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Abstract. Multiwavelength surveys present a variety of challenging sta-
tistical problems: ra-w data processing, source identification, source char-
acterization and classification, and interrelations between multiwavelength 
properties. For these last two issues, we discuss the applicability of stan-
dard and new multivariate statistical techniques. Traditional methods such 
as ANOVA, principal components analysis, cluster analysis, and tests for 
multivariate linear hypotheses are underutilized in astronomy and can be 
very helpful. Newer statistical methods such as projection pursuit, multi-
variate splines, and visualization tools such as XGobi are briefly introduced. 
However, multivariate databases from astronomical surveys present signif-
icant challenges to the statistical community. These include treatments of 
heteroscedastic measurement errors, censoring and truncation due to flux 
limits, and parameter estimation for nonlinear astrophysical models. 

1. Introduction 

Between the 16th and 19th centuries, astronomy and statistics were closely 
allied fields. Many of the foundations of mathematical statistics were laid 
by astronomers such as Tycho Brahe, Galileo, Tobias Mayer and Adrien 
Legendre (Stigler 1986). But this relationship weakened during the late 
19th century, as statistics turned to applications in the social sciences and 
industry, astronomy reaped benefits from mathematical physics. A byprod-
uct of this shift is that most astronomers are trained by physicists and 
receive little or no formal education in statistics. Most astronomers are 
thus only vaguely aware of the tremendous advances in statistical theory 
and practice of the last few decades. Similarly, with the notable exception 
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of galaxy clustering studies by Jerzy Neyman and Elizabeth Scott in the 
1950-60s, statisticians became unaware of the tremendous developments in 
astronomy. 

Mutual interest in astrostatistics has reemerged during the past decade. 
The comparison of astronomical data to astrophysical questions is becom-
ing increasingly complex, outpacing the capabilities of traditional statistical 
methods. About 500 astronomical papers annually have 'statistics' or 'sta-
tistical' in their abstracts, yet they rarely refer to contemporary statistical 
texts or monographs for methodological guidance. Statistical procedures 
implemented in Numerical Recipes (Press et al 1992) are used on a daily 
basis. 

Recent cross-disciplinary efforts in astrostatistics have produced valu-
able resources. A number of conferences have been held in Europe (e.g., 

Rolfe 1983; Jaschek & Murtagh 1990; Subba Rao 1997) and the U.S. 
(Feigelson & Babu 1992; Babu & Feigelson 1997), astrostatistical ses-
sions at large meetings are being organized, an introductory monograph 
on astrostatistics has emerged (Babu & Feigelson 1996), and the Statis-
tical Consulting Center for Astronomy is active (Feigelson et al. 1995; 
h t t p : / / w w w . s t a t . p s u . e d u / s c c a ) . A monograph on multivariate data 
analysis, with FORTRAN codes and bibliography of astronomical appli-
cations, is very relevant to the issues discussed here (Murtagh &: Heck 
1987). 

2. Statistics and Astronomical Surveys 

Large astronomical surveys from new high-throughput detectors and ob-
servatories are powerful motivators for more effective statistical techniques. 
Observatories now frequently generate gigabytes of information every day, 
with terabyte-size raw databases which produce reduced catalogues of 1 0 6 -
10 9 objects. These catalogues, which may include up to dozens of ob-
servational properties of each object, often contain heterogeneous popula-
tions which must be isolated prior to detailed analysis. Although there are 
many types of astronomical surveys with many different goals, the statisti-
cal problems arising in their analysis can often be divided into three stages. 
We treat the first two stages very briefly here to concentrate on the final 
phase. 

