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Abstract. Let G be a connected reductive group defined over a local non-Archimedean¥field
with residue fieldF,; let P be a parahoric subgroup with associated reductive quakientf o

is an irreducible cuspidal representationMif[F,) it provides an irreducible representation Bf

by inflation. We show that the paiP, o) is an &-type as defined by Bushnell and Kutzko. The
cardinality of & can be bigger than one; we show that if one repla@esy the full centraliser

P of the associated facet in the enlarged affine buildingsofand o by any irreducible smooth
representatio of P which containso on restriction then( £, &) is ans-type for a singleton set

s. Our methods employ invertible elements in the associated Hecke al@&loraand they imply

that the appropriate parabolic induction functor and its left adjoint can be realised algebraically via
pullbacks from ring homomorphisms.
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Introduction

Let G = G(F) be the group of rational points of a connected reductive group
defined over a local non-Archimedean figld Let B8(G) be the set of classes

of irreducible supercuspidal representations of rational Levi components of ra-
tional parabolic subgroups @ under the equivalence relation arising fram
conjugation and twisting by unramified quasicharacters of Levi components. If
m is an irreducible representation 6f, then it determines a unique element of
B(G) which we denote by (;7) and call thanertial equivalence class of. (This
notation and definition is taken from [BK2].)

Now let & be a subset of8(G). In [BK2] the authors define the notion of an
&-type. This is an ordered paik, p) wherekK is a compact open subgroup Gf
and p is an irreducible smooth representation ©fwith the following property:
an irreducible smooth representatisnof G containsp if and only if the inertial
equivalence clas$(x) of = belongs toS. The authors show thab-types have
many remarkable properties. In particularyifdenotes the space pfand(r, V)
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is a smooth representation Gflet vV, = Homg (V, V). Then the functo® — 7V,
induces an equivalence of categories between the cate&g®y(G) of smooth
representations aff generated by thejp-isotypic component and the category of
(unital) #¢(p)-modules. Here#¢ (p) = F(G, p) denotes the algebra gfspherical
functions onG with compact support, whergis the contragredient gf. The pro-
totype (due to Borel [B]) of ali5-types is the paitB, 1) whereB is the centraliser
of an alcove of the enlarged building f6r, and 1 denotes the trivial representation
of B. (In general the full centraliser of an alcove may be larger than the Iwahori
subgroup that it contains.) Bushnell and Kutzko provide many other non trivial
examples of5-types in [BK2] arising from their work ofsI.,, andSL,,.

The prototype in the preceding paragraph can be generalised substantially in
the following manner. LeP be a parahoric subgroup 6f with reductive quotient
M, and leto be an irreducible cuspidal representationMf One can views as
a representation aP by inflation. Theorem 4.8 of this paper asserts that the pair
(P, o) is an &-type whereS is a finite set; in factS = {[L, p1],...,[L, p,]}
where L = ILL(F) is the group of rational points of a canonically chosen Levi
component. We remark that the numberan be larger than 1. The proof proceeds
by associating taP a Levi componeni. in a canonical way; in fact i? is any
parabolic subgroup containirigwith a Levi decompositio? = L. - U there is an
Iwahori decompositiofP "U(F)) x (PNL) x (PNU~(F)) — P.Further,LNP
is a maximal parahoric subgroup bf The proof of Theorem 4.8 then depends on
the following facts:

(i) Any irreducible smooth representation @Gfwhich contains a cuspidal repres-
entation of a maximal parahoric subgroup must be supercuspidal, and
induced from an open, compact mod centre subgroug.dqSee Proposition
4.1)

(i) The intertwining algebra# (G, o) contains invertible elements which are
supported on double coselfsl P whered is strongly (P, P) -positive This
is pointed out in Sections 2.4 and 3.3.

(i) There is an isomorphism of isotypic componer#§ — (Vy)°v, for any
smooth representatiofrr, V) which contains the type. Here as usuaby
denotes the (unnormalised) Jacquet module. This is pointed out in Lemma
3.6; to prove it one uses property (ii) above. We remark that results of this sort
go back to Jacquet; see [Cs].

As a variation, let? be the full centraliser irG of the facet associated B,
andé be an irreducible representation Bf U which containso. We show that
(P, &) is ans-type for a singleton set; see 4.7, 4.9. Lemma 3.9 is the vehicle
we use to prove this; it is of independent interest. (See also the remark following
Theorem 4.9.)

Property (iii) above has another consequence. We have the algé#haso ),
H (L, oy), and their respective categories of unital modules. On the other hand we
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have the categorie®)i, (G), and&R,,, (L), and the categorical equivalences men-
tioned above. Theorem 4.8 implies that the (unnormalised) induction functor and
(the projection of) the Jacquet functor provide adjoint functors betw&Bn (G),
andG&MR,, (L). (See Theorem 4.10.) Theorem 4.12 says that these functors can be
realised algebraically via (pullbacks of) a ring homomorphism fegitL, o) to

H# (G, o). This amounts to showing that one can apply Corollary 8.4 of [BK2].

Corrigenda

(i) The group denoted byf in [M]3.15 and elsewhere in that paper, should be
replaced by the groufl = kerv’ in 1.6 below.

(i) Contrary to what is asserted wp. cit. 3.15 the grou@? N P need not be
special in’; see 1.7 below. This does not affect the proofs. In particular, in
op. cit.4.14 the subgroup ; need not be special.

Notation and Conventions

F: complete non-Archimedean field;

ring of integers ofF;

maximal ideal ofo;

residue fields/p (¢ = p", wherep is some prime numbgr
connected reductiv&-group;

maximal F-split torus in the centre db;

. maximal F-split torus inG;

Zs(X) (resp.Ng(X)): centraliser (resp. normaliser) @ of X.

In general ifV is an algebraidr-variety we shall writeV for the setV (F); we
make an exception for parabolic subgroups and their unipotent radicals

H T o
Y AT =

Remark In this paper, the expression ‘parabolic subgroup’ will always mean
‘ F-parabolic subgroup’. If? is such a group with unipotent radic@l we shall
write P(F), U(F) respectively for theiF-rational points. IfL. is a Levi component
for P, we shall writeL = IL(F). We remark that all Levi decompositions will be
assumed to be defined ovEr

In fact, we shall writeP, Q, etc., for parahoric subgroups @ = G(F).

Other notation is explained as needed.
1. Preliminaries
1.1. We begin with a quick review of the relevant aspects of the theory of reductive

groups. Thus leG denote a connected reductive group defined évand letd
be the set of relative roots with respect to some maximaplit torusT; when
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necessary we shall writa for the set of simple roots corresponding to the choice
of a minimal parabolic subgroupy.

1.2. LetP be a parabolic subgroup with a Levi decomposifive- L. - U.

THEOREM. (i) There is a unique parabolic subgrolp containinglL with Levi
decompositiolP~ = I - U~ with the property thal N U~ = {1}.

(i) LetP~ be as in(i). There is anF-isomorphism of varietie§~ x L x U —
P~ - P induced by the multiplication maghe image is a Zariski open subset@n

Proof. Except for theF-statements, (i) and (ii) are contained in [Bo] 14.21PIf
is defined overF so isP~ ([Bo] 20.5). The multiplication map is defined ovet,
so the rest of (ii) follows since the image of @&amorphism is anF-variety ([Bo]
AG14.3). O

DEFINITION 1.3. We shall call the group— the opposite parabolic subgroup to
P (with respect tdL).

