:

$$
\begin{align*}
& (a+b e)+(c+d e)=a+c+(b+d) e \tag{1}\\
& (a+b e)(c+d e)=a c-\bar{d} b+(d a+b \bar{c}) e \tag{2}
\end{align*}
$$

Here \bar{a} denotes the conjugate of the quaternion a.
The 16 elements

$$
\begin{equation*}
\{ \pm 1, \pm i, \pm j, \pm k, \pm e, \pm i e, \pm j e, \pm k e\} \tag{3}
\end{equation*}
$$

form, by (2), a multiplicative loop, called in (6) the Cayley loop. This loop is diassociative (i.e. every two of its elements generate a subgroup) and has three generators x_{1}, x_{2}, x_{3} (e.g., $i e, j e, k e$), which satisfy ($\mathbf{6} ; \mathbf{1}, \mathrm{p} .88$):

$$
\left\{\begin{array}{l}
x_{\alpha}{ }^{4}=1, \quad x_{\alpha}{ }^{2}=x_{\beta}{ }^{2} \neq 1, \quad x_{\alpha} x_{\beta}=x_{\beta}{ }^{3} x_{\alpha} \quad(\alpha \neq \beta), \tag{4}\\
x_{\alpha} x_{\beta} \cdot x_{\gamma}=x_{\alpha}{ }^{3} \cdot x_{\beta} x_{\gamma} \quad(\alpha, \beta, \gamma=1,2,3 \text { all different }) .
\end{array}\right.
$$

We shall refer to a diassociative loop of order 16 generated by three elements satisfying (4) as a C-loop.

Proposition 1. There exist two non-isotopic C-loops, which will be denoted by C_{1} and C_{2}. Every C-loop is isomorphic either to C_{1} or to C_{2}.

Proof. The above-mentioned C-loop will be denoted by C_{1}. As a subloop of the multiplicative loop of non-zero Cayley numbers, which constitute an alternative algebra (i.e. an algebra in which for any two elements a, b the equalities ($a a$) $b=a(a b)$ and ($b a) a=b(a a)$ hold), C_{1} satis'ies the Moufang identity $(x y)(z x)=[x(y z)] x$ (2, Lemma 2.2).

Received November 6, 1962. The author expresses his thanks to the referees for their remarks.

We consider now a modification of (2) given by

$$
\begin{equation*}
(a+b e)(c+d e)=a c-b \bar{d}+(a d+\bar{c} b) e \tag{5}
\end{equation*}
$$

The three elements $i e, j e, k e$ multiplied according to (5) satisfy the conditions (4) and generate a diassociative loop C_{2}, consisting of the same 16 elements (3) as C_{1}. This can be verified by direct inspection.

The loop C_{2} does not satisfy Moufang's identity, since, for example,

$$
(i \cdot j)(e \cdot i)=k(-i e)=-j e \quad \text { and } \quad[i(j \cdot e)] i=(i \cdot j e) i=k e \cdot i=j e
$$

Every loop isotopic to a Moufang loop is Moufang (1, p. 58); hence C_{1} and C_{2} are not isotopic.

Now using (4) one can construct the C-loops by building their multiplication tables. The whole construction is unique, except for one step, where two possibilities arise: one leading to a loop isomorphic to C_{1}, the other to one isomorphic to C_{2}. (I wish to thank Professor R. Artzy, who presented me with the multiplication table of this loop.)

Indeed, let $i e, j e, k e$ be chosen as generators. Denote $(m e)^{-1}=-m e$ and $(m e)^{2}=-1 \quad(m=i, j, k)$. Then (by diassociativity and (4)) $(-1)^{2}=1$, $(m e)(-1)=(-1)(m e)=-m e$ and $(-1)(-m e)=(-m e)(-1)=m e$. Putting $i e \cdot j e$ (or $i e \cdot k e$, etc.) equal to one of the already introduced elements leads to a contradiction. Denote $i e \cdot j e=k, i e \cdot k e=-j, i e(-j e)=-k$, $i e(-k e)=j$. Now $j e \cdot k e$ cannot equal one of the above 12 elements. Denote it by i and $j e(-k e)$ by $-i$. Using the diassociativity and (4) one can proceed to fill up the multiplication table, but for $k \cdot k e$ one must set a new symbol, say $-e$. Denote also $k(-k e)=e$ and proceed as above. All products except the 24 of the form $m n$, where $m, n= \pm i, \pm i, \pm k$, and $m \neq \pm n$, are now uniquely defined. The multiplication table must be a latin square; consequently $k i$, for example, can equal j or $-j$ only. On the other hand $k i=(i e \cdot j e)$ ($j e \cdot k e$) and the parentheses cannot be eliminated; (4) does not provide such a situation and diassociativity cannot be used, because there are three different generators in this product. Both decisions $k i=j$ or $k i=-j$ are allowed and result immediately in a complete filling of the multiplication table.