Reducing raw data into images The treatment of the raw data 
from the telescope or satellite observatory can be very complex, and has 
embedded within it many choices of statistical methods. These methods 
are typically described in internal technical memoranda which are rarely 
published or publically examined, and sometimes are invisible except for 
comments in source code. The IRAS Faint Source Survey Explanatory 
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Supplement (Moshir et al. 1992) offers a glimpse into this complex nether-
world: a median filter is applied to reduce noise; outliers are detected 
to remove particle events; overlapping scans are combined and interpo-
lated; fluxes are estimated with a trimmed mean; signal is extracted with a 
S/N > 3.5 criterion; distinct sources are devined by a complicated source 
merging procedure; sky positions are derived from recursive Kaiman filter-
ing and connected polynomial segmant fitting to satellite gyroscope time 
series data. The IRAS analysis benefits from robust statistcal procedures, 
such as the median and trimmed mean rather than the usual mean, which 
have been developed by statisticians over the past 20 years (e.g., Hoaglin 
et al. 1983). The problems addressed here are specific to each instrument 
and survey, and general advice has limited value. 

R e d u c i n g images t o ca ta logues The analysis of astronomical im-
ages can be very complicated. In sparsely occupied images from photon-
counting detectors (as in X-ray and gamma-ray astronomy), efforts con-
centrate on detecting sources above an uninteresting background. Methods 
include maximum likelihood analysis based on the Poisson distribution, 
matched filtering and Voronoi tesselations. In fully occupied grey-scale im-
ages, a wide variety of image restoration methods have been applied to 
deconvolve point spread functions and reduce noise: least squares fitting; 
Lucy-Richardson method; maximum entropy and other Bayesian methods; 
neural networks, Fourier and wavelet filtering (e.g., Narayan k Nityananda 
1986; Perley et al. 1989;, Hanisch k White 1993; Starck k Murtagh 1994; 
Lahav et al. 1995). Many of these methods rest upon developments in 
statistical methodology. 

Much work has also been directed to the automated analysis and classi-
fication of objects on images, particularly the discrimination of stars from 
galaxies on optical band photographic plates and C C D images. Each object 
is characterized by a number of properties (e.g., moments of its spatial dis-
tribution, surface brightness, total brightness, concentration, assymetry), 
which are then passed through a supervised classification procedure. Meth-
ods include multivariate clustering, Bayesian decision theory, neural net-
works, fc-means partitioning, CART (Classification and Regression Trees) 
and oblique decision trees, mathematical morphology and related multi-
resolution methods (Bijaoui et al. 1997; White 1997). Such procedures 
are crucial to the creation of the largest astronomical databases with 1-2 
billion objects derived from digitization of all-sky photographic surveys. 

The scientific product of multi-wavlength surveys is frequently a large 
table with rows representing individual stars, galaxies, sources or locations 
and columns representing observed or inferred properties. Often a single 
survey effort will produce multi-wavelength results, as in the four infrared 
bands of IRAS, the five photometric colors of the Sloan Digital Sky Survey, 
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or spectral bands in the ROSAT All-Sky Survey. Analysis of such data is the 
domain of multivariate analysis. We therefore concentrate on multivariate 
statistical methodology in the following sections. 

3. Fundamentals of Multivariate Analysis and Clustering 

A multivariate analysis often begins with the computation of simple statis-
tics of the sample: the mean and standard deviation of each variable; linear 
(Pearson's r) or rank (Spearman's ρ or Kendall's r ) correlation coefficients 
between pairs of variables. Statisticians often divide each value by the 
sample standard deviation for that variable (known as 'standardizing' or 
'Studentizing' the sample), while astronomers often take a log transform or 
consider the ratio of two variables with the same units. 