PROPOSITION 1.4If Sis an F-split subtorus ofT thenZg(S) is the Levi com-
ponent of a parabolic subgroup &f.
Proof. This is Proposition 20.4 of [BO]. O

1.5. We takeT, @, Py, A just as above, and we writd¥ for the spherical Weyl
group of the root systenrp. Let X be the set of affine roots associated to a reduced
root systent X in the same real vector space as the root sysbenith affine Weyl
group W’. We assume thdt and® have the same Weyl group. This is equivalent
to assuming that ife € ® theni(x)a € 'Y for a positive real numbex and that

the mape — A(a)a is onto. A typical element of ¥ can be written aPa + k
whereDa € "X andk is an integer; we refer t®a as thegradientof a. There is
also a homomorphismy: W’ — *W.

DEFINITION. An échelonnage ¢ @ x X of ® by X is a subset which satisfies
the following properties:

(E1) if (@, a) € & thena is a positive multiple ofDg;
(E2) ifw € W and(«, a) € &€ then(Dw(x), wa) € &;
(E3) the projection maps fro@ to @, X are onto.

Remarks(i) If (¢, a) € & we say thaty, Da areassociated
(i) Let ®,, denote the set of non-divisible rootsdn Then (E1) and (E3) imply
that there is a bijectiop: "X — ®,, such thatr = o (@) with @, > 0.

1.6. Now we quickly review some aspects of Bruhat-Tits theory; as a general
reference we suggest [T]. The grotp = G(F) is naturally furnished with the
structure of a second countable locally compact Hausdorff totally disconnected
group & t.d. group in brief). The work of Bruhat and Tits associates(@, T)

an échelonnagé c ® x X. We remind the reader that the ambient vector space
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V on which the roots in eithe® or X act as functions is the real dual of the
subspace ok » (T)®R generated byb, whereX (T) denotes the lattice of rational
characters. In turn, from this and a choice of simple affine roos ane obtains
a normal subgrougy’ in G, a compact open subgroup in G’ and a subgroup
N’ = N (T) in G’, and a set of reflectionS in W’ such that(G’, B, N', S) is
an affine Tits system with respect to the syst&m(For the definition ofG’ see
[BT2]5.2.11.) In particular there is a surjectioh N’ — W'. We denote the kernel
of v/ by H; it is a compact normal subgroup of the gratip(T)(F). We note that
N’ € N = Ng(T), and the triple(G, B, N) is ageneralisedaffine BN-pair in the
sense of [M]3.2. The generalised affine Weyl group here is the qudtieat N/ H;
we writevy: N — W for the natural projection.

Any subgroup conjugate iw (or G’) to B is called anlwahori subgroup of
G. The affine Tits systemiG’, B, N’, S) gives rise to a polysimplicial complex on
which G andG’ act, preserving the simplicial structure. The geometric realisation
of this complex is called thaffine building associated @', B, N’, S); we denote
it by £. In fact 4 is obtained by pasting together copies (cabgértment} of an
affine Euclidean spacé whose underlying space of translations/isbove. The
points of A correspond tovaluationsof (G, Zg(T), (Uy)ees). FOr more on this
see [BT1]6.2. In particularA embeds intal. The groupN’ acts onA as a group
of affine automorphisms with kernéf. Furthermore, the affine root system
partitions A in the usual way intdacets it is this partition which gives rise to the
underlying simplicial structure af. Thus the facets ofA are facets ofl and any
facet of { is a translate by an element Gf of a facet ofA. We remark that the
choice of a different apartment amounts to choosing a diffeferthe resulting
€ is the same. Thé&'-centralisers of facets it are calledparahoric subgrougs
in particular the centralisers of chambers (facets of maximal dimensiahgie
conjugates ofB. Any parahoric subgroup is a compact open subgrou@.dbee
[BT1] 6.2, 6.5, and Section 2. Finally we hate= B N N’.

WARNING. The subgroup that we employ here isotthe H employed ifBT1,
BT2]. The subgroup that we denote Hyis denoted by7° in [BT2]4.6.3(4),0r by
3%(0% inibid. 5.2.10.

For many purposes thenlarged building4! is a more convenient object; in
particular it guarantees that the centralisersirof facets will be compact open
subgroups ofG. It is defined as follows. Lev! denote the dual ok »(G) ® R
where as usuaX (G) is the group of rational characters@®f Thend! = 4 x V?!
and the action o0& on 4 (which we have not explicitly defined) is extended to one
on 41 by definingd: G x VI — VibyO(g)(x) = —w(x(g)), forall x € Xz (G).

We identify 4 with 4 x {0}, and we writeG* for the stabiliser inG of this
set. A facet¥ in 4 corresponds to a facetl = F x V1in 41 We write Py
for the centraliser inG of the facetF* < (. It is also the centraliser iG* of
F1, and it is the centraliser i of the ‘facet’ ¥ x {0} in 41. We always have
G' C G, if G is semisimple we havé = G!, and{ = 41. We note that the group

165882.tex; 23/08/1999; 9:09; p.5

https://doi.org/10.1023/A:1001019027614 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001019027614

140 LAWRENCE MORRIS

G' € G = G(F) is the subgroup of; generated by the connected centralisers
(= parahoric subgroup®f facets of the enlarged building.

We haveG/G' = N/N'.WesetQ = N/N'. LetW = Ng(T)(F)/H be the full
affine Weyl group associated t&, T). It is a semidirect product’ x € where
€ is the subgroup of elements stabilising some specified alco® in particular
under the obvious projection mag — W/ W' the groupQ maps isomorphically
to . The groupN acts onA by affine transformations; this defines a magv —
Aff (A) (as in [BT1]), which factors throughy, . Indeed the generalised affine Weyl
group W is an extension of W by the groupD = Zg(T)(F)/H; hereD is an
extension of the latticZ g (T)(F)/kervy by the finite Abelian group kery /H.

1.7. The choice ofB amounts to choosing a set of simple affine roftsn X,

and one can attachlacal Dynkin diagramto this in a way similar to the usual
case of ordinary root systems. For exampl&ifis split this diagram is just the
usual completed Dynkin diagram. ¥ is a facet inA C { we take the seEs# of
affine roots vanishing ofF . The set of rootsbx € & associated to this set is a
not necessarily closed subroot systemdoffor example, ife € ®« it need not

be the case thate2e @5 ; we denote its closure Byd . We remark that it can
happen that®y = @ if & is a nonspecial vertex, evendf is reduced; ifG is
split this does not occur. In particular, I€tbe a facet in the closure of the chamber
(alcove) corresponding tB. Then¥ also corresponds to a subset= Jz C T1
giving rise to afinite reflection groupW, and a subset ofT; the groupW, is
generated by the fundamental reflections associated to the elemgn{EhEnWw,

is the Weyl group ford & (but not necessarily® <), and the Dynkin diagram for
®+ is obtained from the local Dynkin diagram by striking out all the nodes not
corresponding to elements @gfand all edges meeting such a node. Each of these
objects only depend off’; we sometimes writ® ; instead. See [T] Section 1 and
[BT1] 6.2,6.4.

