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STATIONARY PARTITIONS
AND PALM PROBABILITIES

GÜNTER LAST,∗ Universität Karlsruhe

Abstract

A stationary partition based on a stationary point process N in R
d is an R

d -valued
random field π = {π(x) : x ∈ R

d } such that both π(y) ∈ N for each y ∈ R
d and the

random partition {{y ∈ R
d : π(y) = x} : x ∈ N} is stationary jointly with N . Stationary

partitions may be considered as general versions of the stationary random tessellations
studied in stochastic geometry. As in the special case of the Voronoi tessellation, a
stationary partition can be used to relate the underlying stationary probability measure
to the associated Palm probability measure of N . In doing so, we will develop some
basic theory for stationary partitions and extend properties of stationary tessellations to
our more general case. One basic idea is that the stationary measure is (up to a shift)
a weighted version of the Palm measure, where the weight is the volume of the typical
cell. We will make systematic use of a known modified probability measure. Finally,
we use our approach to extend some recent results on the shift coupling of the stationary
distribution and the Palm distribution.
Keywords: Point process; Palm probability; stationary partition; stationary tessellation;
stochastic geometry; shift coupling
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1. Introduction

Let N be a (simple) stationary point process in R
d defined on a probability space (�, A, P).

By a stationary partition (based on N ) we mean an R
d -valued (measurable) random field

π = {π(x) : x ∈ R
d} such that the field {π(x) − x : x ∈ R

d} is jointly stationary with N and
such that π(x) ∈ N for all x ∈ R

d , whenever N �= ∅. A simple but important example is the
Voronoi partition, where π(x) is the point in N closest to x (chosen as the lexicographically
smallest if there are several such closest points). In this case the random variables π(x) are
functions of N . In general, we do not assume anything about the joint distribution of N and
π , except joint stationarity. For x ∈ N , we refer to C(x) := {y ∈ R

d : π(y) = x} as the
cell ‘centred’ at x. The system of cells is a (random) partition of R

d into Borel sets. We do
not require that x ∈ C(x), and for some of our results we can even allow some of the cells
to be empty. Apart from requiring measurability of π we will impose no further restrictions
on the topological or geometrical structure of the cells. Stationarity implies that the statistical
properties of {C(x) : x ∈ N} and the shifted partition {C(x) + z : x ∈ N} are the same
for all z ∈ R

d . If the cells are all convex and compact and have nonempty interiors, then
{C(x) : x ∈ N} is just a stationary tessellation as studied in stochastic geometry (see, e.g. [11]
and [12]).
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Our work has been largely motivated by two nice recent contributions to point process theory.
Based on the Voronoi tessellation, Thorisson, in Chapter 9 of [14], provided an extensive and
thorough discussion of the relationships between stationarity (as distributional invariance under
all shifts) and point-stationarity (as distributional invariance under so-called bijective point-
shifts). Holroyd and Peres [3] showed that an ergodic point process N can be shifted to one
of its points in such a way that the resulting process follows the Palm distribution of N . The
remarkable fact is that this shift can be chosen to be a measurable function of N .

In Sections 4–8 we will extend many of the results of Chapter 9 of [14] from the Voronoi
tessellation to general stationary partitions. In doing so, we will develop some basic theory for
stationary partitions and generalize properties of stationary tessellation (see [11] and [12]) to
our more general case. Moreover, we will use our approach to extend and complement some of
the results of [3]. It is one of the aims of this paper to show that stationary partitions provide a
good framework for accommodating all these results. Moreover, the refined Campbell theorem
for stationary point processes will enable us to give very short proofs.

We will now give a more detailed description of the contents of the paper. Section 2 introduces
stationary partitions in a purely deterministic framework. The probabilistic setting (taken from
[8]) is established in Section 3. It allows us to treat stationary marked point processes or
random fields that are stationary jointly with the point process N . Palm (probability) measures
are introduced in Section 3. Section 4 shows how a stationary partition can be used to relate
the stationary probability measure to the Palm probability measure. The basic idea is that the
stationary measure is (up to a shift) a weighted version of the Palm measure, where the weight
is the volume of the cell C(0). Conversely, the Palm measure is (again up to a shift) a weighted
version of the stationary measure, where the weight is the inverse of the volume of the cell,
V (0), containing the origin 0. Although these are well-known and oft-investigated phenomena,
[9] was perhaps the first paper that has rigorously introduced this change of measure in the
context of marked point processes on the real line. We will derive these results from just one
fundamental formula (see Theorem 4.1). It is a pleasing fact that this ‘master formula’ is a very
simple consequence of the refined Campbell theorem. Section 5 contains a brief discussion of
modified Palm probability measures as introduced in [5, p. 339] (see also [10] and [14]). While
the Palm probability measure of N can be interpreted as the conditional probability given that N
has a point at 0 (an event that actually has probability 0), its modified version describes the
underlying stochastic experiment as seen from a randomly chosen point of N . Both concepts
agree if and only if the sample intensity of N is almost surely constant and, in particular, the
underlying probability measure is ergodic. Section 6 provides conditional counterparts of the
results in Section 4, and Section 7 deals with generalized stationary partitions in which only
the members of some random set (jointly stationary with N ) are allocated to the points of N .
Section 8 shows how a stationary partition can be used to construct a stationary point process
from a point-stationary one.

