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SUMMARY

A population with N monoecious individuals, and having two alleles,
is considered. The problem of calculating the fixation probability of a
particular allele under random fluctuation of selection intensities is re-
examined, employing finite Markov chain methods. An approximate but
general expression for this probability is obtained and the results obtained
by previous workers are shown to be special cases of this result.

1. INTRODUCTION

A problem in population genetics, which has received considerable attention in
recent times, is that of the computation of the fixation probability of a gene and,
along with it, the average time until its fixation. This is usually dealt with in two
different ways. On the one hand, there is the diffusion approximation method,
wherein the gene frequency is treated as a continuous random variable, between
0 and 1, and the time parameter of the underlying Markovian process is also taken
as continuously varying. This method involves the use of the diffusion equations
of Kolmogorov (1931), a mode of attack initiated for genetical problems by Fisher
(1922), and the conditioned diffusion equations dealt with by Ewens (1973) and
Narain (1974). On the other hand, a more exact treatment is that by a finite Markov
chain involving the use of transition matrices. This method is discussed extensively
in Kemeny & Snell (1960). Whichever of the two approaches is adopted, there is a
basic question of whether the selection coefficients attached to the genes are con-
stant over time or are fluctuating randomly. In regard to the latter, some results
have recently been published by Jensen & Pollak (1969), Ohta (1972), Gillespie
(1973) and Jensen (1973) as well as by Karlin & Levikson (1974). By and large, these
results are based on the method of diffusion approximations and iteration pro-
cedures on the computer using transition matrices. According to Ohta (1972), if the
ratio of the mean and variance of the selection coefficient is small, a mutant, even if
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selected against, becomes fixed in the population like a selectively neutral mutant.
Contrary to this result, Jensen (1973) showed that the variability in the selection
coefficient increases the chance of fixation of a rare gene. The problem was, however,
attacked in a much more comprehensive manner by Karlin & Levikson (1974). In
particular, they formulated a haploid model allowing for variability in the selection
coefficients of both the types as well as for correlation between the two and showed
that the variance in selection expression reduces and mitigates the mean effects of
selection differentials, so that the fixation probability of the abundant allele is
diminished. It seems that these different results on the fixation probability are
probably due to the difference in the forms of the mean as well as variance functions
for the change in gene frequency used in the diffusion approximation approach.
However, if one does exact computations on the finite Markov chain, it seems that
the choice of the appropriate mean and variance functions could be easily, as well
as accurately, resolved and that an algebraic expression for the fixation probability
could be obtained. According to Karlin & Levikson (1974), the work of Ohta (1972)
suffers from an incorrect mean function. In this paper, it is shown that not only the
mean but the variance function also needs correction, particularly for extremely
small populations. An approximate but general expression for the fixation prob-
ability of a gene, in the haploid case, allowing for the variability in the selection
coefficients of both the types as well as for the correlation between the two, is also
derived, and the results obtained by the previous workers are shown to be special
cases of this result.

2. THE MODEL

Consider a haploid population of 2N genes, corresponding to a monoecious
population of individuals, of constant size N, reproducing in discrete generations.
Let there be two alleles A and a with fitness coefficients in generation n as follows:

A a

l+«i l+s2- (2-l)

The selection intensities, s1 and s2, are assumed to fluctuate over time in a random
manner with identical distribution functions in all generations and independence
between generations. The means, variances and covariances of these variables are

E(Sl)=slt E(s2) = s2, (2.2)

var (Sj) = vlt var (s2) = v2, (2.3)

cov («!, s2) = r, where \r\ < VK^)- (2-4)

We are virtually considering the haploid model of Karlin & Levikson (1974) but
with the difference that means of the selection effects and their variances and
covariances are not taken to be of the order of magnitude of 1/2N.

The frequency of the A -gene in generation n, given its frequency before selection
was pt = i/2N and given the selection parameters (sv s2) is

-Pi) (H-«t)/[l +s2 + K - 8 2 ) P i l (2.5)
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According to the standard Wright-Fisher Markov chain process, the distribution
of the proportion of A -genes in generation n follows the binomial distribution with
parameters (2N, pf*). In other words, the transition probability P y representing
the conditional probability that there arej A -genes out of 2N genes, given that there
were i A -genes in the population in the previous generation, is given by

(f) 1 - 2 > i n ) ] w - ' , (2.6)
where i,j = 0,1,2, ...,2N.

