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A CHARACTERIZATION OF PROJECTIVE METRIC SPACES

BY
ROLFDIETER FRANK

ABSTRACT. A projective metric space is a pappian projective space
together with a quadric and a certain equivalence relation on the pairs of
those points which do not belong to the quadric. This equivalence relation
is defined by means of the corresponding quadratic form and satisfies a
condition which is a projective version of Miquel’s theorem. We character-
ize the projective metric spaces of dimension at least two over fields of
order at least 13.

§1. Introduction. Let V be a vector space over a commutative field K, and let Q:
V — K be a quadratic form with the corresponding bilinear form f,. The pair (V, Q)
is called a metric vector space. Let IL(V) denote the projective space corresponding to
V, the points of which are the one-dimensional subspaces of V, and let %, denote the
set of those points of II(V) for which the quadratic form Q is not zero. On P, X P,
we define an equivalence relation =, by (A,B) =, (C,D): < There exist vectors
a,b,c,d € V satisfying A = Ka, ...,D = Kd, such that one of the following state-
ments holds:

(i) a = b and ¢ = d,

(i)a=cand b = d;

(iii)a =dand ¢ = Q(a)b — fo(a,b)a;

(ivyb=a+ dand ¢ = Q(d)a + Q(a)d.

By [5, Lemma 3.1] =, is the linear congruence relation defined by Schroder [7]. If
(V, Q) is regular, then (A,B) =, (C,D) iff 0,005 = 0co0p, Where oy is the reflec-
tion in the hyperplane perpendicular to X (see [5, Lemma 1.1]). Therefore (A, B) =,
(C,D) implies that A, B,C,D are on a common line and that the angle from A to B
equals the angle from C to D. This justifies the name “linear congruence relation”. The
pair (II(V), =) is called a projective metric space. In [8] Schroder characterizes the
projective metric spaces, starting with a subset & of the point set of a projective space
and an equivalence relation on X P. In the present paper, we start with a set % and
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an equivalence relation = on P X P. It turns out that the properties of the equivalence
relation used by Schrdder can also be used to embed % into a projective space I1 such
that (I, =) is a projective metric space.

§2. Result. Let P be a set and & a set of subsets of P satisfying |/| = 2 for every
{ € £. The elements of P are called points, those of & are called lines. The pair (P, ¥)
is a linear space, iff for every pair of distinct points A, B € P there exists one and only
one line [ € ¥ with A, B, € I. A subset J of P is a subspace, iff it contains with every
pair of distinct points the line through these points. If M is a set of points, then there
exists a smallest subspace containing Jt, called the hull of M. A plane is the hull of
three noncollinear points. For any subset M of P we define £: ={{ N M: [ E L and
I N M| = 2}. Then (M, <L) is a linear space, which is embedded into (P, ¥). We
say that (M, & 4) is locally completely embedded into (P, &£), iff | [ N M| # [ for every
line | € & (see [1, p. 346)).

PROPOSITION 1: Let Q be a quadratic form on a vector space. We write P and = for
Pq and =q. Then the following statements hold:

(1) (A,A) = (B,B) forall A,B € P.

(2) Given A,B,C € P, there is at most one X € P, denoted by ABC, such that
(A,B) = (X, C) holds. If ABC exists, then so does w(A) w(B)w(C) for every
permutation w of {A,B,C}.

(3) Let A,B,C,D be elements of P such that A # B. If ABC and ABD exist, then
so does ACD.

Because of (1), (2), Q) R: = {(A,B,C): A,B, C € P and ABC exists} is a ternary
equivalence relation (see [1, pp. 64-635]). Therefore we get a linear space with point
set P, if for every pair of distinct points A,B € %P we define the line A + B: =
{X € P: ABX exists } through A and B. We denote this linear space by L (P, =) and
the set of all its lines by £. For the linear space L (P, =) the following statements hold:

(@) Leta,b, c € & be pairwise intersecting lines contained in a plane €. Then every
line contained in € meets at least one of them.

(5) Let € be a plane containing points A,B,C, D, no three of them collinear, such
that C (B(AXA)B)C = DXD for every X € €. Then for every line | € £, and
every point X € € there is at most one line m € £ through X, which does not
meet l. (This means that (e, &£.) is a semi-affine plane as defined by Dembowski
[31)

(6) (Hexagram condition of [8, Theorem 7)) Let A, . . . , G be elements of . If each
of the sets {A,B,C},{C,D,E}, {E,F,G}, {B,D,F}, {A,BDF,G} is col-
linear, then the set {ABC,CDE,EFG} is also collinear, and (ABC) (CDE)
(EFG) = A(BDF)G.