1.8. The root systend; has the following interpretation. L&? be the parahoric
subgroup centralising the facgt There is a short exact sequences=0U — P —
M — 0 whereU is an open compact prg» subgroup ofG and M is the group
of IF,-rational points of a connectef,-reductive grougVl. There is an obvious
o-split torus schem& whose generic fibre i and whose reduction mdg, gives
a maximallF,-split torusT in M. The root system foM with respect tdT is then
just®;. See [T] 3.5.1.

1.9. The structure of? can be described more precisely as follows. First, for
any elementx of ®,, leta(a, ) be the smallest affine root which is nhonnegative
on # and which corresponds @ by the map in 1.5: i.ep(Da(x, F)) = «.
For each affine roat with p(Da) = « there is a compact open subgrolip of

U, = U, (F). LetU™(¥) be the group generated by all thg,. ) for « € <I>,J{d =

®,, N ®* and define/ ~ (F) in a similar way. Her@b™ denotes the set of positive
roots with respect ta\. Finally let N'(¥) be the subgroup i’ which fixesF
pointwise.
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THEOREM. (i) The product ma;ﬂae@;j Us.7) — UT(F) is bijective for every
ordering of the factors, and similarly fay —(£).

(i) Pe =U(F)-UT(F)-N(F).

(iii) If # is a chamber, the product mdg
for every ordering of the product

(iv) LetU be asinl.8 For eachU,, #) as above IeUa*(m 7 = Va7 NU and
let H* = H N U. Then the product map[, ., . Uy, 7 x H* — U is a bijection
for every ordering of the product

Proof. Statements (i) and (ii) are proved in 6.4.9 and 7.1.8 of [BT1]. Statement
(iii) is proved in 6.4.48 ofop. cit. Statement (iv) also follows from that result, on
using the concave functiofit of 6.4.23 ofop. cit. O

wed,y Ua@s) < H — B is a bijection

1.10. LetP = P; be asin 1.8. There are then the subroot systems “®; C ®.
Since‘d; is closed there is a connected reductirsubgroug)t ¢ G containing
T and which has the relative root systém; with respect tdl . Indeed this group
is generated by those root groups with « € “®,, and byT. (One may have
<M = G when P is maximal but not special.) We 181" C 9t(F) be the subgroup
generated by th&, (F) with « € “®,, and byH.

PROPOSITION. (i)Iif P = P& for a facet¥ in the apartmentA with respect to
T then P N9V is a parahoric subgroup dbt, and there is a short exact sequence
O—-UNM - PeNIM — M — 0.

(i) Similarly, if P = P5 for a facet in the apartmentd with respect toT
then 2 N 9V centralises a facet fomt, and there is a short exact sequence

O UNM = P NI — M — 0.

Proof. Let M1, be the group generated by thg with « € “®;. Then' =
H - 9,. Taking the valuated root syste@,).cs that gives rise to the affine Tits
system(G’, B, N’, S) and applying [BT1] 7.6.3 (see also 1.12 below) to the groups
G1 =9 andGJ = M, we see that we obtain a valuated root systerfiénNow
observe that the group, of loc. cit. is just the groupH - (Zg(T)(F) N M) In
particular this enables us to apply Corollary 7.6.®pf cit, which implies (i), and
the proof of (ii) is similar. O

1.11. There is a bijective correspondence between parahoric subgroups contained
in P and (F,-rational points of) parabolic subgroups of the grdup This cor-
respondence is realised gy — U\ Q. This is part (i) of Proposition 5.1.32 of
[BT2].

1.12. We conclude this section by comparing parahoric subgroups of a Levi com-
ponentL = IL(F) (as in 1.2) with parahoric subgroups 6f Let L be a Levi
component ofG defined by some subsé& of the set of simple roota\ as in

1.3. ThusL = Zg(S) whereS = (1, kera. The set® is a basis for a closed
subroot systemby ; indeed this last is the root system fdc, T). Let L', L* be
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the analogues fok of G’, G, and letL° be the subgroup dL generated by the
root groupsUy(F),« € ®1. ThenL’ = H - L% andL! = (Z5(T) N LY)LO.
For the time being leL; be any subgroup of. which is generated by.° and a
subgroupZ;(T)t € Z;(T) which containsZ; (T) N L°. According to [BT1]7.6.3
if ¢ = (¢o)aco IS a valuation for(G, Zg(T), (Ua)aeo) theng,, = (¢y)ace, iS @
valuation for(L1, Zg(T)Y, (Us)wca, )-

We write V (L), A(L), (L), ..., etc. to denote the corresponding objects for
L that have been defined previously f6r We also letVi(L) = (), kere,
where now the intersection is taken in the vector spdocef 1.6, and we define
Vi(L) = V/V(L); this last space can be identified with(L). In particular there
is a natural mapz:V — V(L). If we suppose that &W-invariant inner product
has been chosen dn with orthogonal projectiorp: V. — V(L) thenV (L) can
be identified with kerp. As before, we can form the buildings(L), £(L,); as
complexes these are the same, with the actioh ektending that of.;. We then
have the following facts.

(i) Let = be the mapA — A(L) defined byy + v — ¢, +" 7 (v). Proposi-
tion 7.6.4 in [BT1]) says that

(a) there is a uniquéd.,-equivariant mapz: L1 - A — J{(L;) extendingr; the
inverse image of an apartment, half-apartment, wall, is an apartment, half-
apartment, wall inf;

(b) there is a unique actiovi*(L) x L1- A — L1 - A extending the actio (L) x
A — A; this action factors througf and the quotient map defines a bijection
(Ly- A)/VYL) — (L.

Note thatL; - A has the structure of a polysimplicial complex, inherited from
that of £. The definition of affine roots fol (L) implies that if # is a facet in
L, - A thensz (¥) lies in a unique facet, but this image is not necessarily a facet.

(i) Let @ € Li-A C J; write 139 for the pointwise centraliser g2. Then
[BT1]7.6.5 says in particular that

(@) Po N L1 C P; g (the pointwise centraliser i, of 7 (£2)), and
(b) if theAsubgroung(T)l is contained in kenf o v) wherev: Ng(T) — Aff (A)
thenPo N L, = Pﬁ(Q).

(i) Now choose a poinp € A and consider the affine subspace ker p. We

can then formy’ = L°. (¢ + kerp) € 4 sinceL® € G. According to
[BT2]4.2.17,

(a) the restriction ofr in (i)(a) provides arl.%-equivariant isometryt’: ' — {(L)
extending the map + kerp — A(L);

(b) the inverse of 7’ provides a bijectior{y, v) — j(y) +v from (L) x V(L)
foL - A;

(c) there is a homomorphisi(L,): Ly — V(L) such that forany € Ly, y €
J(L),ve VHL), £-(j()4v) = j-y)+v+0(L1)(€), andd(L1)| Z6(T) =
pov;6(L)|L°=0.
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The affine subspace+ ker p inherits a polysimplicial decomposition fror
We note that the isometries, j take facets to facets.

(iv) Taking L; = L in (iii) and applying the definitions of', 4(L)* one de-
ducesop. cit. 4.2.18 thati(L)! can be isometrically identified with the smallest
subset off! stable byZ and containing the ‘enlarged’ apartmetit< V. Under
this identification the map, for the enlarged building.(L)* which corresponds
to the map in 1.6 for G, is given byd (L) + 6; thus L' = kerd (L) N keré.