The finite Markov chain, thus generated, could be studied by using results of
Kemeny & Snell (1960). However, Narain & Robertson (1969) gave an analytical
treatment of such processes in a genetic context and we follow the same procedure
here.

3. EXPANSION OF THE TBANSITION PROBABILITY

Treating Pif as a function of (s1; s2), we expand it, by Taylor's expansion, as a
series in two variables. Neglecting terms involving powers and products of sx and s2

greater than 2, we get

where P«(0) = ^ p\(\ - * , ) « " , (3.2)

a1 = 2N(pi-pi), (3.3)

a2= -2N(pi-pi), (3.4)

6U = N[(2N - 1) (p, -Pif -Pi(l -Pj) - 2pi(pi -Pt)l (3.5)

6M = 2N[-(2N-l)(pj-pi)*+pi(l-pj)-(l-2pi)(pi-pi)l (3.6)

622 = N[(2N - 1) (p, -Pif -Pj(l -Pf) + 2(1 -Pt) (p, -Pi)]. (3.7)

If we now compute the expectation of (3.1) with respect to the distribution of
*! and s2, we have, in view of (2.2), (2.3) and (2.4),

-58) (1 -s z ) +v2-r}(p,-Pt)

(3.8)

where the expectation is taken over the distribution of sx and s2. Because the
selection intensities are independent between generations and have the same distri-
bution in each generation, the expression (3.8) holds as a one-step transition
probability for any n. In other words, a Markov chain characterized by (3.8) is
homogeneous in time.
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4. MEAN AND VARIANCE FUNCTION FOR THE FREQUENCY OF A

In order to obtain the various moments of the frequency of the .4-gene in the next
generation, we proceed to obtain expressions for the expected values of expressions
j(j — 1)... (j — k + 1), given pi = i/2N. Such expectations will be denoted by

( 2N\J
-pt)(v1-va)l (4.1)

The gene frequency expected in the next generation on the basis of binomial
sampling is therefore obtained by putting k = 1 in (4.2). Denoting it by p\, we get

pf = Pi + Et(Ap) = Pi +Pi(i -p^

V + v 2 r v ^ (4.2)

where Et(&p) is the expected mean change in the gene frequency in one generation,
given that the frequency is pt = i/2N.

Putting k = 2 in (4.1) and using (4.2), we get the variance of the change in gene
frequency per generation, given that pi = i/(2N), V^Api), to the same degree of
approximation, as

- 2r)Pi(2- 3Pi) + (v2-r)(l-2Pi)] + (Vl + vz-2r)p\{i -Pif. (4.3)

Expressions (4.2) and (4.3) can also be derived directly by manipulating expecta-
tions. An alternative expression for PJ[Ap], in terms of pt given by (4.2), can be
written as *tt_n*\ / i \

V£W- 2N +(1-2N) K + «2 -2^ ! ( l -p f )
2 . (4.4)

It is evident from the expressions for E^Ap) and Vt[Ap] derived above that random
fluctuations in selection intensities affects both of them. These expressions can be
compared with (3.7) and (3.8) on page 392 in the paper by Karlin & Levikson (1974)
which may be written in the notation of this paper as

= pt( 1 -Pi) [sx - 5, - £K - v2) + !(»! + vt - 2r) (1 - 2Pi)]

and

respectively. It is clear from (4.2) that our expression for E^&p) has an extra term:
— (sj — s2) («2 + («i — *a)Pi) P<(1 —Pi)-1° expression (4.4) there are two types of terms
associated with the non-additivity of the parts of TJ(Ap) that arise if we consider
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separately random changes due to (i) random sampling of gametes and (ii) random
fluctuations in selection. In all the studies made so far, i.e. by Kimura (1962), Ohta
(1972), Jensen (1973), as well as Karlin & Levikson (1974), this non-additivity is
ignored.

Apart from this, the expression for V{(Ap) needs to be reconsidered, even when
there is only random sampling of gametes and no random fluctuations in selection.
With non-random selection (vl = v2 = r = 0) the expressions for Et(Ap) and Vt(Ap)
become E^p] { ^ h ) ( J ^ { h h ) p M l -Pi)i (4.5)

(4.6)

It may be observed that the usual variance due to binomial sampling is strictly
true only when E^Ap] = 0, i.e. the selectively neutral case. Even when the changes
in gene frequency per generation due to selection are very small so that squares of
Et[Ap] can be neglected, the binomial sampling variance holds only when pt = \.