A stationary partition is balanced if each cell has the same volume. The spatial ergodic
theorem then implies that this volume must be the inverse of the sample intensity of N (see
Proposition 9.1). It was proved in [3] that balanced stationary partitions do exist if N is ergodic.
By an easy generalization of the arguments in [3], we will show in Section 10 that this is also
true without ergodicity. In fact, the stationary partition can be constructed to be a measurable
function of N . Theorem 9.1 shows that, if π is balanced, the shifted process N − π(0) has the
modified Palm distribution. For the Palm distribution, such an N -measurable shift coupling is
possible if and only if the sample intensity is (almost surely) a constant (cf. Proposition 9.1 and
Theorem 10.1). We finish the paper with some comments on shift couplings, in Section 11.

https://doi.org/10.1239/aap/1158684994 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158684994


604 • SGSA G. LAST

2. Stationary partitions

In this paper all random elements are defined on a measurable space (�, A) equipped with
a measurable flow θx : � → �, x ∈ R

d . This is a family of measurable mappings such that
(ω, x) �→ θxω is measurable, θ0 is the identity on �, and

θx ◦ θy = θx+y, x, y ∈ R
d , (2.1)

where, here and below, ‘◦’ denotes composition.
We let N denote the space of all locally finite subsets ϕ ⊂ R

d equipped with the σ -field N
generated by the mappings ϕ �→ ϕ(B) := card(ϕ ∩ B), B ∈ Bd . Here Bd denotes the Borel
σ -field on R

d . We will identify ϕ ⊂ R
d with the associated counting measure. A (simple) point

process on R
d (see, e.g. [4]) is a measurable mapping N : � → N . It is said to be adapted to

the flow, or stationary, if

N(ω, B + x) = N(θxω, B), ω ∈ �, x ∈ R
d , B ∈ Bd , (2.2)

where we write N(ω, B) := N(ω)(B), for ω ∈ � and B ∈ Bd . Throughout the paper N will
denote a flow-adapted point process. According to (2.2), we may think of θxω as ω shifted by
the vector −x.

Example 2.1. Consider the measurable space (N , N ) and define θxϕ := ϕ − x for ϕ ∈ N and
x ∈ R

d . Then {θx : x ∈ R
d} is a measurable flow and the identity on N is an adapted point

process. If P is a stationary probability measure on (N , N ), then we call the probability space
(N , N , P) a canonical space for stationary point processes.

A stationary partition (based on N ) is a measurable mapping π : �×R
d → R

d that satisfies

π(ω, x) ∈ N(ω), ω ∈ �, N(ω) �= ∅,

and is covariant, i.e.

π(θyω, x − y) = π(ω, x) − y, ω ∈ �, x, y ∈ R
d . (2.3)

For convenience we also assume that π(x) = x, x ∈ R
d , whenever N = ∅.

If π is a stationary partition, then we define

Cπ(ω, x) = {y ∈ R
d : π(ω, y) = x}, ω ∈ �, x ∈ R

d . (2.4)

Note that Cπ(ω, x) = ∅ whenever x /∈ N(ω) �= ∅. The system {Cπ(ω, x) : x ∈ N(ω)} forms
a partition of R

d into measurable sets, provided that N �= ∅. Although we do not make any
topological or geometrical assumptions, we refer to Cπ(ω, x) as the cell with (generalized)
centre x ∈ N(ω). We do not assume that x ∈ Cπ(ω, x), and some of the cells might be
empty. A stationary tessellation as defined in stochastic geometry is then a stationary partition
for which the cells are compact convex sets with nonempty interior (see [11] and [12]). Also,
we write

V π(ω, y) := {z ∈ R
d : π(ω, z) = π(ω, y)}

for the cell containing the site y ∈ R
d , and note that

V π(ω, y) = Cπ(ω, π(ω, y)). (2.5)

https://doi.org/10.1239/aap/1158684994 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158684994


Stationary partitions and Palm probabilities SGSA • 605

Whenever there is no risk of confusion we will omit the upper index, ‘π ’. In accordance with
the language of random variables, we will also most often suppress the explicit dependence
on ω. For instance, Cπ(x) then actually refers to the mapping ω �→ Cπ(ω, x).

The covariance property of a stationary partition π implies that, for any ω ∈ � and any
x ∈ R

d ,

C(θyω, 0) = {z : π(θyω, (z + y) − y) = 0}
= {z : π(ω, z + y) = y}
= C(ω, y) − y (2.6)

and, more generally,

C(θyω, x) = C(ω, x + y) − y, ω ∈ �, x, y ∈ R
d . (2.7)

Similarly,
V (θxω, 0) = {y : π(ω, y + x) = π(ω, x)} = V (ω, x) − x.

Example 2.2. For any ϕ ∈ N \ {∅} and any x ∈ R
d , we let R1(ϕ, x), R2(ϕ, x), . . . be the

points of ϕ ordered according to increasing distance from x. Should some points of ϕ be the
same distance from x, we use the lexicographic order between them. If card(ϕ) = m < ∞
then we set Rn(ϕ, x) ≡ Rm(ϕ, x) for all n ≥ m. For any i ∈ N, the mapping

(ω, x) �→ Ri(N(ω), x)

is a stationary partition. For i = 1, we call this the Voronoi partition based on N . In this case
the closure of {y ∈ R

d : R1(N(ω), y) = x} is the Voronoi cell centred at x ∈ N(ω) (cf. [11]
and [12]).

Remark 2.1. Let π be a stationary partition based on a flow-adapted point process N . We
wish to stress the fact that we do not consider {Cπ(x) : x ∈ N} to be a random element in
some suitable space of Borel partitions of R

d . This is in contrast to the standard approach to
stationary tessellations, taken in [11] and [12]. Consequently, if Q is some probability measure
on (�, A) then we cannot speak of the distribution of {Cπ(x) : x ∈ N}. For similar reasons, we
also cannot speak about the distributions of V (0) and C(0). The random variables of interest
in this paper are the identity on �, the mapping ω �→ θπ(ω,0)(ω), π(0), and the volumes of the
cells V (0) and C(0).

Although it is possible to introduce stationary tessellations as point processes on the space
of closed sets, there are several reasons not to do so here. First, it would be an unnecessary
restriction of generality. Second, we would like to avoid the technicalities that come with such
an approach. Finally, we have no need to interpret the system of cells as a random element.

3. The Palm measure

A measure P on (�, A) is said to be stationary if it is invariant under the flow, i.e. if

P ◦ θx = P, x ∈ R
d ,

where θx is interpreted as a mapping from A to A in the usual way:

θxA := {θxω : ω ∈ A}, A ∈ A, x ∈ R
d .
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Throughout the paper P will denote a σ -finite stationary measure on (�, A). In the next sections
we will most often assume that P is a probability measure. We work in the setting of [8]. Our
use of an abstract flow {θx : x ∈ R

d} makes the notation quite efficient and accommodates
stationary marked point processes (see [1] and [5]) as well as stochastic processes (fields)
jointly stationary with N (see [14]).

