ON PRODUCTS OF SETS OF GROUP ELEMENTS

HENRY B. MANN

Let $\mathfrak{A}=\left\{A_{1}, \ldots, A_{s}\right\}, \mathfrak{B}=\left\{B_{1}, \ldots, B_{t}\right\}$ be sets of elements of a group (S) of finite order g. We define

$$
\mathfrak{C}=\mathfrak{H} \mathfrak{B}=\left\{A_{i} B_{j}\right\}
$$

By (\mathfrak{H}), (\mathfrak{B}), \ldots we shall denote the number of elements in $\mathfrak{A}, \mathfrak{B}, \ldots$ respectively and by $\overline{\mathfrak{N}}, \overline{\mathfrak{B}}, \ldots$ the sets of elements of (\mathfrak{F}) not in $\mathfrak{A}, \mathfrak{B}, \ldots$.

Theorem 1. Either $\mathfrak{H B}=\mathfrak{(5)}$ or $g \geqslant(\mathfrak{H})+(\mathfrak{B})$.
Proof. Let \bar{C} be an element not in $\mathbb{C}=\mathfrak{H} \mathfrak{B}$. Let A, B, \ldots be a generic notation for elements in $\mathfrak{X}, \mathfrak{B}, \ldots$ respectively. All A are different from all $\bar{C} B^{-1}$ for otherwise $\bar{C}=A B$. Thus there are at least $(\mathfrak{H})+(\mathfrak{B})$ elements in (5).

Theorem 2. Let $\mathfrak{U}, \mathfrak{B}$ be sets of elements of an Abelian group (5) and let $\bar{C} \subset \overline{\mathfrak{V} \mathfrak{B}}$. Then there exists a $\mathfrak{B}^{*} \supseteq \mathfrak{B}$ such that

(ii) $\left(\mathfrak{H} \mathfrak{B}^{*}\right)-(\mathfrak{H} \mathfrak{B})=\left(\mathfrak{B}^{*}\right)-(\mathfrak{B})$.

We shall give the proof by induction on the number of elements in \mathfrak{C}. Clearly Theorem 2 holds with $\mathfrak{S}=I$ the identity if \mathbb{C} consists only of one element \bar{C}. Now let \bar{C} consist of the elements $\bar{C}=\bar{C}_{0}, \bar{C}_{1}, \ldots, \bar{C}_{s}$. Form the products $\bar{C} \bar{C}_{i}^{-1}=D_{i}$ and let \mathfrak{S} be the subgroup generated by the D_{i}. Two cases arise.

First case. For every i and k we have for some m

$$
\bar{C}_{i} D_{k}^{-1}=\bar{C}_{m}
$$

Since $\bar{C}_{i}=\bar{C} D_{i}{ }^{-1}$ it then follows that for every $H \subset \mathfrak{S}$ we have for some m

$$
\bar{C} H=\bar{C}_{m} .
$$

Since $\bar{C} D_{m}{ }^{-1}=\bar{C}_{m}$, so that $\bar{C}_{m}=\bar{C} H$ for every m, it follows that $\overline{\mathbb{C}}=\bar{C} \mathfrak{C}$.
Second case. There exist an i and a k such that

$$
\bar{C}_{i} D_{k}^{-1}=A E, \quad E \subset \mathfrak{B} .
$$

We then form the set \mathfrak{B}_{1} consisting of all elements of the form $E D_{j}$ which satisfy an equation

Received August 2, 1950.

$$
A E D_{j}=\bar{C}_{t}
$$

for some t. Equation (1) implies also

$$
A E D_{t}=\bar{C}_{j} .
$$

We shall prove:
Proposition 1. No element of \mathfrak{B}_{1} is in \mathfrak{B}. This follows easily since no element in \mathfrak{B} can satisfy an equation of the form (1).

Proposition 2. Let $\mathfrak{B} \cup \mathfrak{B}_{1}=\mathfrak{B}_{1}{ }^{*}$ then $\mathfrak{C}_{1}=\mathfrak{A} \mathfrak{B}_{1} * \not \supset \bar{C}$. Otherwise we should have $A E D_{j}=\bar{C}, A E=\bar{C}_{j}$ which is impossible since $E \subset \mathfrak{B}$ but $\bar{C}_{j} \not \subset \mathfrak{A B}$.