Proor: The validity of (1), (2), (3), (4) and (6) follows from [8, Theorem 7]. We
show that (5) is true. Let € be a plane containing points A, B, C, D, no three of them
collinear, such that C(B(AXA)B)C = DXD for every X € €. There is a three-
dimensional metric vector space (V; q) corresponding to €. If the underlying field K has
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only two elements, then (5) is obviously true. Therefore we may assume | K| = 3.
We choose vectors a, b, c,d € Vsuch that A = Ka, ... ,D = Kd and define a map o,:
VoV,x—x — q(a)"fq(a,x)a. Now o, and —o, are the only isometries of V to
induce the map A: € — €, X+— AXA (see [6, Lemma 3.4]). Therefore o,°0,°0, = 0.
Because a, b, c are linearly independent, this implies dim(Rad V) = 2 (see [6,
Proposition 3.5]). In case dim(Rad V) = 2 we have char K # 2, and hence
q(x) = 0 is equivalent to f,(x,x) = 0 which in turn is equivalent to x € Rad V.
If dim(Rad V) = 3, then g(x + y) = gq(x) + gq(y) for all x,y € V. In each case the
set {x € V: g(x) = 0} is a subspace of V. The assertion of (5) follows. []

The hexagram condition was stated first by Schroder [8]. The following example
illustrates its significance for elementary geometry. Let V be the three-dimensional real
vector space and Q the square of the Euclidean length. Then the affine geometry
corresponding to (V, Q) is the three-dimensional Euclidean space. Let eight points of
V be attached to the vertices of a cube in such a way that for five of the six faces of
the cube the vertices correspond to points on a circle. The vertices of any quadrangle
lie on a circle iff opposite inner angles add up to 180°. Consequently four points
A,B,C,D, no three of them collinear, lic on a circle iff (R(A—B), R(C—B)) =,
(R(A—D), R(C—D)) in the projective metric space corresponding to (V, Q). There-
fore the hexagram condition implies that the vertices of the sixth face of the cube
correspond to points on a circle too, which is the assertion of the theorem of Miquel
(see [2, p. 131]). Schroder [8] calls the hexagram condition a projective version of the
theorem of Miquel. By [2, pp. 236—238] a circle plane is projectively embeddable if
the theorem of Miquel holds. In view of this fact, Theorem 2 confirms Schroder’s
interpretation.

THEOREM 2: Let P be a set and = an equivalence relation on P X P satisfying
conditions (1)—(6) stated in Proposition 1. Let the linear space L(P,=) contain at
least two lines, on every line at least three points and on one line at least 13 points.

Then L(P,=) is locally completely embeddable into a projective space 11, and
(I1, =) is a projective metric space.

§3. Towards the Proof of Theorem 2. Throughout this paragraph, % is a set
and = is an equivalence relation on P X P satisfying conditions (1)—(6) stated in
Proposition 1. € is a plane of L (%, =) containing at least three points on every line
[ € £.. Our aim is the proof of the following proposition.

PROPOSITION 3: The linear space (€,%.) is locally completely embeddable into a
projective plane.

For every A € € we define a map A: € — €; X +— AXA. By [8,(22) and (24)]
Ais a collirlczz_l;ion satisfying AcA = id.. For collinear points A, B,C € € we have
AoBoC = ABC by [8,(23)]. We remark that although Schroder proves (22)—(24) in
[8] under stronger assumptions, his proof remains valid without changes in our more
general situation. If for A, B, C € e there is a point D € € such that AcBoC = D only
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if A,B,C are collinear, then the assertion of Proposition 3 follows from [6, Main
Theorem 6.31]. Hence we may assume that e contains non-collinear points A, By, C,
and a point D such that AyoByoCy = D,.

LEMMA 4: Let (e, $.) be a semi-affine plane, g and h disjoint elements of <., and
X a point of € not on g. Then there is a line | € £, such that X € land [ N g = @.

PROOF: We may assume X & h, as otherwise the assertion is obvious. We choose
two points H, and H, on h. The line X + H, meets g in a point G,. The point Z: =
H,G,X is collinear with X and H, and distinct from both. The line Z + H, meets g in
a point G,. The point Y: = G, H,Z is collinear with Z and G,. Also (X + H,) N (Z +
G,) = {Z}and X # Z imply X # Y. We show that the line /: = X + Y is disjoint to
g. Assume there is a point § € [ N g. Then each of the sets {Z,X,G,}, {G,,S,G,},
{G,,Y,Z},{X,S,Y},{Z,XSY,Z} is collinear, and the hexagram condition implies that
the set {ZXG,,G,SG,,G,YZ} is also collinear. Because ZXG, = H, and G,YZ = H,
we have G,5G, € h, a contradiction to G,5G, € gand g N h = ¢ N