Let N be a point process adapted to the flow. The measure

PN(A) :=
∫∫

1(θxω ∈ A, x ∈ [0, 1]d)N(ω, dx) P(dω), A ∈ A,

is called the Palm measure of N (with respect to P); see [6]. It is σ -finite and satisfies the
refined Campbell theorem,∫∫

f (θxω, x)N(ω, dx) P(dω) =
∫∫

f (ω, x) dx PN(dω),

for all measurable functions f : �×R
d → [0, ∞), where dx refers to integration with respect

to the Lebesgue measure on R
d . Using the standard convention mentioned in the previous

section, we write this as

E

[∫
f (θx, x)N(dx)

]
= EPN

[∫
f (θ0, x) dx

]
, (3.1)

where E and EPN
denote integration with respect to P and PN , respectively. The measure PN

is concentrated on the measurable set, �0, of all ω ∈ � such that the origin 0 is in N(ω). The
intensity of N is the number

λN := E[N([0, 1]d)] = PN(�).

If this intensity is positive and finite, then the normalized Palm measure P0
N := λ−1

N PN is called
the Palm probability measure of N (with respect to P). Note that PN and P0

N are defined on
the underlying space (�, A). The Palm distribution of N , P0

N(N ∈ ·), is the distribution of N

under P0
N . It is concentrated on the measurable set, N0, of all ϕ ∈ N such that 0 ∈ ϕ. The

number P0
N(A) can be interpreted as the conditional probability of A ∈ A given that N has a

point at the origin (see Proposition 9.3.4 of [5] or Theorem 11.6 of [4]).

4. Basic properties of stationary partitions

In this section we fix a stationary probability measure P on (�, A) and a stationary partition
π : � × R

d → R
d based on a flow-adapted point process N . By (2.7) and (2.2), we have

{C(θyω, x) : x ∈ N(θyω)} = {C(ω, x) − y : x ∈ N(ω)}, ω ∈ �, y ∈ R
d ,

so (as suggested by our terminology) the statistical properties of {C(x) : x ∈ N} are invariant
under translations.

We will study the joint distribution of π(0) and the �-valued random variable θπ(0), the
latter defined by (θπ(0))(ω) := θπ(ω,0)ω. Note that N ◦ θπ(0) = N − π(0) has a point at the
origin whenever N �= ∅. The following consequence of the refined Campbell theorem (and its
conditional counterpart in Theorem 6.1) will be our main tool in this paper.
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Theorem 4.1. For all measurable functions f, g : � → [0, ∞), we have

E[1(N �= ∅)f · g(θπ(0))] = EPN

[
g ·

∫
C(0)

f ◦ θx dx

]
. (4.1)

Proof. We follow the proof of Proposition 11.3 of [4], dealing with the special case of the
Voronoi partition and g ≡ 1. The refined Campbell theorem (3.1) yields

E

[∫
h(θ0, x)N(dx)

]
= EPN

[∫
h(θx, −x) dx

]
(4.2)

for all measurable h : � × R
d → [0, ∞). We apply this formula with

h(ω, x) := f (ω)g(θxω) 1(x ∈ N(ω), π(ω, 0) = x). (4.3)

The left-hand side of (4.2) then reduces to the left-hand side of (4.1). Furthermore,

h(θxω, −x) = f (θxω)g(θ−x(θxω)) 1(−x ∈ N(θxω), π(θxω, 0) = −x)

= f (θxω)g(ω) 1(0 ∈ N(ω), π(ω, x) = 0),

where we have used the flow property (2.1) and the facts that N is adapted to the basic flow
(i.e. (2.2) holds) and π is covariant. Hence, the right-hand sides of (4.2) and (4.1) coincide.

Taking g ≡ 1 in (4.1) yields the following inversion formula for Palm measures (see
Satz 2.4 of [6]), adapted to our setting. For stationary tessellations the result can be found
in Proposition 10.1 of [12].

Proposition 4.1. For all measurable functions f : � → [0, ∞), we have

E[1(N �= ∅)f ] = EPN

[∫
C(0)

f ◦ θx dx

]
. (4.4)

Taking f ≡ 1 in (4.4) yields

EPN
[|C(0)|d ] = P(N �= ∅), (4.5)

where |B|d denotes the Lebesgue measure of a Borel set B ⊂ R
d . If P(N �= ∅) = 1 and the

intensity λN of N is finite, then

EP0
N
[|C(0)|d ] = λ−1

N .

Our next proposition results from taking f ≡ 1 in (4.1). It shows that the distribution of θπ(0)

is absolutely continuous with respect to the Palm measure. As in the special case of the Voronoi
partition, the density is the volume of the cell C(0) (see Chapter 9 of [14]). This well-known
phenomenon reflects the fact that the stationary measure is (up to a shift) a volume-biased
version of the Palm measure.

Proposition 4.2. For all measurable functions g : � → [0, ∞), we have

EPN
[|C(0)|d · g] = E[1(N �= ∅)g(θπ(0))].
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Corollary 4.1. For any α ≥ 0, we have

EPN
[|C(0)|α+1

d ] = E[1(N �= ∅)|V (0)|αd ]. (4.6)

Proof. Equations (2.6) and (2.5) imply that, for all ω ∈ �,

C(θπ(ω,0)ω, 0) = C(ω, π(ω, 0)) − π(ω, 0) = V (ω, 0) − π(ω, 0). (4.7)

Applying Proposition 4.2 with g := |C(0)|αd then yields the result.

Remark 4.1. As their proofs rely only on the refined Campbell theorem, the preceding results
also hold for σ -finite stationary measures on (�, A).

