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Abstract. This expository lecture surveys recent progress of the stability theory in Celestial Mechanics 
with emphasis on the analytical problems. In particular, the old question of convergence of perturbation 
series are discussed and positive results obtained, in the light of the work by Kolmogorov Arnold and 
Moser. For the three body problem, classes of quasi-periodic solutions and doubly asymptotic (or homo-
clinic) orbits are discussed. 

1. Introduction 

Over the years celestial mechanics has presented scientists with a variety of difficult 
problems challenging to astronomers, numerical analysts and mathematicians. One 
of the most puzzling questions is related to the stability of the solar system and the 
long time behavior of the solutions of the n-body problem which has been attacked 
again and again over the last hundred years. The analytical difficulties of these prob­
lems has to do with the presence of the notorious 'small divisors'. In the last decade 
definite progress has been made in this direction and the main goal of this lecture is to 
report on some of these advances and their significance for celestial mechanics. 
Speaking as a mathematician the emphasis will naturally be on the theoretical aspects 
and much remains to be done in the applications of these results to the realistic prob­
lems. 

We want to point out that the recent work has led to a new concept of stability. It is 
the conventional view that one can delineate some 'blobs' or open regions in phase 
space in which the solutions remain bounded or stable, while outside of such regions 
the solutions escape or behave unboundedly. A sharp mathematical formulation and 
related results were developed by Liapounov. His work refers to dissipative systems, 
however, and is not applicable to the conservative systems of celestial mechanics. The 
recent mathematical work in this area has shown that for Hamiltonian systems this 
crude picture has to be replaced by another model: One finds complicated Cantor 
sets, which we may compare with a sponge, in which the solutions are stable and 
bounded for all time while the solutions lying in the many fine holes of the sponge may 
gradually seep out and become unstable. The filament of these holes is connected and 
give rise to a slow diffusion while the majority of the solutions belong to the solid 
part of the sponge consisting of stable solutions. 

From a physical point of view this model is obviously hard to accept, but one 
cannot escape these conclusions if one idealizes the problem mathematically and 
studies the motion for all time and not only for a reasonable finite time interval. In 
fact, the idealization goes further: We are not talking about the motion of the planets 
under realistic forces but of rigorous solutions of the n-body problem taking into 
account only Newton's force law and referring to mass points with some smallness 
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restrictions on the masses. However, all these restrictions are less severe since the 
theory to be discussed allows for small additional forces as long as they are conser­
vative and time independent, as well as for spherical homogeneous masses. 

The complicated structure of the stability region is due to resonance phenomena 
which occur between the various frequencies cox, o>2,..., con. We speak of resonance, 
whenever one has a relation £j[=i jkcok = 0 with integer A, y25 •••,./„ which do not all 
vanish. While for practical purposes only resonances of small order matter, i.e. when 
0 < l/il + I/2H 1" l/nl is reasonably small, for the mathematical problem of long time 
behavior all these resonances affect the motion over long time. But even the defini­
tion of frequency requires the knowledge of the solution over all time, and a frequency 
is really defined by a limit for f-+oo. A solution, oscillating for a very long time, but 
finally escaping, can at most approximately, but never rigorously, be assigned fre­
quencies. On the other hand the above definition of resonances requires the exact 
knowledge of frequencies and we find ourselves in a vicious circle. 

The way out of this dilemma is to give up the initial value problem which asks for 
the long time behavior of a solution for given initial data and instead to ask for 
solutions which are almost periodic with prescribed frequencies. Geometrically this 
requires that the solutions lie on a torus in phase space and gives rise to a boundary 
value problem. Historically, the expansion methods described by H. Poincare are 
precisely based on such a boundary value problem, the boundary condition expres­
sing the periodicity of the unknown function. 

Therefore we begin with the classical approach to approximate the orbits by 
perturbation series in terms of trigonometric expansions. Poincare's work put these 
techniques on a firm foundation, but it came as a disappointment to many that his 
investigations indicated that these series expansions were divergent. In fact, this was 
the starting point of 'asymptotic expansions' which have proved so useful in fluid 
dynamics and other fields of mathematical physics. It is perhaps the most remark­
able recent discovery that some of these classical series expansions in celestial me­
chanics are actually convergent and give rise to a rigorous description of solutions 
of the n-body problem valid for all time. The convergence proof is based on new 
techniques in functional analysis which are due to Kolmogorov, Arnold and the 
author (Moser, 1973 *). We will describe more precisely the type of expansions whose 
convergence can be established and explain why this result is not in contradiction 
to Poincare's assertion about divergence. 