LEMMA 1.13. Let ¥ be afacetinL - A, P = Pz and P C P the corresponding
parahoric subgroup. Then

i) PN L= PN Listhe centraliser of a facet i :
PNL'*=PNListh tral f a facet ii(L)*
ii N L' = P N L is a parahoric subgroup irL.

PNL =PNL h b L

Proof.From 1.12(i) we see that(#") lies in afacetf; in (L) and%;, identifies
with a facet; (£.) in the complext’ of 1.12(iii). Applying 1.12(ii) to the grougd.’
we see that ifP = P is a parahoric subgroup i@’ then P N L' is the parahoric
subgroup inL’ for the facetj (¥7). Now, P N L C ker6 (L) Nkerd by 1.12(iii)(c),
henceP N L C P;,)x(0)x(0)- But this last group only differs from its connected
component by elements 0Z,;(T)N LY — H € Z;(T) — H and these cannot lie
in P in any case. This proves (ii).

Applying 1.12(i)—(iii) in a similar way to the group® we see that i c G*
fixes pointwise a facet iih - A then? N L1 is the full centraliser in.* of a facet in
J(LY) = 4(L) , hence the centraliser ib® of a facet inf(LY) = £(L). Thus it is
the centraliser irl. of a facet ing(L)?. 0

2. Parabolics and Parahorics

2.1. We now fix a facettF" € A and letP = Pz be the associated parahoric
subgroup, with corresponding short exact sequenee @ — P —- M — 0 as
in 1.8, and associated root systém = ®4. As in 1.6 we write P for the full
centraliser inG! of . We remark thatP is the group of integral points of the
connected component of a smoetigroup scheme? such that? (o) = P. There

is an exact sequence-8 U — P — M — 0, whereM is the group of rational
points of a reductivé?q-groupM, and the group denotddl in 1.8 is the identity
component ofV.

Recall the grouplt in 1.10; it has a centre containing &nsplit componens.
The centraliser o6 is a (connected) reductivie-grouplL. Note thatSis the F-split
component oZy: we havel. > 99t so the F-split component oZy, centralises
M and containsS, hence it must b&. Moreover,S = Z(G) if and only if P is
maximal.

THEOREM.The grougL is the Levi component of a parabolic subgrdeig= L.-U;
setL = L(F). Furthermore, the following properties hold
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(i) P NL = Qis the centraliser in_ of a vertex oft (L)}, andQ = PN Lis a
maximal parahoric subgroup df, which is contained irQ. There are short exact
sequenced > UNL —>Q—>M —>0,0>UNL—> Q> M — 0.

(ii) LetP be a parabolic subgroup containifg with Levi decompositiol? =
L - U. There is a homeomorphism in tipeadic topology

UﬂU_xﬁﬂLxUﬂUeﬁ,

and there is a similar decomposition for the groBp

Proof. The first assertion follows from 1.4 and the first exact sequence follows
from the observation thad contains the subgroup N M1" and this group projects
onto M as in 1.10. Now lef® = IL - U be anF- parabolic for whichL is a Levi
component. (Note that iP is maximal therP = G trivially satisfies (i), (ii) and
(iii).)

Applying 1.13 we see thaP N L is the centraliser of a facet in the enlarged
building for L, andQ = P N L is the corresponding parahoric subgroup. The
remark above implies tha@t is the connected reductive subgrouploéssociated
to 0 as in 1.10. The definition of affine roots fd(L) and the identifications of
1.12 imply immediately thaff () is a point; in fact it is not difficult to see by
unravelling the definitions in 1.12—-13 that it must be a vertex. Alternativel@, if
were not maximal inL we could repeat the argument aboveliitself to produce
a proper Levi componer within L with the same properties (with respectlto
and Q). Sincelt is the connected reductive subgrouplofissociated t@) we
haveK = Z1.(S) = L. It follows that Q is a maximal parahoric subgroup Inas
claimed. For the last part of (i) observe tan L containsP N <M’ which projects
onto M as in 1.10; similarly? N L containsP N 9 which projects ontd!.

To prove (ii) recall from 1.2 that given any parabolic subgr@ug L - U with
opposite parabolic subgroup- = L - U~ there is an isomorphism of varieties
induced by multiplicationlU x . x U~ — P - P~ and the image is an open set
in G. In particular, ifP is defined overF we can takeF'-valued points to get a
homeomorphism in the-adic topology onG. Now consider the restriction

PNUXxPNLxPNU — PN -P)F).

To finish we need only show that the image is allfafLetx € P; by (i) we can
find/ € PN L with y = [~1x € U. If I is any lwahori subgroup contained in
thenU C I; this follows immediately from 1.11. Invoking [BT1] 6.4.9, 6.4.48 we
see that (ji) is true if we replacg by I, hence it is true if we replacg by U. (See
1.9)Writey = uymu, withm e UNL,u; e UNU(F),up; € UNU(F). Thus

x = luymu,. SinceP N L normalisesU N U we can rewrite this as = vimu,
with v € U NU. The argument foP is the same. O

Remark2.2. Although(P N L)° is maximal inL, it is not usually special in
L (as easy examples show), everPifn 9i(F) is special ifi(F). (Observe that
PNIMM(F) = PN becaus@t’ istoM(F) asG'istoG.)
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2.3. We assume thétis standard with respect to the bagiof 1.3. Thudl = Lg
for some® C A, and we writeS for its split centre. WriteL = IL(F) as usual;
observe thal C L. The generalised affine Weyl growg, = W, s, for L is an
extension ofD (see 1.6) byWoy = "W, C 'W.

Let X.(S) denote the group of rational cocharactersSoRecall that there is
a homomorphisnHs: S — X,.(S) ® R defined byHg(s)(x) = —ordg(x (s)) if

2.4. Now letP,IL, Q = P N L be the particular subgroups of Section 2.1. Fre
split torusS acts onU by conjugation; from this one obtains a set of weights which
we denote byd (P, S)*. The elements of this set can be obtained by considering
the nontrivial restrictions t& of the roots ind*; if we write A(P, S) for the set of
nontrivial restrictions of the elements of the basithen each element df (P, S)™

can be expressed as a linear combination of elememgBfS) with nonnegative
coefficients. (As usual, we are assumings standard.)

Since the elements @ (P, S) are rational characters f&; obtained by restric-
tion from the elements ob we can writeS*t = {s € S(F) = S|Hs(s)(a) >
0}, € A(P, S). We defineS*™* by replacing inequality by strict inequality in the
definition above.

LEMMA. (i) Lets € S*. Then
s(UFRANU)s T CcUF)NU; s HU(F)NU)s CU(F)NU.

(i) If s € ST then

(a) For any pair of compact open subgroups and H, of U(F) there is a non-
negative integen such thats” Hys ™" C H,.

(b) For any pair of compact open subgroufgs and K, of U~ (F) there is a hon-
positive integer: such thats” K1s™" C K.

Proof. In (i) we shall only prove the second assertion. We suppose that the
parabolic subgroufy corresponds to the subsetC A. The groupU-~ is directly
spanned by root grougds, wherey € ®,;, andy = ), _, mqa With at least one
o ¢ © with m, < 0. It suffices to show that*U, ,s € U, , if U,, CU,(F)isa
valuation group. Writgy = > _ .o maa+3) s mpp. If s € Sthen [BT2]5.1.22(2)
implies thats~'U, ,s = Uy r=30(Hs(s).om,; the assertion fos € S follows
immediately.