To prepare our next result we first note that (4.5) implies that

PN(|C(0)|d = ∞) = 0. (4.8)

We say that the stationary partition π is P-proper if

PN(|C(0)|d = 0) = 0. (4.9)

Equations (4.8) and (4.9) are equivalent to the fact that

0 < |C(ω, x)|d < ∞, x ∈ N(ω), (4.10)

holds for all ω outside an event of P-measure 0. Indeed, by (2.6) and the refined Campbell
theorem, for any B ∈ Bd and any c ∈ [0, ∞], we have

|B|dPN(|C(0)|d = c) = E

[∫
B

1(|C(x)|d = c)N(dx)

]
. (4.11)

As B is arbitrary, the equality PN(|C(0)|d = c) = 0 is equivalent to the fact that the event
{|C(x)|d �= c for all x ∈ N} has probability 1.

The next result shows that, if π is P-proper then the Palm measure is absolutely contin-
uous with respect to the stationary distribution of θπ(0). Again as in the special case of the
Voronoi partition, the density is then the inverse of the volume of the cell V (0) (see Chapter 9
of [14]). Hence, the Palm measure results from the stationary measure by volume debiasing
and shifting π(0) to 0.

Proposition 4.3. If π is P-proper then, for all measurable functions f : � → [0, ∞), we have

EPN
[f ] = E[1(N �= ∅)|V (0)|−1

d · f (θπ(0))].
Proof. By (4.10) and Proposition 4.2, the event A := {0 < |C(0)|d < ∞} satisfies

PN(� \ A) = E[1(N �= ∅) 1(θπ(0) /∈ A)] = 0.

We now apply Proposition 4.2 with g := 1A ·f · |C(0)|−1
d , to obtain

EPN
[f ] =

∫
1(N(ω) �= ∅)|C(θπ(ω,0)ω, 0)|−1

d · f (θπ(ω,0)ω) P(dω).

Using (4.7), the results follows.
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Corollary 4.2. If π is P-proper then (4.6) holds for any α ∈ R. In particular,

λN = E[1(N �= ∅)|V (0)|−1
d ]. (4.12)

Corollary 4.3. Assume both that P is a probability measure such that P(N = ∅) = 0 and
λN < ∞, and that π is P-proper. Then

EP0
N
[|C(0)|d ] = λ−1

N ,

EP0
N
[|C(0)|d ] ≤ E[|V (0)|d ].

Proof. The first result follows from (4.6) with α = 0. The second is then a consequence of
E[|V (0)|−1

d ] ≥ E[|V (0)|d ]−1 (Jensen’s inequality) and (4.12).

We next consider the conditional distribution of π(0) given θπ(0). For the Voronoi case, we
again refer the reader to [14].

Proposition 4.4. Assume that π is P-proper. On the event {N �= ∅}, the conditional distribu-
tion of −π(0) given θπ(0) is then the uniform distribution on V (0) − π(0).

Proof. Note that {N = ∅} is measurable with respect to θπ(0). For simplicity, we may then
assume that P(N = ∅) = 0. We consider measurable functions g, h : � → [0, ∞). Applying
Theorem 4.1 with f := h(−π(0)) yields

E[g(θπ(0))h(−π(0))] = EPN

[
g ·

∫
C(0)

h(x) dx

]
,

where we have used the fact that π(θx, 0) = π(θ0, x) − x = −x on C(0). Proposition 4.2
implies that

EPN

[
g ·

∫
C(0)

h(x) dx

]
= E

[
g(θπ(0))|V (0)|−1

d

∫
C(0) ◦ θπ(0)

h(x) dx

]
.

Since C(0) ◦ θπ(0) = V (0) − π(0), this completes the proof.

5. The modified Palm probability measure

Let � ⊂ A denote the invariant σ -field containing the sets A ∈ A with the property that
θxA = A for all x ∈ R

d . A function f : � → R is � -measurable if and only if f ◦ θx = f

for all x ∈ R
d . We let � ′ denote the invariant σ -field on N , i.e. the system of all sets C ∈ N

satisfying C + x = C for all x ∈ R
d .

Fixing a flow-adapted point process N , we define

�N := {{N ∈ C} : C ∈ � ′}.
Since N is adapted, we have �N ⊂ � . Fixing a stationary probability measure P on (�, A),
we next define

N̂ := E[N([0, 1]d) | �N ].
Stationarity implies that

E[N(B) | �N ] = |B|dN̂ P -a.s., B ∈ Bd . (5.1)
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We also note that {N̂ = 0} = {N = ∅} P-a.s. Here one inclusion is trivial while the other,
{N̂ = 0} ⊂ {N = ∅}, easily follows from (5.1). By spatial ergodic theory (see, e.g. Corol-
lary 10.19 of [4]) we P-a.s. have

N̂ = lim
n→∞

N(Bn)

|Bn|d , (5.2)

where Bn is a ball of radius n centred at the origin 0. Therefore, N̂ is called the sample intensity
of N (see [5] and [4]). The next lemma gives another property of N̂ .

Lemma 5.1. Assume that P(N̂ < ∞) = 1. Then

N̂ = E[N([0, 1]d) | � ] P -a.s. (5.3)

Proof. Let Ñ := E[N([0, 1]d) | � ]. We first assume that λN = E[N̂ ] < ∞. Then the
convergence (5.2) also holds in L1(P) (again see [4]). This fact, together with

E[N(B) | � ] = |B|dÑ P -a.s., B ∈ Bd ,

implies that
E[1A N̂ ] = E[1A Ñ ], A ∈ � ,

from which (5.3) follows. In the general case we define adapted point processes

Nm := 1(0 < N̂ ≤ m)N, m ∈ N.

As Nm has a finite intensity, we may apply the previous result to obtain

E[Nm([0, 1]d) | �Nm ] = 1(0 < N̂ ≤ m)Ñ P -a.s. (5.4)

On the other hand we P-a.s. have {N̂ = 0} = {N = ∅} and, thus, {Nm �= ∅} = {0 < N̂ ≤ m}
for m ≥ 1. Therefore,

E[Nm([0, 1]d) | �Nm ] = E[N([0, 1]d) | �N ] P -a.s. on {0 < N̂ ≤ m}.

Hence, (5.4) implies that (5.3) holds P-a.s. on the event {0 < N̂ < ∞}. As Ñ = 0 and N = ∅

P-a.s. on {N̂ = 0}, the assertion follows.