2. Convergence of Perturbation Series 

A. VARIABLE FREQUENCY EXPANSION 

The main idea of the classical expansion techniques is not to solve in a straightfor­
ward way the initial value problem of integrating the equations with prescribed 
initial data. Instead we seek such initial conditions for which the solutions are pe-

* We refer to this booklet for further information. 
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riodic or quasi-periodic, i.e. remain on a torus in phase space. This leads to a bound­
ary value problem - mathematically speaking - which has very different features 
from the initial value problem. From the practical point of view this amounts to the 
construction of a reference orbit. 

Consider a Hamiltonian, 
oo 

H(x,y,s)=YJ svH(v)(x,y), 
v = 0 

where H°(x, y) = F(x) independent of y, H(x, y, s) of period 2n in yx... ym, and real 
analytic in x, y and e, for xeD, all real y and |s| <e0. Roughly, the goal of Lindstedt's 
method is to find 

S&y,e)=Z £VS(V)(£}>), 
v = 0 

such that 

is independent of rj and where S^ and Sy must be real analytic and of period In in 
^ . . . ^ a n d 

d e t S ^ O . 
A solution to this problem would mean that the canonical transformation (x, y)-+ 

rj = S^ x = Sy, 
leads to a Hamiltonian independent of rj, showing that the system is integrable for 
all small \e\. It is well known that this is not possible, in general, and we require only 
that 

H(Sy,y,e) = <P(Z,e}+0(\Z\2); *(&a) = *0(«) + I * A , (1) 

so that the new Hamiltonian, say #(£, */, )̂, satisfies 

^ = 0^, #„=() for £ = 0, 

and, thus 

£ = 0, !f = #<(0,fi)t+if(0) 

gives rise to particular solutions of the system. These solutions are called quasi-
periodic, with frequencies 

wfc(s) = <^k(0,e), (fc=l,...,n), 

which are, in general, dependent on e. 
We describe three types of standard expansion methods: (i) a variable frequency 

expansion, (ii) a fixed frequency expansion, and (iii) a fixed frequency ratio expansion. 
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For (i) assume that x° can be chosen so that the quantities, 

cok = FXk(x°), 

are rationally independent, and set 

S™(S,y) = (x° + Z,y), 

S(v)(£, y), period In in y and linear in £ for v^ 1. 

Inserting the series of S into Equation (1) we get by comparison of coefficients of av, 

(Fx(x0 + a s r ) = ^(v) + ^ ^ y ) + O(|^|2), 
where g(£, y) is a known function, determined by S(0),..., S(v_1), # (0),..., 0(v'1\ Sep­
arating the coefficients of £k by setting 

9 = 9o(y)+ t gkiy)Zk + 0<\£\% S^ = S^(y) + £ Sj?(y)Zk, 

we get 

(co,S%)=W+g0(y), 
(a),SiV)+(Fw,(x0), SSJJ-^+ftty). 

It is well known how to solve such equations for the functions Sk
v) and constants <P[y) 

(k=0,1,..., n) with the help of Fourier series, provided the frequencies a>=(cox,..., con) 
are not only rationally independent but also satisfy a condition of the type, 

io>)is*ci/r/x, (4) 
for all integer vectors7 = (/^ .. . ,jm)^0 with some positive constants c and /*. We have 
to check that the mean value of the right-hand side vanishes, which is achieved by 
choice of $(

0
V) and <P(

k\ thus determining 4>(£, e) = #o + X*^*£* *n (*)• The resulting 
expansion approximates a motion with frequencies, 

G>*(fi) = **(e), (fc=l,...,n), 

which generally depends on e. Therefore we refer to it as variable frequency expan­
sion. Incidentally, S is determined up to an additive function a(£, e) independent of 
y, and S can be normalized uniquely by the requirement that 

I (S-S°) dy = 0. 

This type of expansion* was described in Poincare's Methodes nouvelles de la 
mecanique celeste, Vol. 2, and attributed to Lindstedt. 

* An article by G. A. Krasinsky contained in the Russian book Minor Planets (edited by N. S. Samoylova-
Yakhontova, Nauka, Moscow, 1973), in Chap. VI, Section 1, contains a similar expansion. The author 
is grateful to Professor Krasinsky for pointing out this reference. 
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B. FIXED FREQUENCY EXPANSION 

The above expansion has the shortcoming that the irrationality conditions (4) get 
destroyed for e^O. But it is easy to modify the above procedure so as to have the 
frequencies cok independent of s; in fact, such a procedure was also described in 
Poincare's Methodes nouvelles de la mecanique celeste, Vol. 2. One simply replaces 
Shy 

S+£ <xk(e)yk = S + (<x,y); a(0)=0. 