For (i) it is enough to showqf. [BK2] 6.14) that ifs € ST then

()" WE) NU)s™ = (1}, Us"wr nuys™ =UF),

n>0 n<0

or again thasU, ,s™* ¢ U,,,s"*U,,s 2 U,,, if U,, € U,(F) C U(F)is a

- =

valuation group. This follows from the argument for (i). O
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2.5. In the language of [BK2]6.16, Lemma 2.4 says that the elemerfisubifich
lie in ST arestrongly (P, P)-positive.

3. Invertible Elements in #(G, o)

3.1. We retain the notation of the previous sections. In particklas, P; and we
have the short exact sequence of 1.850U — P — M — 0. Let(o, V) be an
irreducible cuspidal representation of the grodp= M(IF,) with contragredient
representatiotis, V) This inflates to a representation of the graRipand we can
form the compactly induced representatioind$ (). The intertwining algebra
End; (c-Ind$ (6)) is isomorphic to the algebr# (G, o) = #(o) of &-spherical
functions onG with compact support where the multiplication in the latter is given
by the standard convolution product (see [M] Section 4, or [BK2] Section 2.6). In
[M] this algebra was analysed and described by generators and relations. Roughly
speaking it is an affine Hecke algebra twisted by a group algebra (with a 2-cocycle).
Indeed, letS; = {w € W | wJ = J}and putN; = P N N; thenS; is a
complement inVy, (W) to the finite groupW; and, moreover, one has

Ny(PNI)  Nw(W,)
Ny W,

Sy.

For this see [M] 4.16, 6.1. It then follows that
WJ,0)=W()={weS,|wo ~ao}

is well defined. (Note that can be viewed as a representationfon 9t'.)

PROPOSITIONThere is & canonically definedaffine Coxeter subgroufi(c) C
W (o) together with a(canonically definedcomplementC(c) W(c) = R(c) x
C(o). Moreover, there is a canonical choice for a set of simple roots in the affine
root system associated ®(o), once a set of set of positive roots has been chosen
in X.

This is proved in [M] 7.3. Henceforth we suppose that a set of positive affine
roots for the affine syster has been chosen, as well as the matching affine basis
in the root system associated wilo).

3.2. The definition o#¥ (o) implies the existence of a 2-cocygle W (o) x W (o) —
C*, which is nontrivial only onC (o) x C(o) . (See [M] 6.2, 7.11.)

THEOREM.The algebra# (o) is generated by elementy,, w € W (o) subject
to the following relations. Letv € W(o),t € C(o) and letv be a reflection in
R (o) corresponding to a simple roat (chosen as above B.1).

(I) Tth :M(w’t)th;
(") TtTw :M(taw)Ttw;
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Ty, if wla>0;

pava + (pa - 1)Tw’ |f nOt;

Tyo, if wa > 0;

(IV) TwTv = { .
PaTwy + (po — DT, ifnot.
Here p, # 1is a honnegative power gf (the residue characterisficand the
elementT,, is supported on one double coset of the faPw P wherew is an
element inV (T) such thatvy (W) = w.

This is Theorem 7.12 in [M]. We remark th&f(c') can be trivial.

3.3. Now consider the translatiofig.J) in W (o) provided by the group of rational
points of the split centre dbt’. They always provide a lattice iW (o) of rank at
least as large as the lattice of all translations in the group dertdd [M]7.3.
(See also [M]2.6-2.7.) Further, their definition and that of the 2-cocyclensure
that . restricted to7' (J) is always trivial. (See remark (b) followintpc. cit.).

If we takew = v in 3.2(iii) and (iv) we see thaf, is invertible whenv is a
fundamental reflection in the ‘quotient’ affine root system. Then, by writing an
arbitraryw € R(o) as a minimal product of such reflections, we see fhats
invertible for any suchw, again using 3.2(iii) and (iv). In general we can express
w = rc Wherer € R(o) andc € C(o); sinceT, is invertible by 3.2(i), it follows
thatT,, is invertible by 3.2(i) or (ii) once again. In particular we have the following
result.

LEMMA. The element%,, d € T(J), are invertible

3.4. Let#H(G) = {f:G — C | f locally constant, compact supphpriThis is
an associative algebra with multiplication defined by convolutips h(x) =

Jo f(xg™Hh(g) dg.
With o as above define, € #(G) by

(1/vol P)dim(o) trace(x~1), if x € P;
eo(x) = .
{ 0, if not.

This is an idempotent i#(G); we then have the algebig * #(G) * e,
which has as an identity the elemegt From Proposition 4.2.4 of [BK1] there is
a canonical isomorphisnf: # (o) ®@c Endc (V) — e, * H(G) x e, .

It is realised in one direction in the following manner. We identify the left side
with #(0)®cV ®c V" where we denote the dual fby VY. ThenY (®Qu®U) is
the function¢ (g) = dim(o) (v, ®(g)v), where(, ) denotes the canonical pairing
onV x VV. The isomorphismr implies that the algebra® (o), e, * #(G) *e, are
Morita equivalent, hence their module categories are equivalent.This is realised as
follows. If M is an#(o)-module thenM ®¢ V is the corresponding, x #(G) *

e, (= H (o) ®c End-(V))-module. Conversely, iV is ane, x #(G) * e,-module,
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we view V" as a right End(V)-module and formV" ®gng.vy N. We then get

a #(o)-module via the right factor since there is an embeddit@y) — ¢, *
H(G) * e,. For more details we refer the reader to [BK1] Ch.4. We shall denote
the equivalence between the module categorie¥ hy

3.5. Now we takeP as in Section 2 with respect t8. We denote byy the
representation of. N P on V by restriction ofs: it is also the inflation ofo
on M = M(F,) (notation of 1.8) hence is irreducible. Lét, V) be a smooth
representation of;. We denote byw? theos-isotypic part ofV. Recall that there is
a representation off(G) on 'V defined byr (f)v = fG f)m(x)vdx.

Given (o, V) as above, andr, V) a smooth representation 6f we define
Vy, = Homp(V, V) >~ Homg(c — Indg(a), V), the isomorphism following from
Frobenius reciprocity for compact induction. The algelités) acts on the left
onc — Indg(a) via convolutiong * f(x) = fG () f(y tx)dy, if ¢ € H (),
and f € ¢ — Ind$ (o). On the other hand there is a canonical anti-isomorphism of
algebras with identity provided by the map— ¢ whereg(x) = (¢(x~1))".

This means thav, is canonically deft #¢(o)-module.

There is an obvious evaluation map ® V — V7; in terms of the canonical
isomorphismY of 3.4 one deduces that there is a natural isomorphis, &f
H(G) * e,-modulesV® ~ YT*(V, ® V) provided by this evaluation map. See
[BK2]2.13 for more details on this.

3.6. From Theorem 2.1 we have

O (PNUF))-(PNL)-(PNU(F)) =P;
(iiy oistrivialon P NU(F), P N U (F), since it factors througlh N P.

In the terminology of [BK2]6.1, (i) and (i) say that the pdiP, o) is decom-
posedwith respect tqlL, IP). Indeed 2.1 says that it is decomposed with respect to
(L, ") wherePP’ is any parabolic which containk as Levi component.