If P(0 < N̂ < ∞) = 1 then we introduce the following modified version of the Palm
probability measure:

P∗
N(A) := E

[
N̂−1

∫
1(θx ∈ A, x ∈ [0, 1]d)N(dx)

]
, A ∈ A. (5.5)

As N̂ is invariant under the flow, we can use the refined Campbell theorem, (3.1), to rewrite
this in differential form as

dP∗
N = N̂−1 dPN.

The modified Palm probability measure was introduced in Section 9.1 of [5] and rediscovered
in [10] and [14] (see also Chapter 11 of [4]). As explained in [5], P∗

N(A) can be interpreted as
the conditional probability of A given that 0 is a ‘randomly chosen point’ of N . Theorem 9.8.4
of [14] and our Theorems 9.1 and 10.1 will provide further support for this interpretation.
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Assume that P(0 < N̂ < ∞) = 1. From the definition (5.5) and (3.1), we have the following
modified refined Campbell theorem:

E

[
N̂−1

∫
f (θx, x)N(dx)

]
= EP∗

N

[∫
f (θ0, x) dx

]
. (5.6)

Another, even more direct, consequence of definition (5.5) is that P∗
N coincides with P on � :

P∗
N(A) = P(A), A ∈ � . (5.7)

Moreover, if E[N̂ ] < ∞ then P∗
N = P0

N if and only if

P(N̂ = E[N̂ ]) = 1. (5.8)

If (5.8) is satisfied then N is said to be pseudoergodic (see [10]). If P is ergodic, i.e. if
P(A) ∈ {0, 1} for all A ∈ � , then P is also pseudoergodic. If (�, A) = (N , N ), P is infinitely
divisible, and λN < ∞, then (5.8) is actually equivalent to ergodicity of P (cf. Proposition 6.4.10
of [5]). In general, however, (5.8) is clearly a weaker condition than ergodicity. This is shown,
for instance, by the following version of an example in Section 6.1 of [5]. Other examples can
be found in [10].

Example 5.1. Assume that (�, A) = (N , N ). For any c > 0, we let Pc be the distribution
of a stationary Poisson process of intensity c. Let y ∈ R

d and let Q be the distribution of
N ∪ (N + y) under P1. Under both P2 and Q we have N̂ = 2 almost surely. Therefore, the
stationary probability measure

P := p P2 +(1 − p) Q, 0 < p < 1,

is pseudoergodic. This measure is not ergodic (cf. Section 6.2.6 of [5]).

The ergodic decomposition theorem (see, e.g. Proposition 10.24 and Theorem 10.26 of [4])
shows that N is pseudoergodic if and only if P is a mixture of ergodic probability measures
with respect to almost all of which N has the same intensity.

Finally, we mention another important invariance property of measures on (�, A). A
covariant mapping π : � × R

d → R
d is called a bijective point map (see [14]) if

π(ω, x) ∈ N(ω)

whenever x ∈ N(ω) and the restriction of π(ω, ·) on N(ω) is bijective. Following [14] and [2],
we say that a measure Q on (�, A) is point-stationary (with respect to N ) if Q(0 /∈ N) = 0
and

Q(·) = Q(θπ(0) ∈ ·) (5.9)

holds for all bijective point maps π : � → R
d such that π(0) is σ(N)-measurable. Here θπ

denotes the mapping ω �→ θπ(ω,0)ω. By Satz 4.3 of [7], the Palm measure PN is point-
stationary. In this case (5.9) actually holds for all bijective point maps. The proof of Theorem 3.1
of [2] shows that this also true for the modified Palm probability P∗

N . One has to use the
modified refined Campbell theorem, (5.6). Conversely, it was shown in Theorem 4.1 of [2] that
any σ -finite, point-stationary measure is the Palm measure of a σ -finite, stationary measure
on (�, A).
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6. Conditional expectations

In this section we consider a stationary probability measure P on (�, A) and a stationary
partition π based on a flow-adapted point process N such that P(0 < N̂ < ∞) = 1. In
particular, P(N = ∅) = 0. First we provide a conditional version of Theorem 4.1.

Theorem 6.1. For all measurable functions f, g : � → [0, ∞), we have

E[f · g(θπ(0)) | � ] = N̂ EP∗
N

[
g ·

∫
C(0)

f ◦ θx dx

∣∣∣∣ �

]
P -a.s.,

for any choice of the conditional expectations considered here.

Proof. We fix f and g as well as two versions of the involved conditional expectations. In
view of (5.7), we have to show that

E[N̂−1g̃fg(θπ(0))] = EP∗
N

[
g̃g

∫
C(0)

f ◦ θx dx

]

for any � -measurable function g̃ : � → [0, ∞). However, this follows from the modified
refined Campbell theorem, (5.6), in the same way that (4.1) was derived from (3.1): all we have
to do is replace g by the product of g and g̃.

As in the previous section, we may draw several corollaries. The Voronoi case has been
treated in Chapter 9 of [14].

Proposition 6.1. For all measurable functions f : � → [0, ∞), we have

E[f | � ] = N̂ EP∗
N

[∫
C(0)

f ◦ θx dx

∣∣∣∣ �

]
P -a.s.

Proposition 6.2. Let g : � → [0, ∞) be measurable. Then

EP∗
N
[|C(0)|d · g | � ] = N̂−1 E[g(θπ(0)) | � ] P -a.s. (6.1)

Also, if π is P-proper then

EP∗
N
[g | � ] = N̂−1 E[|V (0)|−1

d · g(θπ(0)) | � ] P -a.s. (6.2)

Corollary 6.1. For any α ≥ 0,

EP∗
N
[|C(0)|α+1

d | � ] = N̂−1 E[|V (0)|αd | � ] P -a.s. (6.3)

If π is P-proper, then this is true for all α ∈ R.

