ON PRODUCTS OF SETS OF GROUP ELEMENTS

HENRY B. MANN

LET $\mathfrak{A} = \{A_1, \ldots, A_s\}, \mathfrak{B} = \{B_1, \ldots, B_t\}$ be sets of elements of a group \mathfrak{G} of finite order g. We define

$$\mathfrak{G} = \mathfrak{A}\mathfrak{B} = \{A_iB_j\}.$$

By $(\mathfrak{A}), (\mathfrak{B}), \ldots$ we shall denote the number of elements in $\mathfrak{A}, \mathfrak{B}, \ldots$ respectively and by $\overline{\mathfrak{A}}, \overline{\mathfrak{B}}, \ldots$ the sets of elements of \mathfrak{G} not in $\mathfrak{A}, \mathfrak{B}, \ldots$.

THEOREM 1. Either $\mathfrak{AB} = \mathfrak{G}$ or $g \ge (\mathfrak{A}) + (\mathfrak{B})$.

Proof. Let \overline{C} be an element not in $\mathfrak{C} = \mathfrak{AB}$. Let A, B, \ldots be a generic notation for elements in $\mathfrak{A}, \mathfrak{B}, \ldots$ respectively. All A are different from all $\overline{CB^{-1}}$ for otherwise $\overline{C} = AB$. Thus there are at least $(\mathfrak{A}) + (\mathfrak{B})$ elements in \mathfrak{G} .

THEOREM 2. Let $\mathfrak{A}, \mathfrak{B}$ be sets of elements of an Abelian group \mathfrak{G} and let $\overline{C} \subset \overline{\mathfrak{AB}}$. Then there exists a $\mathfrak{B}^* \supseteq \mathfrak{B}$ such that

(i) $\overline{\mathfrak{G}}^* = \overline{\mathfrak{AB}}^* = \mathfrak{H}\overline{C}$, where \mathfrak{H} is a subgroup of \mathfrak{G} ,

(ii) $(\mathfrak{AB}^*) - (\mathfrak{AB}) = (\mathfrak{B}^*) - (\mathfrak{B}).$

We shall give the proof by induction on the number of elements in $\overline{\mathbb{C}}$. Clearly Theorem 2 holds with $\mathfrak{H} = I$ the identity if $\overline{\mathbb{C}}$ consists only of one element \overline{C} . Now let $\overline{\mathbb{C}}$ consist of the elements $\overline{C} = \overline{C}_0, \overline{C}_1, \ldots, \overline{C}_s$. Form the products $\overline{C} \ \overline{C}_i^{-1} = D_i$ and let \mathfrak{H} be the subgroup generated by the D_i . Two cases arise.

First case. For every i and k we have for some m

$$\overline{C}_i D_k^{-1} = \overline{C}_m.$$

Since $\overline{C}_i = \overline{C}D_i^{-1}$ it then follows that for every $H \subset \mathfrak{H}$ we have for some m

$$\overline{CH} = \overline{C}_m.$$

Since $\overline{C}D_m^{-1} = \overline{C}_m$, so that $\overline{C}_m = \overline{C}H$ for every *m*, it follows that $\overline{\mathbb{G}} = \overline{C}\mathfrak{H}$.

Second case. There exist an i and a k such that

$$C_i D_k^{-1} = AE, \quad E \subset \mathfrak{B}.$$

We then form the set \mathfrak{B}_1 consisting of all elements of the form ED_j which satisfy an equation

(1)

 $AED_j = \overline{C}_t$

Received August 2, 1950.

for some t. Equation (1) implies also

(1')

$$AED_t = \overline{C}_t$$

We shall prove:

PROPOSITION 1. No element of \mathfrak{B}_1 is in \mathfrak{B} . This follows easily since no element in \mathfrak{B} can satisfy an equation of the form (1).