5. FIXATION PROBABILITY OF THE 4-GENE
Let u(Pi) be the fixation probability of the A -gene, given that initially at t = 0,

it had frequency ^ , so that the total expected change in the frequency at the limit is

•&< = **(Pi)-2><- (5.1)

Narain & Robertson (1969) showed that the vector h = (Llt L2,..., L2N_1)' is
obtained by operating the matrix T = (I — Q)"1 on to the vector

E(Ap) = [E^Ap^E^Ap), ...,E2N_x{Ap)]',

where I is the identity matrix and Q is the matrix of transition probabilities when
we consider transitions between the transient states only; i.e. i,j = 1,2,..., 2N — 1.
Expressed in powers and products of st and s2 up to terms involving {sj2, {s2}

2 and
{s^} , T is given by

T = To + 8l To Ai To + s2 To A2 To + s\ [To B n To + To Ax To Ax To]

+ Sl 82[T0 A2 To Ax To + To B12 To + To Ax To A2 To]

+*|[T0 B22 To + To A2 To A2 To],

where To = ( I - Q ) " 1 and O0. A1( A2, B n , B12 and B22 are (2IV-1) x (2N- 1)
matrices with i—jth elements Pif(0), ^^^(0) , a 2 ^ (0) , 6uPw(0), 612i^;-(0) and
b22Pij(0) respectively. Allowing for random variations insx and s2, as before, we get

K, «8(
T) = To + (h ~ h) (To Ax To) + (Vl + 5f) [To B u To + To Ax To Ax To]

+ (r + 5^,) [To A2 To A1 To + To B12 To + To A1 To A2 To]

+ (», + «|) [To B22 To + To A2 To A2 T J . (5.2)

The expression E(Ap) in powers and products of 81 and «2 up to terms involving
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{s^2, {s2}
2 and {st s2} and allowing for random variations in sx and s2, in the same

manner as before, is obtained by converting (4.2) into vector notation as

(5.3)
where vectors

Xi = [Pitt -Pl),P2(l -P2), ••;P2N-l(1 -P2N-l)Y, (5-4)

x 2 = [Pi(l -Pi) (1 - 2pi).2>s(l -Ptl (1 - 2pa)»-»3»2w_i(l -J»8w-i) (1 - 2p«iv-i)]',

(5.5)

correspond to the two eigenvalues of Qo given by

(5.6)

-2/2N). (5.7)

Operating (5.2) on to (5.3) then gives, to the same degree of approximation,

L = («1-5,)(Tox1) + (S1-S,)«ToA1Tox1)

- l(»i + »!) {T0(X! - x 2 ) } - (r + «!«,) (Tox2) + !(»„ + «1) {T0(Xl + x2)}. (5.8)

Using Table 1 of Narain & Robertson (1969), while noting that A1 is twice as
large as 2Q;, we obtain ^ ^ = ^ ^ (fi g )

/ 4JVT3 \
ToAiTo^ = {jxz^j AlX2, (5.10)

( 2^2 \( 2^2

3F^l
With use of (5.9) to (5.11), the expression (5.8) becomes

L = 2 i V ( S l - 8 2 ) ^ i ^ j X l +

N2

BN^l i + v2-2r)*2-N{v1-v2)x1. (5.12)

With the non-random selection model, vx = v2 = r = 0, so that if Lo denotes the
corresponding vector of the expected change in the frequency of the A -gene at the
limit, we have

Lo = 2tf&-S.) (l - ^ - 2 ) x1 +
 J y ^ 1

1 ) ft-B.J'x,. (5.13)

We can then express (5.12) as
N2

L = Lo - i^(«! - »,) xt + 3 j y _ 1 K + w2 - 2r) x2. (5.14)

We can now examine L for three cases considered by previous workers on the
problem of random variations in selection intensities.
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(a) Asymmetric case

s2 = v2 = r = 0, vx > 0. The changing environment allows variability only in the
selection coefficient attached to the A -gene while its counterpart a-gene maintains
the same constant selective value independent of the environmental background.