Assume that π is P-proper. Letting α = −1 in (6.3) gives

N̂ = E[|V (0)|−1
d | � ] P -a.s., (6.4)

and (6.2) implies that

EP∗
N
[g] = E[|V (0)|−1

d · E[|V (0)|−1
d | � ]−1 · g(θπ(0))]. (6.5)
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7. Extended stationary partitions

Let N denote a flow-adapted point process. An extended stationary partition (based on N )
is a pair (Z, π) consisting of a measurable set Z : � → Bd and a mapping π : � × R

d → R
d

that are both covariant and are such that π(x) ∈ N whenever x ∈ Z and {Z = ∅} = {N = ∅}.
Measurability of Z just means that (ω, x) �→ 1(x ∈ Z(ω)) is measurable, while covariance
of Z means that

Z(θxω) = Z(ω) − x, ω ∈ �, x ∈ R
d .

Covariance of π is defined in (2.3). If (Z, π) is an extended stationary partition, we define

C(ω, x) := {y ∈ Z(ω) : π(ω, y) = x}, ω ∈ �, x ∈ R
d , (7.1)

as in (2.4). Theorems 4.1 and 6.1 can be generalized as follows.

Theorem 7.1. Let P be a stationary probability measure on (�, A). Let (Z, π) be an extended
stationary partition and let f, g : � → [0, ∞) be measurable functions. Then we have

E[1(0 ∈ Z)f · g(θπ(0))] = EPN

[
g ·

∫
C(0)

f ◦ θx dx

]
, (7.2)

where C(0) is as defined in (7.1). If P(0 < N̂ < ∞) = 1 then

E[1(0 ∈ Z)f · g(θπ(0)) | � ] = N̂ EP∗
N

[
g ·

∫
C(0)

f ◦ θx dx

∣∣∣∣ �

]
P -a.s., (7.3)

for any choice of the conditional expectations considered here.

Proof. In proving (7.2) we follow the proof of Theorem 4.1. We just have to multiply the
function h, defined in (4.3), by 1(0 ∈ Z(ω)). The argument for (7.3) is similar.

8. From Palm probability measures to stationary probability measures

We fix a flow-adapted point process N and a probability measure Q on (�, A) such that
Q(N = ∅) = 0. However, we do not assume that Q is stationary. We also fix a stationary
partition π based on N and assume that (4.10) holds for all ω outside an event of Q-measure 0.

Motivated by Proposition 4.3, we define another measure, Q0, on (�, A) with density
|V (0)|−1

d with respect to Q. This means that

EQ0 [f ] = EQ[|V (0)|−1
d · f ]

for all measurable functions f : � → [0, ∞). Since we have assumed (4.10) to hold for
Q-almost every ω, we have

Q(|V (0)|d = 0) + Q(|V (0)|d = ∞) = 0.

Hence, Q0 is σ -finite. It turns out that stationarity of Q is equivalent to point-stationarity of
Q0(θπ(0) ∈ ·) and conditional uniformity of −π(0) given θπ(0) (see the end of Section 5 for a
brief discussion of point-stationarity). This fact is again a generalization of a result on Voronoi
tessellations in Chapter 9 of [14] to our much more general case.

Theorem 8.1. The measure Q is stationary if and only if the measure Q0(θπ(0) ∈ ·) is point-
stationary and the conditional distribution Q(−π(0) ∈ · | θπ(0)) can be chosen to be the
uniform distribution on V (0) − π(0).
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Proof. We have assumed that Q(N = ∅) = 0 and that π is Q-proper. If Q is stationary then
Proposition 4.3 shows that Q0(θπ(0) ∈ ·) is the Palm measure of Q. As mentioned at the end of
Section 5, a Palm measure is point-stationary. Proposition 4.4 implies the asserted conditional
uniformity.

Now we assume the point-stationarity of Q0(θπ(0) ∈ ·) and the conditional uniformity of
−π(0). Owing to the main result of [2], there is a unique σ -finite, stationary measure P on
(�, A) such that P(N = ∅) = 0 and Q0(θπ(0) ∈ ·) = PN . Our goal is to show that Q = P.
Applying first Proposition 4.2 (cf. Remark 4.1) and then the definition of Q0 yields, for all
measurable functions g : � → [0, ∞),

E[g(θπ(0))] = EPN
[g · |C(0)|d ]

= EQ[|V (0)|−1
d · g(θπ(0)) · |C(0) ◦ θπ(0)|d ]

= EQ[g(θπ(0))], (8.1)

where we have used the fact that C(0) ◦ θπ(0) = V (0)−π(0). Hence, P is a probability measure
and

P(θπ(0) ∈ ·) = Q(θπ(0) ∈ ·). (8.2)

By Proposition 4.4 and the assumptions, we then have

P(π(0) ∈ · | θπ(0)) = Q(π(0) ∈ · | θπ(0)) P -a.s. (8.3)

Since ω = θ−π(ω,0)(θπ(ω,0)ω) for all ω ∈ �, (8.2) and (8.3) give P = Q.

We now assume that Q is a probability measure such that Q(0 < η < ∞) = 1, where

η := EQ[|V (0)|−1
d | � ].

Motivated by (6.5), we define another probability measure, Q∗, on (�, A) that has density
η−1 · |V (0)|−1

d with respect to Q. This means that

EQ∗ [f ] = EQ[η−1 · |V (0)|−1
d · f ]

for all measurable functions f : � → [0, ∞).

Theorem 8.2. The measure Q is stationary if and only if the measure Q∗(θπ(0) ∈ ·) is point-
stationary and the conditional distribution Q(−π(0) ∈ · | θπ(0)) can be chosen to be the
uniform distribution on V (0) − π(0).

Proof. Again we have to prove only one implication. Let us assume that Q∗(θπ(0) ∈ ·) is
point-stationary and let P be a σ -finite, stationary measure on (�, A) such that P(N = ∅) = 0
and Q∗(θπ(0) ∈ ·) = PN . As in (8.1), we obtain

E[g(θπ(0))] = EQ[η−1g(θπ(0))]. (8.4)

This shows, in particular, that P(η = 0) + P(η = ∞) = 0. Since η is � -measurable, we have

η = η ◦ θπ(0). (8.5)

In particular, η is σ(θπ(0))-measurable. By (8.5) we can rewrite (8.4) as

EP̂[g(θπ(0))] = EQ[g(θπ(0))],
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where P̂ is the measure with density η with respect to P. This is a stationary probability measure.
Since η is σ(θπ(0))-measurable it follows that

P̂(π(0) ∈ · | θπ(0)) = P(π(0) ∈ · | θπ(0)) P̂-a.s.