PROPOSITION 2. Let $\mathfrak{B} \cup \mathfrak{B}_1 = \mathfrak{B}_1^*$ then $\mathfrak{C}_1 = \mathfrak{A}\mathfrak{B}_1^* \not\supseteq \overline{C}$. Otherwise we should have $AED_j = \overline{C}, AE = \overline{C}_j$ which is impossible since $E \subset \mathfrak{B}$ but $\overline{C}_j \not\subset \mathfrak{A}\mathfrak{B}$.

Proposition 3. $(\mathfrak{AB}_1^*) - (\mathfrak{AB}) = (\mathfrak{B}_1^*) - (\mathfrak{B}) = (\mathfrak{B}_1).$

Equations (1) and (1') show that ED_j is in \mathfrak{B}_1 if and only if $\overline{C}_j \subset \mathfrak{S}_1 = \mathfrak{AB}_1^*$ which proves Proposition 3.

Since $(\overline{\mathfrak{G}}_1) < (\overline{\mathfrak{G}})$ there exists by induction a set $\mathfrak{B}^* \supset \mathfrak{B}_1^* \supset \mathfrak{B}$ such that $\overline{\mathfrak{AB}^*} = \overline{C}\mathfrak{H}$ where \mathfrak{H} is a subgroup of \mathfrak{G} and such that

$$(\mathfrak{AB}^*) - (\mathfrak{AB}_1^*) = (\mathfrak{B}^*) - (\mathfrak{B}_1^*).$$

Adding this equation to Proposition 3 we obtain Theorem 2.

COROLLARY (Davenport and Chowla). Let \mathfrak{G} be the additive group of residues mod N. Let $\mathfrak{A} = \{a_0 = 0, a_1, \ldots, a_m\}, \mathfrak{B} = \{b_1, \ldots, b_m\}$ be sets of residues mod N such that $(a_i, N) = 1$ for i > 0. Let $\mathfrak{G} = \mathfrak{AB}$. Then either $\mathfrak{G} = \mathfrak{G}$ or

(2)
$$(\mathfrak{G}) \geq m+n = (\mathfrak{A}) + (\mathfrak{B}) - 1.$$

Proof. By Theorems 1 and 2 it is sufficient to prove the Corollary for the case that $\overline{\mathbb{G}} = \overline{C}\mathfrak{H}$ where \mathfrak{H} is a subgroup of \mathfrak{G} . Consider the factor group $\mathfrak{G}/\mathfrak{H}$. Let $\mathfrak{A}', \mathfrak{B}'$ be the sets of cosets mod \mathfrak{H} that contain elements of \mathfrak{A} and \mathfrak{B} respectively. Let t be the index and h the order of \mathfrak{H} . By Theorem 1,

$$t \ge (\mathfrak{A}') + (\mathfrak{B}').$$

Hence

(3)

$$N = ht \ge h(\mathfrak{A}') + h(\mathfrak{B}').$$

Since $a_0 \subset \mathfrak{H}, a_i \not\subset \mathfrak{H}$ for i > 0, we have

$$h(\mathfrak{A}') - h \ge m, \ h(\mathfrak{B}') \ge n.$$

Substituting this in (3) we obtain

$$N \ge m + n + h$$
, (\mathfrak{C}) = $N - h \ge m + n$.

The Corollary to Theorem 2 was proved by Davenport [2] for the case that N is a prime. Chowla [1] used Davenport's methods to obtain the Corollary in its general form. Davenport later discovered that for the case when N is a prime the Corollary was already known to Cauchy [3].

HENRY B. MANN

It is interesting to note that the proof of Theorem 2 is closely related to the author's proof of the fundamental theorem on the density of sums of sets of positive integers [4]. Thus the similarity between this theorem and the theorem of Davenport and Chowla is not as superficial as might have appeared.

References

1. I. Chowla, Proc. Indian Acad. Sci., vol. 2 (1935), 242-243.

2. H. Davenport, J. Lond. Math. Soc., vol. 10 (1935), 30-32.

3. ——, J. Lond. Math. Soc., vol. 22 (1947), 100-101.

4. H. B. Mann, Ann. of Math., vol. 43 (1942), 523-527.

Ohio State University