W e h a v e N*(4N-1)
Lo = 2 ^ ( 1 -51/2)*i + 3 ^ _ 1 ' «?x2, (5.15)

L = L0-Nv1 [Xl- ( g ^ j ) x2] . (5.16)

If the initial frequency of A is pt = i/2N, these expressions reduce to

i(l-Pi)(l-2Pi), (5.17)

This shows that the fixation probability u(Pi) under random fluctuations in sx is
always smaller than its value Mo(Pi) under non-random selection. This is in con-
formity with the result of Karlin & Levikson (1974) obtained from the diffusion
approach. However, they do not give any explicit formula for this case. We can,
however, give such a formula by assuming N to be very large while iVsj and Nv^^
remain constant. The expressions (5.17) and (5.18) then give

«(ft) = Pi + 2(Ns1)pi(l -PtHftNs^Ptil -Pi) (1 -2p<)-f(M>i)ft(l -p\),
(5.19)

showing that the fixation probability is now a function of pt, Nst and iVr«1.For
extremely small populations we have to use (5.18) in conjunction with (5.17).

(b) Symmetric case in the sense of Karlin & Levikson (1974)

In this case sx = s2, vx = v2 = v > 0, r = 0. Thus (5.13) and (5.14) respectively
r e d u C e t O Lo = 0, (5.20)

2N2

For the initial frequency p{, we get

uo(pi)=pi, (5-22)
2N2v

(ip)(l2pi). (5-23)

This shows that the fixation probability is smaller than pt for pt > \ and greater

than Pi ii Pi < \, which is consistent with what was found by Karlin & Levikson

(1974). For large N and small v such that Nv remains constant, we get the

approximation ^ =Pi + UNv)p^-Pi){i-2pi) (5.24)

giving that the fixation probability is a function of pt and Nv.
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(c) Symmetric case in the sense of Jensen & Pollak {1969)

We now have s1 = s2 = s, vx = v2 = v > 0, r = —s^ = — s2 ^ — v, which would
result if either s1 > 0, s2 = 0 or sx = 0, s2 > 0 in every generation. Expressions (5.13)
and (5.14) now take the form

L o = 0 , (5.25)

2N* ' ' " • (5.26)

For initial frequency pit we get uo(pt) = pi as in Case (b) but ufjp^ becomes

2N2(v + s2

which is the same as (5.23) except that v is replaced by (v + s2). Thus we have
essentially the same result as in case (6). Once again u(pt) > pt if pi < \ and
u(Pi) < Pi fo*Pi > i- This agrees with what was found by Jensen (1973). For large N
and small v as well as s such that Nv and Ns remain constant, the fixation probability
is now a function o{pi} Ns^ and Nv.

Going back to the general expressions (5.13) and (5.14) we can derive results
which cover all the three cases mentioned above.

If the initial frequency of the ^4-gene is pi = i/2N, (5.13) and (5.14) reduce to

-Pi) (1 -2p<), (5.28)

-2r)(l-2pi)]pi(l-pi). (5.29)

For large values of N and small values ofHlt s2, vlt v2 and r such that N(s1 — s2), Nvlf

Nv2 and Nr remain constant, we get the approximations:

-s2)^pi(l-pi)(l-2p), (5.30)

v1 + Nv2-2Nr)pi-(2Nv2-Nv1-Nr)]pi(l-pi).
(5.31)

We thus find that u(Pi) is smaller or larger than uo(pf) depending upon whether pt is
less than or greater than (2v2 — vx—r)j{v^ + v2 — 2r) because (vt + v2 — 2r) > 0 in view
of (2.3) and (2.4). If we define

a = {2v2-vx- r)/(v1 + v2-2r) (5.32)

we find that, in general, the fixation probability of the A -gene, under random
fluctuation in selection intensities, is determined solely by pt, N(s1 — a2),
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fa + vz — 2r) and a. It is thus given by

2{N(s1-s2)}pi(l -pJ+KNfr-hWpAl -pt) (l-2pt)

(v1 + v2-2r)}Pi{l-pi)(a-Pi), (5.33)

where a is given by (5.32).
While expression (5.33) is only approximate, it is a generally applicable explicit

expression that holds regardless of the nature of the joint distribution of st and s2 in
a generation. Previous authors have only been able to obtain an explicit solution
in the symmetric cases. Moreover, expression (5.29) is valid for any population size,
however small, with the restriction that we neglect moments of the third and higher
orders in the selection intensities. This appears to be a new result in the literature.
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