Then the above procedure is the same except that S(v) has to be replaced by 5(v) + 
+ (a(v), y), so that Equations (3) take the form 

(co,S%) + (FXkX(x<>)9 S% + ^)=gk(y), 

where we set ^ v ) = 0 to assure that the frequencies are independent of s. To make the 
mean values equal on both sides we use the constants a(v) = (a(!V),...,aj,v)) in the last 
n equations, assuming that 

det(Fxx(x°))*0, 

and $(
0
v) in the first equation. Then the above equation can again be solved uniquely 

if we require 

S{v)dy = 0, for v = l ,2 , . . . , (6) 

yielding the fixed frequency expansion. 

C. FIXED FREQUENCY RATIO EXPANSION 

Actually, in order to preserve the irrationality conditions for small e it suffices to 
keep a)k(e) = A(e)cok(0) proportional to themselves, so that the frequency ratio is in­
dependent of £. We use the extra freedom to make 

#(0,e)=F(x°), 

independent of e, ensuring that the resulting solutions lie on a fixed energy surface 
H(x, y, s)=F(x°). To obtain such an expansion we set 

4>(
0
V)=0; 4>iv) = >l(v)o>k, for v = l ,2 , . . . . 

The resulting equations for S(v), a(v) and A(v) are, instead of (5), of the form 

(co,S<ov>) + (co,or(v>) = ^o, 
(co, S%) + (FXkX(x% S% + ^) = ^G>k + gk. 

To balance the n 4-1 mean values of these equations we use the n +1 constants 
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oc[v\...,aj,v) and X(v\ and need the assumption that 

/ 0 a) \ 
det # 0 . 

\(oT Fxx(x°)J 

Under this assumption again S(v), a(v) and A(v) are uniquely determined if normalized 
by (6). 

These expansion procedures have been known since the last century. Also the 
solvability of Equations (3) or (5) at each step has been known for a long time under 
an irrationality condition (4) showing that all coefficients of ev are well defined by 
convergent Fourier series. However, the convergence question of such series for small 
positive \s\ is a much more difficult problem as it relates to a nonlinear system of 
differential equations. The results of the work by Kolmogorov, Arnold and the author 
imply, in fact, that the fixed frequency expansion and the fixed frequency ratio ex­
pansions both converge for |8|<e0 where e0 is a positive number depending on the 
given Hamiltonian and the constants c and \i in (4), but not on co itself. Thus these 
expansions do not only yield an approximation for solutions useful for long time 
intervals but the existence of solutions valid for all real time which can be used as 
reference orbits. On the other hand the variable frequency expansion can, in general, 
not be expected to converge because of the violation of the nonresonance conditions 
(4) for arbitrary small |e|. Thus the crucial feature for the convergence is that the non-
resonance conditions are maintained under perturbation. At first such conditions 
can be imposed only on the formal expansion; the convergence of the resulting series 
ensures that these formal expansions actually belong to existing solutions. Inciden­
tally, the convergence proof does not succeed with the conventional majorant method 
but a new rapidly convergent iteration process. A posteriori, one can identify the 
resulting solutions with those obtained by formal expansion (Moser, 1967). Presently 
the relevant existence theorems are being derived from an abstract implicit function 
theorem in Banach spaces (Zehnder, 1974). 

3. Applications 

The above results, and their extensions, have a great many applications in celestial 
mechanics. We list a few: 

(a) The plane restricted three-body problem. It is possible to give bounds for the 
eccentricity valid for all time, i.e. given <5>0 one can establish for the eccentricity 6, 

e(0)-d^s(t)^e(0) + S for all r, 

if the mass ratio fi is small enough. The periodic solutions of the first kind can be 
shown to be stable for small \i if resonances of order < 3 are avoided. The stability 
of the equilibria L4 and L5 can be established, provided one has linear stability and 
excludes 3 more exceptional values for \i. 

More generally, one finds stability criteria for equilibria and periodic solutions for 
systems of two degrees of freedom. 
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(b) For systems of higher degrees of freedom such stability criteria have not been 
found except in the trivial case where the Hamiltonian is positive or negative definite. 
However, another weaker concept of 'stability in measure' can be verified: An equi­
librium solution is called stable in measure if for any e > 0 any neighborhood (in 
phase space) contains an open set V, containing the equilibrium, and a measurable 
set S c V invariant under the flow such that 

m(V-S)<em(V). 

Here m denotes the Lebesgue or Liouville measure in phase space. In other words, 
most solutions starting in V will remain in V for all time, while no assertion is made 
about the exceptional set V—S. This is decidedly a weaker concept of stability than 
the usually accepted one due to Liapounov where it is required that S= V. But it has 
the advantage that one can give a stability criterion in terms of inequalities on finitely 
many coefficients of the Hamiltonian. Moreover, one can choose the set S in such 
a way that all solutions in S are given by quasi-periodic solutions obtained by the 
series expansions described above. 