Study of pair-wise relationships between variables provides a valuable 
but fundamentally limited view of the data. A multivariate database should 
be viewed as a cloud of points (or vectors) in p-space which can have any 
form of structure, not just planar correlations parallel to the axes. The 
sample covariance patris 5 contains information for this more general ap-
proach, and lies at the root of many methods of multivariate analysis de-
veloped during the 1930-60s. The method most widely used in astronomy 
is principal components analysis. Here the 1st principal component is e\X 

where e/- is the eigenvector of S corresponding to the kth largest eigen-
value. This is equivalent to finding by the direction in p-space where the 
data are most elongated using least-squares to minimize the variance. The 
second component finds the elongation direction after the first component 
is removed, and so forth. Important applications in astronomy include 
the stellar spectral classification (Deeming 1964), eludication of Hubble's 
tuning-fork spiral galaxy classification system (Whitmore 1984), and char-
acterization of relationships between emission lines, broad absorption lines 
and the continuum in quasar spectra (Francis et al. 1992). 

In canonical analysis, the variables are divided into two preselected 
— 1/2 

groups and the eigenvectors of the cross-sample covariance matrix S n S12-
1 1/2 

S22 S2iSu gives the principal linear relationships between the two sets 
of variables. This might be used to relate stellar metallicity variables with 
kinematic variables to study Galactic chemical evolution, or stellar mag-
netic activity indicators with bulk star properties to study dynamo theory. 

A sample, collected from one or more multiwavelength surveys, often 
will not constitute a single type of astronomical object. Variance-covariance 
structure residing within the matrix S may thus reflect heterogeneity of the 
sample, rather than astrophysical processes within a homogeneous class. It 
is thus important to search for groupings in p-space using multivariate 
clustering or classification algorithms. Dozens of such methods have been 
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proposed. Unfortunately, most are procedural algorithms without formal 
statistics (i.e., no probabilistic measures of merit) and there is little math-
ematical guidance which produces 'better' clusters. 

Hierarchical clustering procedures produces small clusters within larger 
clusters. One such procedure, 'percolation' or the 'friends-of-friends' algo-
rithm is a ffavorite among astronomers. It is called single linkage cluster-

ing obtained by successively removing the longest branches of the unique 
minimal spanning tree connecting the η points in j^-space. Single link-
age produces long stringy clusters. This may be appropriate for galaxy 
clustering studies, but researchers in other fields usually prefer average or 

complete linkage algorithms which produce more compact clusters. The 
many varieties of hierarchical clustering arise because the scientist must 
chose the metric (e.g., should the 'distance' between objects be Euclidean 
or squared?), weighting (e.g., how is the average location of a cluster de-
fined?), and criteria for merging clusters (e.g., should the total variance or 
internal group variance be minimized?). 

An alternative method with a more rigorous mathematical foundation is 
k-means partitioning. It finds the combination of k groups that minimizes 
intragroup variance. However, it is necessary to specify k in advance. 

4. Methodological Challenges from Astronomical Surveys 

Many astronomical surveys are not amenable to traditional multivariate 
analysis and classification, and present serious needs for methodological 
advances by statisticians. Four major difficulties are outlined here. 

First, fluxes or other measured quantities are subject to heteroscedas-
tic measurement errors with known variances. That is, each variable 
of each object has an associated measurement of the variable uncertainty, 
and these uncertainties can differ for each object. Surprisingly, statistical 
methodology is very poorly developed for such situations. For instance, 
there is no clustering algorithm that weights points by their known mea-
surement errors. Only the LISREL model of the multivariate linear regres-
sion problem can begin to treat known heteroscedastic measurement errors 
(Jöreskog & Sörbom 1989). 

Second, objects may be undetected at one or many wavebands, leading 
to upper limits or censored data in one or many variables. A mature field 
of statistics known as survival analysis, developed principally for biomedi-
cal and industrial reliability applications, has been developed for censored 
datasets. A suite of survival methods is now widely used in astronomy 
(Feigelson 1992). However, most survival statistics apply only to univari-
ate problems; Cox regression, the principal multivariate technique, permits 
censoring only in the single dependent variable. A more general partial cor-
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relation coefficient based on Kendall's r, which permits censoring in any 
or all variables, has recently been developed for astronomers (Akritas & 
Siebert 1996). But a full multivariate survival analysis is not yet available. 