Lets € S. Recall from Section 2, thatlies in the split centre of. by construc-
tion. We have already seen that the elemé@hts (v as in 1.12(ii)(b)) are invertible,
hence any non zero element #f(G, o) which is supported o®s P is invertible.
Lemma 2.4 says that an abundance of sud@re strongly(P, P) positive. The
above observations tell us that Theorem 7.9 of [BK2] is applicable in this situation.
We immediately deduce the following lemma.

LEMMA. Let (, V) be a smooth representation 6f. Write (ry, Vy) for the
Jacquet module atr, V) with respect tdP. Then there is a canonical isomorphism
VO = (Vy).

This isomorphism can be described as follows. kv — Vy denote the
quotient map. We then obtain a mapHomy(V, V) = V, — Homy(V, Vy) =
(Vu)ey, by composing withr; hereQ = P N L as in Section 2. The map then
induces the isomorphism in Lemma 3.6.
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Remark If P is not maximal then the Levi componeit of 2.1 is proper.
Suppose thatr, V) is irreducible admissible containing, V). Then 4.1 implies
that the Jacquet modulgy cannot be zero. In particulagr, V) cannot be super-
cuspidal. This gives an alternative proof of [M1]3.5. We point that each of these
proofs requires some knowledge of the structure of the Hecke algebra.

3.7. The fact that the elements are invertible has a further consequence. Note
that in addition to# (G, o) there is also the intertwining algeb (L, oy) for

the pair(Q, oy). Letp € # (L, oy) have supporp£Q for somef € L. Because

(P, o) is decomposed relative td., P) there is a unique elemefity = & in

H (G, o) with support inP¢P; see [BK2]6.3. Let¥#* (L, oy) C H(L,oy) de-

note the collection of functions whose support is contained in a union of double
cosets of the fornp £ Q wherel is positive relative tq P, IP). Corollary 6.12, and
Theorem 7.2 obp. cit.then tell us in particular the following.

THEOREM. (i) #*(L, oy) is a subalgebra of#f(L, o) with the same identity
element
(i) The mapl’ induces an injective homomorphism of algebras with identity

T:#"(L,oy) - H(G,o0).

(iii) The mapT in (ii) extends uniquely to an injective homomorphism of al-
gebras with identity

t: #H(L,oy) —> H(G, o).

We remark that the proof of (i) and (ii) does not require the existence of an
invertible elemenft,, but that of (iii) does.

3.8. We now have accumulated the following results concerning the( pair)
and its relation withany parabolic subgrouff containing the Levi componeifit:
(i) the pair(P, o) is decomposed with respect (o, P);
(i) the representatiom is smooth irreducible for the (maximal) parahoric sub-
groupQ =PNLiInL;
(iii) there is a strongIy(P, P)-positive element € § ¢ Z(L)(F) such thatPs P
supports an invertible element &f (o).

In the language of [BK2]8.1 the paiP, o) is acoverfor the pair(Q, o).

3.9. The following lemma will be used in 3.10 below; it is of independent interest.
We start with a Levi componeidt in the groupG. Suppose thaf > J are compact
open subgroups iF. Now let# be a smooth irreducible representation/offhose
restrictiont | J containst.

LEMMA. Suppos€i) (J, 7) is a cover for(J;, ;) in the sense dBK2]8.1.
(i) if Pis any parabolic subgroup containirigwith Levi decompositioff =
LL-U and opposite paraboli®~ = L-U~ thenJ = JNu~- (F))(JﬂL)(Jﬂ[U(F))
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(i) (J N L)/ker(r|(J NnL)) = J/kerr
Then(J, 7) is a cover for the pau(J NL,7|(JNL)).

Proof. Assumption (i) guarantees an Iwahori decomposition/favith respect
to (L, ), and assumption (iii) ensures that, 7) is decomposed with respect to
(L, P) for any P containingL as Levi component. Thus our paif, t) satisfies
condition (i) ofloc. cit., and condition (ii) is trivially satisfied by construction. We
must verify condition (ii).

Now definet, = Indj(r); thent occurs int,. Just as before we can define
the algebras¥ (G, 7), #(G, t,). According to [BK1]4.1.3, there is a canonical
isomorphism of algebrak: #(G, 1) — J#(G, t,) with the property that ity €
(G, 7) has support/xJ thenT'(¢) has support/xJ, and if ® € H(G,t,)
has support/xJ thenT"~1(®) has support/xJ. On the other hand, the algebra
H (G, 7) can be identified (non canonically) with a subalgebrafgts, z..). To see
this it is enough to replace the representations in the algebras in question by their
contragredients, since taking contragredients commutes with induction. Denoting
contragredients byv ' we see that# (G, (t)") can be identified with some,-
spherical functions which transform via Indeed, letV, denote the space af;
thenV, = @!_,;V; whereV; runs through the not necessarily distinct irreducible
constituents ofr,. We can then identifyt with (at least) one of these, and the
assertion follows from this. Moreover we see that the identity#iG, (t,)”)
can be written as a sum of the identities of the algebras-Bnil corresponding
to the irreducible constituent®; counted according to multiplicity. We conclude
that indeed#¢ (G, 7) can be identified with a subalgebra #f(G, 7); furthermore
the identity of #(G, 7) occurs as a nonzero direct summand of the identity of
H(G, 1).

Let s be an element of the split centseof L. It fixes L pointwise under con-
jugation, hence does the same to any subgroup of particular it fixes pointwise
the subgroups/, = J NL,J, = P N L. It follows thats fixes z,, 7, r (not
merely up to isomorphism); hence there are nonzero spherical fundijori@, O
in #(G,t,), #(G, 1), H(G,t) respectively. Furthermore the isomorphism
H(G, 1) = H(G, t,) identifies¢, with a non zero multiple op;. Since(J, r)
is a cover for(J, t;) condition (iii) of Definition 8.1 in [BK2] says that there is
ans such thatg, is invertible. It follows thatg; is invertible in #(G, ). Now
o7 is a direct sum of operatogg?, @, ..., ¢! corresponding to the irreducible
constituents of,,, sinces acts trivially on each constituent. Singg¢ is invertible
sois eackp®, ¢@, ..., ¢"). But ¢, is a non zero multiple of one of these, hence
it is invertible in the subalgebréf (G, 7). It follows that Condition 8.1(iii) holds
for the pair(/, ) as well. 0

VARIANT 3.10. We resume the notation and conventions of 1.6, 1.12 and 2.1. In
particular if # is a facet ing we write P = P for the corresponding parahoric
subgroup and we writé = P C G for the full centraliser ofF . We then write

M = P/U; itis the group ofF,-rational points of a disconnectet) -reductive
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group whose connected component is the gidlpf 1.8. We suppose that we are
given an irreducible representatiénof M which containsr; as usual we view it
also as a representation Bf We also writeQ = P N L.

We now letéy be the restriction ta) of 6. It is immediate from 2.1 that the
hypotheses (i) and (iii) of 3.9 hold for the paiP, &), and we have already seen
in 3.8 that hypothesis (i) holds. We immediately deduce the following.

COROLLARY. The pair(P, 6) is a cover for the pai(Q, 6v).