As in the previous proof, this yields P̂ = Q and, hence, the stationarity of Q.

9. Balanced stationary partitions

We consider a stationary probability measure P on (�, A) and a flow-adapted point process
N such that P(0 < N̂ < ∞) = 1. Essentially following [3], we call a stationary partition π

(based on N ) balanced (with respect to P) if

P(|C(x)|d = N̂−1for all x ∈ N) = 1.

As at (4.11), it follows that a stationary partition π is balanced if and only if

P∗
N(|C(0)|d = N̂−1) = 1. (9.1)

The next result explains the occurrence of the sample intensity N̂ in (9.1).

Proposition 9.1. Let ξ be a random variable such that P(0 < ξ < ∞) = 1 and let π be a
stationary partition based on N . Assume that

P(|C(x)|d = ξ for all x ∈ N) = 1. (9.2)

Then P(ξ = N̂−1) = 1.

Proof. The random measure

M(B) :=
∫

1(π(x) ∈ B) dx, B ∈ Bd ,

is adapted to the flow (i.e. M ◦ θx(B) = M(B + x)) and, hence, stationary. Corollary 10.19
of [4] implies the almost-sure existence of the � -measurable limit

M̂ := lim
n→∞

M(Bn)

|Bn|d ,

as in (5.2). On the other hand, from (9.2) we have M(B) = ξN(B), so (5.2) implies that
M̂ = ξN̂ . Hence, ξ is almost surely � -measurable and (6.4) implies that ξ−1 = N̂ .

We say that a stationary partition π is N -measurable, if π(0) is σ(N)-measurable. It has
been proved in [3] that balanced, N -measurable stationary partitions exist if P is ergodic.
Theorem 10.1, below, shows that this is true also without ergodicity.

Remark 9.1. Assume that λN = E[N̂ ] < ∞. The authors of [3] said that a stationary
partition π is balanced if

P(|C(x)|d = λ−1
N for all x ∈ N) = 1. (9.3)

Proposition 9.1 shows that (9.3) can only hold if N is pseudoergodic (see Section 5).
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The significance of balanced, stationary partitions is due to the following theorem. The
result extends Theorem 13 of [3] from the pseudoergodic case to the general case.

Theorem 9.1. Let π be a stationary partition. Then π is balanced if and only if

P(θπ(0) ∈ ·) = P∗
N . (9.4)

Proof. Let g : � → [0, ∞) be a measurable function . If π is balanced then from Proposi-
tion 6.2 we obtain

EP∗
N
[g | � ] = E[g(θπ(0)) | � ] P -a.s.

and, in particular, (9.4).
Let us now assume that (9.4) holds. Choosing g ≡ 1 in (6.1) yields

EP∗
N
[N̂ · |C(0)|d ] = 1.

Choosing g ≡ N̂ · |C(0)|d yields

EP∗
N
[N̂2 · |C(0)|2d ] = EP∗

N
[N̂ · |C(0)|d ] = 1.

Since this implies (9.1), π is balanced.

10. Existence of balanced stationary partitions

The existence of balanced stationary partitions is a consequence of the following lemma.

Lemma 10.1. For any λ > 0, there exist covariant mappings Aλ, from N into the system of
Borel subsets of R

d , and πλ : N × R
d → R

d such that

(λ, ϕ, y) �→ (1(y ∈ Aλ(ϕ)), πλ(ϕ, y))

is a measurable mapping and, for any λ > 0, the sets

Cλ(ϕ, x) := {y ∈ Aλ(ϕ) : πλ(ϕ, y) = x}, ϕ ∈ N , x ∈ R
d ,

satisfy
0 < |Cλ(ϕ, x)|d ≤ λ−1, ϕ ∈ N , x ∈ ϕ, (10.1)

and the mapping Tλ : N → N defined by

Tλ(ϕ) := {x ∈ ϕ : |Cλ(ϕ, x)|d < λ−1}
satisfies

{ϕ : Tλ(ϕ) �= ∅} ∩ {ϕ : Aλ(ϕ) �= R
d} = ∅. (10.2)

An explicit example of the mappings in the preceding lemma is provided by the continuous
version of the Gale–Shapley allocation algorithm of [3]. It is not difficult to come up with
modifications of this example.

Theorem 10.1. Let P be a stationary probability measure and N a flow-adapted point process
such that P(0 < N̂ < ∞) = 1. Let the mappings Aλ and πλ, λ > 0, be as defined in
Lemma 10.1. Then the mapping δ : � × R

d → R
d defined by

δ(ω, x) :=
{

π
N̂(ω)

(N(ω), x) if 0 < N̂(ω) < ∞ and x ∈ A
N̂(ω)

(N(ω)),

R1(N(ω), x) otherwise,

is an N -measurable stationary partition that is balanced with respect to P. Here R1(N(ω), x)

is as defined in Example 2.2.
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Proof. In the ergodic case the result can be proved along the same lines as Theorem 1 of [3].
In the general case we could use ergodic decomposition. For the reader’s convenience we give
a direct argument.

Assuming without loss of generality that 0 < N̂ < ∞ holds identically on �, we define
Z := A

N̂
(N) and

π(ω, x) := π
N̂(ω)

(N(ω), x) for x ∈ Z(ω).

For x /∈ Z(ω), we define π(ω, x) := R1(N(ω, x)) if N(ω) �= ∅. The pair (Z, π) is an
extended stationary partition in the sense of Section 7. By (7.3) we P-a.s. have

P(0 ∈ Z | � ) = EP∗
N
[N̂ · |C(0)|d | � ], (10.3)

where

C(x) := {y ∈ Z : π(y) = x}, x ∈ R
d .