Proposition 2. A C-loop is isomorphic to C_{1} if and only if its generators x_{1}, x_{2}, x_{3} satisfy:

$$
\begin{equation*}
\left(x_{\alpha} x_{\beta}\right)\left(x_{\beta} x_{\gamma}\right)=x_{\alpha} x_{\gamma} . \tag{6}
\end{equation*}
$$

It is isomorphic to C_{2} if and only if its generators satisfy

$$
\begin{equation*}
\left(x_{\alpha} x_{\beta}\right)\left(x_{\beta} x_{\gamma}\right)=x_{\gamma} x_{\alpha} . \tag{7}
\end{equation*}
$$

Proof. When multiplied according to (2), the generators ie, je, ke satisfy (6), but not (7), and when multiplied according to (5), they satisfy (7), but not (6). This fact, together with the previous proposition, proves the present one.
2. Together with the ordinary multiplication tables, also the so-called generalized normal multiplication tables (g.n.m.t.) (7;8) can be used to describe multiplicative systems.

For example, the quaternion group with the elements $\{ \pm 1, \pm i, \pm j, \pm k\}$ is represented by the g.n.m.t. shown in Table I (4). Such a table represents

TABLE I

5	$-k$	k	$-j$	j
4	$-i$	i	-1	1
	$-i$	$-i$	1	-1
2	-1	1	i	$-i$
	-1	-1	$-i$	i
1	2	3	4	5

a family $R=\left\{r_{\alpha}, r_{\beta}, \ldots\right\}$ of binary relations over a set V (here $N=\{1,2$, $3,4,5\}$), being in one-to-one correspondence with the elements of the multiplicative system. The relations are combined by so-called generalized multiplication:

$$
r_{\alpha} \cdot r_{\beta}=r_{\gamma} \Leftrightarrow r_{\gamma} \supset r_{\alpha} r_{\beta} \neq \emptyset \quad(7 ; 8)
$$

Accordingly, the multiplication in the table is performed using the rule $a_{m n} a_{n p}=a_{m p}$, where $a_{m n}$ is the element on the intersection of the m th column (from left to right) and the nth row (upwards). Note, that there are products, such as $i \cdot i, i \cdot(-1)$, and others, which can be found in the table more than once. Nevertheless, this table has only 25 entries, while the ordinary multiplication table of this group has 64 entries.

The just given g.n.m.t. has the following three special properties:
(a) Any two elements appearing in it can be multiplied. In other words, it describes a groupoid in the sense used in (1, p. 1).
(b) $a_{m_{1} n_{1}}=a_{m_{2} n_{2}} \Rightarrow a_{n_{1} m_{1}}=a_{n_{2} m_{2}}$.
(c) Each place in the table is occupied.

A g.n.m.t. satisfying (a), (b), and (c) is called a complete symmetric quasiregular partition $(\mathbf{4} ; \mathbf{5})$ and is denoted by $P_{s c}$.

The groupoid represented by a $P_{s c}$ is an IP-loop (i.e. a loop with the inverse property). On the other hand, not every IP-loop can be represented by a $P_{s c}$. An IP-loop for which this can be done is called a QA-loop (quasiassociative loop $(\mathbf{4} ; \mathbf{5})$ or near-group ($\mathbf{9}$)). Thus every group is a QA-loop.

Proposition 3. C_{2} is a QA-loop, but C_{1} is not a QA-loop.
Proof. The $P_{s c}$ shown in Table II is a g.n.m.t. of C_{2}. Hence C_{2} is a QA-loop.