4. G-types

4.1. We continue with the notation of Section 3. We begin by recalling a result
from [M1]; see also the remark following 3.7. Namely, letbe a connected re-
ductive F-group withL = IL(F); let Q be a maximal parahoric subgroup bf
with short exact sequence-86 U — Q — M — 0 and suppose th&t, V) is an
irreducible cuspidal representation &f. We regard(o, V) as a representation of

0 by inflation.

PROPOSITION.Let (1, V) be an irreducible smooth representation bfcon-
taining (o, V). Then(z, V) is supercuspidal, and there is an irreducible smooth
representation(p, W) of 0 = N;(Q) containing (o, V) such that(z, V) =
¢ — Indg (p).

Proof. This is proved in [M1] Sections 1-2. 0

4.2. Next we recall some ideas and results from [BK2] Sections 3—4.

First, we consider pairg¢L, p) wherelL is a (rational) Levi subgroupl. =
L(F), andp is an irreducible supercuspidal representatioh. oAs usual ifg € G
we write ¢ p for the (supercuspidal) representation ghg—* defined by?p(¢) =
p(g~tg). Finally, we letX,(G) denote the group of unramified quasicharacters
of the (rational points of the) reductive grodp the elements ok, (G) are finite
products of quasicharacters of the fopm— |¢(g)|* for somes € C and some
¢ € Xr(G), whereX (G) denotes the rational character groupGof

DEFINITION. The pairs(L, p), (L', p’) areinertially equivalentif there is ag <
G and& € X,(L') such thatL’ = gLg ! andép ~ p’ ® £. We denote the
equivalence class containirig, p) by [L, p].

We write 8(G) for the set of equivalence classes arising from the relation in
the definition above.

4.3. If P is a parabolic subgroup with Levi decompositiBn= L - U we let p
denote the associated modulus quasicharacter; it provides an unramified quasichar-
acter of L. We write Ind to denote unnormalised induction frdito G and:$ to

denote normalised induction. These are relateqﬁhjy) = Indg(r ® 8];1/2). The
left adjoint for:S is denoted by §; it is simply the unnormalised Jacquet functor
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(of 3.6) tensored byBé/z. If (r, V) is an irreducible smooth representation(®f
there is always a parabolic subgroBipwith Levi decompositior? = L - U such
thatz is equivalent to a subquotient df (o) for some irreducible supercuspidal
representation of ; see [Cs]. The resulting inertial clagér) = [L, p] is determ-
ined uniquely byr, and is called thénertial support of 7. Note that sincép is
an unramified quasicharacter bf the remarks above imply that the inertial class
could have been defined by replacinigy Ind.

Let SR(G) denote the category of smooth representations.df & ¢ 8(G)
we write GR° (G) for the full subcategory 0&9%(G) whose objects are those
objects (r, V) of GR(G) for which every irreducible subquotient has inertial
support inG. If & = {s} we shall simply writeG9°(G) rather thanSHR° (G).
According to Proposition 2.10 of [BD] the catego®R(G) is thedirect product
of the categorie®©R°*(G) ass runs throughB (G). This means that

(a) for each smooth representati®t and for eacls € B(G) there is a unique
G-subspacev® which is an object inS5R*(G), maximal with respect to this
property, andV is the direct sum of th&* ass runs throughB(G);

(b) if 'V, W are objects ir6R(G) then Hong; (V, W) is the direct product of the
various Hong ('V*, 'W*).

DEFINITION. Let & be a subset of3(G). An &-type inG is a pair(K, o) where

K is a compact open subgroup G@f ando is an irreducible smooth representation
of K with the following property: an irreducible smooth representation’V) of

G containss ifand only if 4(r) € &.

If & = {s} is a singleton, we shall abuse notation and weité/pe’.

4.4, Definition 4.3 has significant consequences, some of which we shall list be-
low. In what follows, (K, o) always denotes a-type. If (;r, V) is a smooth
representation we shall writé[o] for the G-module generated by the-isotypic
vectors. Recall that one can foreg = V which provides are, * #(G) * e,-
module. Composing this with the Morita equivalence of 3.4 then provides a functor
M,: GR, (G) — FH(c)-Mod.

We then have the following result.

THEOREM ([BK2] Theorem 4.3). (i here is a uniquely determine@-spaceU
such thaty = V[o] & U.

(i) If Vv = V[o] then any irreducibleG-subquotient of¥ containso .

(iif) The functorM, above provides an equivalence of categod®, (G) —
H (o) — Mod.

(iv) BRC(G) = GR,(G)

4.5. In [BK2] the authors provide many examplesdjpes drawn from their work
on linear and special linear groups. The prototype of-ajlpes is the pai(B, 1)
where B is the centraliser of an alcove in the ‘enlarged’ building @rand 1
is the trivial representation aB. The full centraliser is typically larger than the
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corresponding Iwahori subgroup (connected centraliser). The admissible form of
4.4(iv) in this case is due to Borel [B]; see [BK2] for a simple proof of the more
general situation, based on ideas in [MW].

THEOREM. Let (0, V) be an irreducible cuspidal representation as above and
suppose thaP is a maximal parahoric subgroup. Théa, V) is an &-type, for a
finite set&.

Proof. Let (z, V) be an irreducible smooth representation containisngV).
From 4.1 we can writg = ¢ — Indg+ (p) wherep is an irreducible smooth repres-
entation forP*™ which containss. Let x denote the central quasicharacter Aqr
and letr’ be another such representation which also contaiaisd which also has
central quasicharacter. We suppose that’ = ¢ — Ind§+(p’). The representations
o', p are determined oZ U, whereU is the prounipotent radical a® hence we
can writep’ = p ® T wherert is an irreducible representation of the finite group
P*/ZU. In particular if we fix a central quasicharacter there are only finitely many
choices for the representatignand hence there are only finitely many such
containingo with prescribed central quasicharacter.

Now suppose that we considerandz’ as above but with possibly different
central quasicharacters, x'. We havex| ZN P = x’| ZN P in any case. Let
Z. be the kernel of the maf/; defined in 2.3 for the Levi componeidt. From
2.3 there is an exact sequence Z, —- Z — A — 0 whereA is a lattice of
finite rank and rank = split rankZ. On the other hand if{ is the group in 1.6,
thenZ., ¢ H c P for any parahoric subgroup centralising a facet i, since
Z C T.In particulary . x’ is trivial on Z. hence comes from a quasicharacter on
A. Now A is a lattice of the same rank as the dual of the rational character group
Xr(G) of G. IndeedX (G) is a subgroup of finite index iX r(Z) as one sees
from the isogeny x Gger — G. Practically by definition, any quasicharacter/of
is a (finite) product of ones of the forptmodZ,) — |y (z)|* for somes € C and
somey € Xr(2).

It follows immediately that any quasicharacter Bfwhich is trivial on Z, is
the restriction of arunramifiedquasicharacter of; (i.e. one which is a product
of ones of the formg +— |¢(g)|° for somes € C and somap € Xx(G)). In
particulary —*- x’ is such a quasicharacter. Thus replacingy = ® ¢ for a suitable
unramified quasicharacterof G we see thatr ® ¢ andx’ have the same central
quasicharacter and we are in the situation of the previous paragraph. O

Remarld.6. One can easily produce examplesV) for which the setS is not
a singleton, by considering the case wheres unipotent cuspidal. In fact, many
of the cases considered in [M1] provide such examples.