Of course, there are a great number of different stability concepts but it is a basic 
requirement of stability that the entire orbit changes little if the initial data are 
changed by a small amount. In addition, it is of importance that the orbit changes 
little under small perturbation of the system of the differential equation, at least if 
one restricts oneself to the class of Hamiltonian systems of differential equations. This 
latter requirement reflects simply that the differential equations, or some parameters 
in them, are not known with absolute precision but only to a limited degree of accuracy. 
To put this into more mathematical terms, we should like to aim at a stability concept 
in which one can predict the orbit within narrow bounds for initial data in an open set 
V in phase space and all Hamiltonian systems in an open set iV of Hamiltonian func­
tions in an appropriate topology. The latter condition would be satisfied, for example, 
if our desired stability criterion imposes only finitely many inequalities on finitely 
many derivatives of the Hamiltonian and is independent of the 'tail' of the expansion. 

To summarize the result presently known: There are such stability criteria for 
Hamiltonian systems of n ̂  2 degrees of freedom, but for n ̂  3 degrees of freedom it is 
at present not possible to give a stability criterion of the above type except in the trivial 
case of an equilibrium with definite Hamiltonian. But one does have such criteria for 
stability in measure. 

(c) The results are applicable to the three-body problem and yield Cantor sets of 
positive measure containing quasi-periodic motions, provided two masses are much 
smaller than the third mass. The solution constructed are close to circular orbits with 
zero inclination and a large ratio of the major axes. Thus the solutions in the set S are 
bounded for all time and never experience collisions. Since S has positive measure one 
concludes that the flow of the three-body problem is not ergodic. On the other hand 
the complement of S is a connected set and solutions arbitrarily close to one in S may 
become unbounded. This result is due to Arnold (1963) who also considered generaliza­
tions to the n-body problem for n > 3. 
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4. Random Motions, open Problems 

The weakened type of stability concept discussed above brings up the question about 
the behavior of the solution in the exceptional sets which are frequently called regions 
of instability. Although little is known about these solutions there are results showing 
the presence of orbits of very erratic behavior. In fact, their long time behavior is 
topologically related to that of the shift of doubly infinite sequences. Such orbits for 
the restricted three-body problem were discussed by Sitnikov (1960) and Alekseev 
(1970). This topic is discussed at length by Moser (1973) and we forego a further dis­
cussion here. Instead we list a few problems showing how little is known about the 
n-body problem, in spite of the progress stated. 

(1) Although the existence theorems mentioned above give a finite range for the 
perturbation, say, |a| <fi0, in which quasi-periodic solutions can be found this range 
seems to be much too pessimistic. Numerical calculations (especially by Henon and 
his collaborators) indicate that a realistic range is several magnitudes larger. So far 
this phenomenon is not understood. In particular, what is the dependence of e0 on n, 
the number of degrees of freedom? 

(2) Can one find stability criteria for generic Hamiltonian systems of n^ 3 degrees 
of freedom in the sense of Liapounov, i.e. without exceptional regions? For example, 
is there a criterion for stability of an equilibrium solution in terms of finitely many co­
efficients of the Taylor expansion of the Hamiltonian? At present the expectation is 
that this question has a negative answer which would justify the use of the weaker 
concept of stability in measure. 

(3) Are there solutions of the n-body problem which become unbounded as t ap­
proaches a finite time t* ? Sundman's study showed that this is impossible for n < 3 but 
it has not been excluded that such a solution exists for w^4. 
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DISCUSSION 

D. Saari: I would like to comment on your last problem. As you know, if noncollision singularities do 
exist in the n-body problem, then n is greater than 3. 

J. Moser: Yes, indeed. 
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J. Palous: Since an infinite number of rational numbers exist we may conclude that an infinite number 
of resonant periodic orbits exist. Does this mean the existence of ergodic orbits? 

J. Moser: Yes. There exist resonance regions for each rational number in some interval, and for each 
of these regions the complicated motion modelled by the sequence shift will, in general, take place. Un­
fortunately, the set of these orbits form a set of measure zero. Whether there exist generic systems having 
a region of positive measure of ergodicity and also quasi-periodic motion is not known. 

L. Perek: With a student of mine, we got interested in studying in some detail the boundary of ergodic 
orbits in a problem of stellar dynamics. Instead of finding a simple boundary we found a very complicated 
outline of many lobes. 

J. Moser: Thank you. 
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