TABLE II

$-k e$	$k e$	$-j e$	$j e$	$i e$	$-i e$	$-e$	e	1
$-k$	k	$-j$	j	i	$-i$	-1	1	$-e$
k	$-k$	j	$-j$	$-i$	i	1	-1	e
$-j$	j	k	$-k$	-1	1	$-i$	i	$i e$
j	$-j$	$-k$	k	1	-1	i	$-i$	$-i e$
$-i$	i	-1	1	$-k$	k	j	$-j$	$-j e$
i	$-i$	1	-1	k	$-k$	$-j$	j	$j e$
-1	1	i	$-i$	j	$-j$	k	$-k$	$-k e$
1	-1	$-i$	i	$-j$	j	$-k$	k	$k e$

Now the elements $i e$ and $j e$ of C_{1} generate a subgroup H of order 8 and $(i e \cdot j e) b \neq i e(j e \cdot b)$ for any $b \in C_{1}$ which is not in this subgroup.
Suppose that there exists a $P_{s c}$ representing C_{1}. ie $\cdot j e$ have to be multiplied in it; hence there are $m, n, p \in N$ such that $a_{m n}=i e$ and $a_{n p}=j e$. But $\left(a_{m n} a_{n p}\right) a_{p q}=a_{m n}\left(a_{n p} a_{p q}\right)$ (both products equal to $\left.a_{m q}\right)$; hence the whole p column in the above $P_{s c}$ must be occupied by elements $b \in C_{1}$ such that $(i e \cdot j e) b=i e(j e \cdot b)$, i.e. by elements of H. This implies that any element in the $P_{s c}$ belongs to H and it cannot represent C_{1}, which, thus, is not a QA-loop.
3. The set $A=\{x \mid x=a+b e\}$ (a and b real quaternions and e an indeterminate) with the addition (1) and multiplication (5) forms clearly an algebra of order 8 over the field of the real numbers.

Write $\bar{x}=\overline{a+b} \bar{e}=\bar{a}-b e$. Then
(a) $\overline{x y}=\bar{y} \bar{x}$,
(b) $N(x)=x \bar{x}=\bar{x} x=a \bar{a}+b \bar{b}$ is a positive number for any $x \neq 0$.

These properties are common to A and to the algebra of Cayley numbers. However, in A, we have in general $N(x y) \neq N(x) N(y)$: if

$$
\begin{aligned}
& x=a+b e=a_{0}+i a_{1}+j a_{2}+k a_{3}+\left(b_{0}+i b_{1}+j b_{2}+k b_{3}\right) e, \\
& y=c+d e=c_{0}+i c_{1}+j c_{2}+k c_{3}+\left(d_{0}+i d_{1}+j d_{2}+k d_{3}\right) e
\end{aligned}
$$

and if $d \bar{b}$ is denoted by $u_{0}+i u_{1}+j u_{2}+k u_{3}$, then

$$
N(x y)=N(x) N(y)-4\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
u_{1} & u_{2} & u_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
$$

The equality $N(y x)=N(x y)$ is satisfied in A.
A is simple, flexible (i.e. ($a b$) $a=a(b a)$ for every $a, b \in A$) and powerassociative (i.e. every $a \in A$ generates an associative subalgebra), as can be checked directly, but A is not alternative (otherwise C_{2} would be a Moufang loop).

By the generalization of (5) to

$$
(a+b e)(c+d e)=a c+\mu b \bar{d}+(a d+\bar{c} b) e
$$

where μ is real, a class of flexible power-associative algebras is obtained.

References

1. R. H. Bruck, A survey of binary systems (Göttingen, 1958).
2. R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc., 2 (1951), 878-890.
3. L. E. Dickson, Algebras and their arithmetics (New York, 1938).
4. A. Ginzburg, Multiplicative systems as homomorphic images of square sets (Thesis, Haifa, 1959).
5. -_Systèmes multiplicatifs de relations. Boucles quasi-associatives, C.R. Acad. Sci. Paris, 250 (1960), 1413-1416.
6. D. A. Norton, Hamiltonian loops, Proc. Amer. Math. Soc., 3 (1952), 56-65.
7. D. Tamari, Les images homomorphes des groupoïdes de Brandt et l'immersion des semi-groupes, C. R. Acad. Sci. Paris, 229 (1949), 1291-1293.
8. - Représentations isomorphes par des systèmes de relations. Systèmes associatifs, C. R. Acad. Sci. Paris, 232 (1951), 1332-1334.
9. _-_ "Near-groups" as generalized normal multiplication tables, Notices Amer. Math. Soc., 7 (1960), 77.

Technion, Israel Institute of Technology
Haifa, Israel