VARIANT 4.7. By modifying the pair(P, o) slightly the setS can be reduced to
a singleton. Indeed we know from 4.1 that any irreducible smooth representation
(7r, V) containing(o, V) has the formr = ¢ — Ind%(p), wherep is an irreducible
smooth representation fa?* which containso. Since P is maximal it fixes an
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‘enlarged’ vertexv x V%in 41, and P is the stabiliser irG of v x V2. It follows
that G1 N P+ = P is the centraliser irG* of v x V1. Leté be any irreducible
component ofp | 2. The groupP is open compact iiG; in fact it is the maximal
compact subgroup aP*.

THEOREM.(P, 6) is a[G, 7 ]-type

Proof. To say thatt’, = are inertially equivalent means that ~ = ® x where
x is an unramified quasicharacter @f But thenn’ >~ ¢ — Ind§+(p ® (x|P™)).
Sincey is trivial on G* henceP, it follows thatr’ containss. On the other hand
if 7’ containss thenn’ = ¢ — Ind%(p’) wherep’ is an irreducible constituent

of ¢ — Ind}" (). Now P*/P can be identified with a subgroup of the lattice

G/G?*, and it contains the group denotadn the proof of 4.5 becausk* contains
Z. It follows that P*/P is a sublattice ofG/G* of the same rank, hence any
quasicharacter of it extends to a quasicharactér af*. Now observe that ip, o’
both contains then they are determined ¢hn P by the central character &f;
sinceZ is a split F-torus this means that the representationan be extended to
ZP (by an unramified quasicharacter &§. Clifford—Mackey theory then implies
thatp’ = p ® x for some quasicharactgr of P* P, and then that’ = 7 ® ¥’ for
some extension’ to G of . O

Remark Note that this result says that each irreducible constitentt p| P is
ans-type for the same singletan

4.8. We now combine 3.8, 4.5, and [BK2] Theorem 8.3, to deduce the following
result.

THEOREM.If (o, V) is an irreducible cuspidal representation as above where
is not necessarily maximal, théa, V) is an S-type for a finite se6.

Proof.Let L be as in 2.1. Applying Theorem 4.5 foand the painQ, oy) we
see thal Q, oy) is an& -type for some finite seb; . HereS, consists of a finite
set of inertial equivalence classes with resped tof the form[L, ] wheret is
an irreducible supercuspidal representatior.ofon the other hand 3.8 says that
(P, o) is aG-cover for the pair(Q, oy). Theorem 8.3 of [BK2] then says that
in this situation(P, o) is an&s-type whereGg; is the finite set formed from the
inertial equivalence classes with respecGtof the elements 5, .

Briefly, the argument goes as follows. First, (et V) be an irreducible smooth
representation aff containing(o, V). There is always an irreducible supercuspidal
representatiorr of I containingoy such thatr is isomorphic to aG-subspace
of Indfp?(r). Indeed 3.6 implies that the unnormalised Jacquet mogtie Vi)
containsoy. Sinceoy is an & -type Proposition 2.10 of [BD] (described in 4.3
above) and part (iv) of Theorem 4.4 imply that some irreducible quotiemhs
(1) € &;. Sincedp is unramified the same is true on replacing the unnormalised
Jacquet module by the normalised version. Frobenius reciprocity then implies that
I(r) € Gg.
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To go the other way, leB be as in the preceding paragraph, and suppose that
() € &¢. This means that occurs as a subrepresentatiomg)(p) for some
(L, p) with [L, p] in &, and by constructiop containsoy. One may now apply
3.6 to see that containso. O

VARIANT 4.9. Again, by replacing the pai(P, o) by the pair (P, ) where
P is the full centraliser of the appropriate facet ahds an irreducible smooth
representation oP which contains as in 3.10, we can deduce the following.

THEOREM.(P, 6) is ans-type for a singleton set

Proof.We know from Variant 3.10 that?, &) is aG-cover for the pai( 0, 6y).
Here the(P, &) is with respect taz, while (0, éy) is with respect td_. The result
then follows immediately from Variant 4.7 and Theorem 8.3 of [BK2]. O

Remark The technique above can be codified into a general principle. We re-
vert to the notation of 3.9, and assume we have gairs), (J, r) satisfying the
conditions in Lemma 3.9. Assume further thdtN L, 7 | (/N L)) is ans-type for
a singletors. The argument above impli¢isat (J/, %) is ansg-type for a singleton
5G-

4.10. Now we recall some results in [BD]. First, let= [L, 7] € B(G) and let
(L, 7) be a representative for it. Thé#, ) determines a clasg € B(L). If we
change the representative then it must have the f6imét ® x) for someg € G
andy € X,(8L). If we write L’ for ¢ L ands;. for the resulting class iB(L") then
conjugation byg provides an equivalence of categor@i°: (L) >~ GR°' (L).

Second, if we interpret [BD] 2.8 in the language abowé. [BK2] 2.3,6.1) we
obtain the following statements.

THEOREM. (i) Let (r, V) be an object ofSR*(G). Then (ry, Vy) is an ob-
ject of the subcategoryl;GR'(L) of GMR(L) wheret runs through theNg (L)
orbit of 5 .

(i) The representatiorirz, V) is an object of&9R*(G) if and only if there are
parabolic subgroups$P of G each of which has Levi componeht and smooth
representations, € GR°:(L) and aG-injectiont — [ [p Indg(rL).

4.11. The unnormalised Jacquet functor provides a funcioSR®(G) —
GM(L). Composing this with the projection functpf:: GR(L) — SROL(L)
guaranteed by Theorem 4.4(i) we obtain a funetier&R®(G) — SROL(L),
since this last category is also the categ6f}t,, (L) by 4.4(iv).

Going the other way, 4.10(ii) implies that the unnormalised induction functor
Ind takes the categorgR° (L) to the categornySR*(G). Heres is the class de-
termined bys, as in the proof of Theorem 4.8. It follows that Ind tak&$i®: (L)
to the categonSRC (G).

If = is an object iNGR%: (L) we then have Hog(r, IndS (t) ~ Homy (ry(r),

) >~ Hom, (p®try(n), 7).
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In other words, we have the following result.

PROPOSITIONThe unnormalised Jacquet functqr provides a functor
ry: GRS (G) — GROL(L).

It has a right adjoint functor provided by the unnormalised induction funbidr

Remark If we used normalised induction here we would have to (un)twist the
Jacquet functor by, /.

4.12. If f: A — B is a homomorphism of associative rings, adds a B-module
we write f*(M) for the A-moduleM induced byf. If N is anA-module we write
f«(N) for the B-module Hom (B, N).

Theorem 4.8 guarantees equivalences of categories

GR,(G) - H(G, o) — Moo, SR, (L) — H(L, oy) — Mod.

Furthermore, Proposition 4.11 implies that unnormalised induction provides a
functor 6R,,(L) — GR,(G), and that the Jacquet functef; provides a
functor ry: R, (G) — 6%, (L). Recall the injective algebra homomorphism
tp: H(L,oy) — H(G,o) of 3.7. Applying Corollary 8.4 of [BK2] to this we
immediately obtain the following result.

THEOREM.Each of the following diagrams is commutative

BN, (G) Yov (G, o) — Mod

;]

M“U
SR,y (L) —% H(L, o17) — Mod;

GR, (G) Yov 3(G, o) — Mod

J .

M“U
SRy (L) —% H(L, o) — Mod.
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