Third, astronomical surveys are virtually always suffer truncation in 
one or more variables due to sensitivity limits of the telescopes. This can 
create spurious structure in the variance-covariance matrix and makes the 
sample distribution a biased estimate of the underlying population. As 
with censoring, little statistical attention has been directed towards such 
datasets, except for linear regression problems in econometrics (Maddala 
1983). 

Fourth, following the traditions of celestial mechanicians of previous cen-
turies, modern astronomers often seek to constrain parameters of non-
linear astrophysical models. Multivariate methodology was largely de-
veloped to assist social sciences and industry where such modeling does not 
arise. While least-squares regression techniques can be extended from lin-
ear to non-linear functions (e.g., the orthogonal distance regression package 
O D R P A C K ) , such methods fail in the presence of heteroscedastic measure-
ment errors, censoring and truncation. Often the model is so complex, par-
ticularly if survey selection effects are included within it, that the results 
are available only through Monte Carlo simulation. A possible approach 
to such parameter estimation problems is through half-space projections 
(Babu & Feigelson 1996). 

While these issues have yet to be adequately addressed by statisticians, 
some recent methodological advances can have significant benefits to as-
tronomers. First, a number of approaches have emerged to facilitate both 
linear and nonlinear modeling of multivariate datasets. Projection pur-
suit regression uses local linear fits and sigmoidal smoothers to model non-
linear behavior (Huber 1985; Friedman 1987). Multivariate Adaptive 
Regression Splines (MARS) and a variety of similar methods fit the data 
with multidimensional splines (Friedman 1991). These methods are based 
on reasonable, but not unique, proceedures for parsimoniously choosing the 
number of parameters that avoid overfitting the data. 

Second, astronomers can greatly benefit from visualization tools that 
permit powerful exploration of complex multivariate datasets. X G o b i pro-
vides a 2-dimensional 'grand tour' of the database by displaying various 
projections of the data, with flexible interactive choice of variables, color 
brushing and projection pursuit options. ExplorN, operating on Silicon 
Graphics computers, gives a d-dimensional grand tour, saturation brushing 
and parallel coordinate plots. XNavigator travels through the database 
along local principal components. 

Finally, we note that this brief paper omits many topics in multivariate 
statistics with potential importance for astronomy. These include non-
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parametric methods, Bayesian approaches, outlier detection and robust 
methods, multicollinearity and ridge regression, goodness-of-fit measures, 
nonparametric density estimation, wavelet analysis, bootstrap resampling 
and cross-validation, mathamatical morphology, and many aspects of tra-
ditional multivariate analysis. The methodology for understanding multi-
variate databases is vast and constantly growing. 

5. Astrostatistics References and Codes 

Multivariate statistics are briefly reviewed in an astronomical context by 
Babu & Feigelson (1996), and are more thoroughly described (with FOR-
T R A N codes) by Murtagh & Heck (1987). Many monographs presenting 
multivariate statistics are available, such as Johnson & Wichern (1992). 

While commercial statistical packages are the most powerful tools for 
implementing statistical procedures, a cosiderable amount of software is in 
the public domain on the World Wide Web. An informative essay on sta-
tistical software by Wegman (1997) can be found at 

http ://www.galaxy.gmu.edu/papers/astrl.html. 
Information on commercial statistical software packages such as SAS, SPSS 
and S-PLUS is available at 

http ://www.stat.Cornell.edu/compsites.html. 
Significant archives of on-line public domain statistical software reside at 
StatLib (http://lib.stat.cmu.edu) and the Guide to Available Mathe-

matical Software (http://gams.nist .gov). StatLib provides many state-
of-the-art codes useful to astronomers such as XGobi , ODRPACK, loess 
and M A R S . Penn State operates the Statistical Consulting Center for As-

tronomy (http://www.stat.psu.edu/scca) for astronomers with statisti-
cal questions, and is initiating a site with links to statistical software on 
the Web (http://www.astro.psu.edu/statcodes). 
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