Moreover, by (10.1) we have

N̂ · |C(x)|d ≤ 1, x ∈ N. (10.4)

Consider the point process N ′ := {x ∈ N : N̂ · |C(x)|d < 1}. By (10.2) we have Z = R
d on

the shift-invariant event {N ′ �= ∅}. Hence, (10.3) implies that

P∗
N(N̂ · |C(0)|d = 1 | � ) = 1 P -a.s. on {N ′ �= ∅}. (10.5)

On the other hand, by (10.4), on {N ′ = ∅} we almost surely have

P∗
N(N̂ · |C(0)|d = 1 | � ) = E

[
N̂−1

∫
[0,1]d

1(N̂ · |C(x)|d = 1)N(dx)

∣∣∣∣ �

]

= E[N̂−1N([0, 1]d) | � ]
= 1.

Together with (10.5) this yields

P∗
N(N̂ · |C(0)|d = 1) = 1. (10.6)

However, (10.3) then implies that P(0 ∈ Z) = 1, so the covariance of Z gives P(x ∈ Z) = 1
for all x ∈ R

d . By Fubini’s theorem,

E[|Rd \ Z|d ] = E

[∫
1(x /∈ Z) dx

]
=

∫
P(x /∈ Z) dx = 0.

Therefore, the cells Cδ(x) := {y ∈ R
d : δ(y) = x}, x ∈ N , satisfy

|Cδ(x)|d = |C(x)|d P -a.s., x ∈ N.

Hence, (10.6) implies that δ is balanced. It follows from the first inequality in (10.1) that δ is
P-proper.
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11. Shift couplings

Let P be a stationary probability measure on (�, A) and N a flow-adapted point process
such that P(0 < N̂ < ∞) = 1. Theorems 10.1 and 9.1 provide a σ(N)-measurable random
variable τ such that N − τ follows the modified Palm distribution of N , i.e.

P(N − τ ∈ ·) = P∗
N(N ∈ ·). (11.1)

The pair (N, N − τ) is called a shift coupling (see [13] and [14]), defined on the probability
space supporting the stationary point process N . The remarkable fact is that the shift τ can be
chosen to be a (deterministic) measurable function of N .

We may now ask whether there is random variable τ ∗ such that

P∗
N(N + τ ∗ ∈ ·) = P(N ∈ ·),

and, thus, a shift coupling (N, N + τ ∗), defined on the probability space (�, A, P∗
N). Owing

to (5.7), general results of [13] show that this is possible on a suitable extension of (�, A, P∗
N).

However, in contrast to (11.1), the next proposition shows that τ ∗ cannot be chosen to be a
measurable function of N . In view of Proposition 4.4, this result is expected. In our proof we
follow the authors of [3], who derived the result for the Palm distribution. To formulate the
assumptions of the proposition we use the canonical framework of Example 2.1.

Proposition 11.1. Let P′ be a stationary probability measure on (N , N ) such that the identity N

on N P′-a.s. has a positive, finite sample intensity. Let P∗ be the modified Palm probability
measure of N defined with respect to P′. Let N∗ be a point process with distribution P∗ and τ ∗
a random element in R

d , both defined on the same probability space and such that N∗ + τ ∗ has
distribution P′. Then the conditional distribution of τ ∗ given N∗ is almost surely absolutely
continuous. The density may be chosen to be smaller than Ñ , where

Ñ = lim inf
n→∞

N∗(Bn)

|Bn|d
and the Bn are as in (5.2).

Proof. We assume that our probability space (�, A, P) is given by � := N × (0, 1), with
A the product σ -field and P the product of P′ and the Lebesgue measure. For (ϕ, t) ∈ �, we
write N(ω) := ϕ and θxω := (ϕ − x, t), x ∈ R

d . Then P is stationary and N is adapted to the
flow {θx : x ∈ R}. Using the conditional distribution of (N∗, τ ∗) given N∗ +τ ∗ and proceeding
as in, e.g. Theorem 6.10 of [4], we can define a point process N0 and a random variable τ on
(�, A, P) such that

(N, N0, τ )
d= (N∗ + τ ∗, N∗, τ ∗), (11.2)

where ‘
d=’ denotes equality in distribution. In particular, P(τ ∈ N) = 1.

Now we choose a β > 1 and a Borel set B ⊂ R
d and consider the measurable set

A := {ϕ ∈ N : P(τ ∈ B | N0 = ϕ) ≥ βh(ϕ)|B|d},
where

h(ϕ) := lim inf
n→∞

ϕ(Bn)

|Bn|d , ϕ ∈ N .
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Then

β|B|d P∗(A) = β|B|d P(N0 ∈ A)

≤ E[h(N0)−1 1(N0 ∈ A) P(τ ∈ B | N0)]
= E[h(N0)−1 1(N0 ∈ A) 1(τ ∈ B)]
= E[h(N − τ)−1 1(N − τ ∈ A) 1(τ ∈ B)],

where the last equality is due to

(N − τ, τ )
d= (N∗, τ ∗) d= (N0, τ ).

Now we note that the sample intensity, N̂ , of N P-a.s. equals h(N − τ). Indeed, it is sufficient
to check this on {|τ | ≤ c} for each c > 0, which can be done using a standard argument from
spatial ergodic theory (see, e.g. the proof of Corollary 10.19 of [4]). Hence,

β|B|d P∗(A) ≤ E[N̂−1 1(N − τ ∈ A) 1(τ ∈ B)]
≤ E

[
N̂−1

∫
1(N − x ∈ A) 1(x ∈ B)N(dx)

]
= |B|d P∗(A),

where we have used the modified refined Campbell theorem, (5.6). Hence, if 0 < |B|d < ∞
then

P(τ ∈ B | N0) ≤ h(N0)|B|d P -a.s. (11.3)

Since |B|d = limn→∞ |Gn|d for some decreasing sequence Gn ⊃ B, n ∈ N, of open sets,
(11.3) holds for any Borel set B. By taking B from a countable algebra generating Bd and
working with a regular version of P(τ ∈ · | N0), we conclude that the exceptional set for (11.3)
can be chosen independently of B ∈ Bd . In view of (11.2), this implies both assertions of the
proposition.
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