Proposition 3. $\quad\left(\mathfrak{H}_{1}{ }_{1}{ }^{*}\right)-(\mathfrak{H} \mathfrak{B})=\left(\mathfrak{B}_{1}{ }^{*}\right)-(\mathfrak{B})=\left(\mathfrak{B}_{1}\right)$.
Equations (1) and (1^{\prime}) show that $E D_{j}$ is in \mathfrak{B}_{1} if and only if $\bar{C}_{j} \subset \mathbb{C}_{1}=\mathfrak{A} \mathfrak{B}_{1} *$ which proves Proposition 3.

Since $\left(\overline{\mathbb{C}}_{1}\right)<(\overline{\mathfrak{C}})$ there exists by induction a set $\mathfrak{B}^{*} \supset \mathfrak{B}_{1}{ }^{*} \supset \mathfrak{B}$ such that ${\overline{\mathfrak{A}} \mathfrak{B}^{*}}^{*}=\bar{C} \mathfrak{F}$ where \mathfrak{F} is a subgroup of $\mathfrak{W j}$ and such that

$$
\left(\mathfrak{H}_{\mathfrak{B}}{ }^{*}\right)-\left(\mathfrak{H}_{1}{ }_{1}^{*}\right)=\left(\mathfrak{B}^{*}\right)-\left(\mathfrak{B}_{1}^{*}\right) .
$$

Adding this equation to Proposition 3 we obtain Theorem 2.
Corollary (Davenport and Chowla). Let $\mathfrak{5 j}$ be the additive group of residues $\bmod N$. Let $\mathfrak{H}=\left\{a_{0}=0, a_{1}, \ldots, a_{m}\right\}, \mathfrak{B}=\left\{b_{1}, \ldots, b_{m}\right\}$ be sets of residues $\bmod N$ such that $\left(a_{i}, N\right)=1$ for $i>0$. Let $\mathbb{C}=\mathfrak{A} \mathfrak{B}$. Then either $\mathfrak{C}=\sqrt{5}$ or
$(\mathbb{C}) \geqslant m+n=(\mathfrak{H})+(\mathfrak{B})-1$.
Proof. By Theorems 1 and 2 it is sufficient to prove the Corollary for the case that $\overline{\mathscr{C}}=\bar{C} \mathscr{F}$ where \mathfrak{F} is a subgroup of $\mathfrak{F F}$. Consider the factor group $\mathfrak{5} / \mathfrak{F}$. Let $\mathfrak{X}^{\prime}, \mathfrak{B}^{\prime}$ be the sets of cosets mod \mathfrak{F} that contain elements of \mathfrak{A} and \mathfrak{B} respectively. Let t be the index and h the order of \mathfrak{F}. By Theorem 1,

$$
t \geqslant\left(\mathfrak{H}^{\prime}\right)+\left(\mathfrak{B}^{\prime}\right)
$$

Hence

$$
\begin{equation*}
N=h t \geqslant h\left(\mathfrak{X}^{\prime}\right)+h\left(\mathfrak{B}^{\prime}\right) . \tag{3}
\end{equation*}
$$

Since $a_{0} \subset \mathfrak{S}, a_{i} \not \subset \mathfrak{S}$ for $i>0$, we have

$$
h\left(\mathfrak{H}^{\prime}\right)-h \geqslant m, h\left(\mathfrak{B}^{\prime}\right) \geqslant n .
$$

Substituting this in (3) we obtain

$$
N \geqslant m+n+h, \quad(\mathbb{C})=N-h \geqslant m+n .
$$

The Corollary to Theorem 2 was proved by Davenport [2] for the case that N is a prime. Chowla [1] used Davenport's methods to obtain the Corollary in its general form. Davenport later discovered that for the case when N is a prime the Corollary was already known to Cauchy [3].

It is interesting to note that the proof of Theorem 2 is closely related to the author's proof of the fundamental theorem on the density of sums of sets of positive integers [4]. Thus the similarity between this theorem and the theorem of Davenport and Chowla is not as superficial as might have appeared.

References

1. I. Chowla, Proc. Indian Acad. Sci., vol. 2 (1935), 242-243.
2. H. Davenport, J. Lond. Math. Soc., vol. 10 (1935), 30-32.
3. - J. J. Lond. Math. Soc., vol. 22 (1947), 100-101.
4. H. B. Mann, Ann. of Math., vol. 43 (1942), 523-527.

Ohio State University