LEMMA 5: If € does not contain distinct points U and V such that U = V, then we
have: X
(i) Let A,...,D be elements of € satisfying AcB = DC. If A, B, C are non-
collinear, then (A + B)N (D + C)=¢§ =(A+D)N (B + C).
(ii) The linear space (e,%.) is a semi-affine plane.
(iii) For every line | € &, there is a line m € £ such that | N m = ¢

PROOF (i) Assume there is a pomt X€e (A+ B)N (D + C). Then we have
ABX = AoBoX = DoCoX = DCX which implies ABX = DCX and therefore X,
ABX € (A + B) N (D + C). This contradicts A + B # D + C, for X = ABX would
imply A = B. Hence (A + B)N (D + C) = ¢ is true. Similarly (A + D) N (B +
C) = ¢ follows from AoD = B-C.

(ii) By (i) no three of the points Ay, By, Cy, D, are collinear. Therefore (ii) follows
from condition (5).

(iii) We may assume that [ meets A, + B,. Then by (i) and (ii) [ meets D, +
C, too. We call the points of intersection A, and D,. There are points B, € A, +
Boand C, € D, + Cysuchthat A,°B, = AyoBy = D,oCy = D,°C,. Because A,
B,, C, are noncollinear, (i) implies (A, + D;) N (B, + C,) = ¢ Together with [ =
A, + D, this proves (iii). []

LEMMA 6: If for a point A € e the collineation A fixes three noncollinear points
X,Y,Z € € — {A}, then A is the identity map on .

PROOF: Because A fixes every line through A, the following is obvious: If A fixes
points R, S € € not collinear with A, then A fixes the line R + S pointwise. We will
frequently make use of this fact. Because every line of £, contains at least three points,
we may assume A EX + Y, Y+ Z,Z+ X. WechoosepointsUEX +Y,VEY +

https://doi.org/10.4153/CMB-1986-071-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1986-071-0

454 ROLFDIETER FRANK [December

Z, W € Z + X distinct from X,Y,Z and may assume A & U + V, U + W. For
every point P € € — {Z} the line P + Z meets at least one of the lines U + V, V +
W, X + Y in a point distinct from Z. Hence A fixes every point of P + Z if P and Z
are not collinear with A. Therefore A fixes all points of €, except perhaps the points on
the line A + Z. But then A must be the identity map on €. []

LEMMA 7: If € contains distinct points U and V such that U = V, then we have:
(i) A is the identity map on € for every A € €.

(it) (e, £.) is a semi-affine plane.

(iti) The diagonals of any parallelogram in (e,%.) do not intersect.

PROOF: (i) Let X be a point of € not on U + V. The map U (= V) fixes the lines
U + X and V + X, and hence fixes X. Therefore U is the identity map on €. Let A be
a point of € not on U + V. The map A fixes U and V. We choose a point W € A +
U distinct from A and U. Because AWA = AW (UAU) = (AWU)AU = (UWA)AU =
UW (AAU) = UWU = W, A fixes W too. Hence A is the identity map by Lemma 6.
If B is a point on U + V distinct from U and V, then B fixes the noncollinear points
U,V,A and hence is the identity map by Lemma 6.

(i) € contains four points A, , . ..,A, such that no three of them are collinear. By
(i) we have A.Ofizwi; = A,. Hence (ii) follows from condition (5).

(iii) Let A, B, C, D be distinct points of € such that (A + B) N (C + D) = ¢ =
(A+ D)N (B + C). We show that A + C and B + D do not intersect. Assume
there is a point X € (A + C) N (B + D). Then (XAC + XBD) N (A + D) = ¢; for
if there is a point Y € (XAC + XBD) N (A + D), the hexagram condition implies
C((XAC)Y(XBD))B = (XA (XAC)) ((XAC)Y(XBD)) ((XBD)DX) = X (AYD)X =
AYD, and hence AYD € (A + D) N (B + C). Similarly we get (XAC + XBD) N
(A+ B)= ¢ But now there are two lines (namely A + D and A + B) containing A
which do not meet the line XAC + XBD. By (ii) this is not possible. []

If € does not contain distinct points U and V such that U = V, then we deduce from
Lemma 4 and Lemma 5 that (e, £,) is an affine plane. Hence Proposition 3 is true in
this case. If e does contain such points, define an ideal point to be a set of pairwise
nonintersecting lines which fill out €. An ideal point is to lie on each of its lines. If there
exist at least two ideal points, then we define the set of all ideal points to be a new line.
We deduce from Lemma 4 and Lemma 7 that in this way we get a projective plane. This
concludes the proof of Proposition 3.

PROPOSITION 8: Let (P, ) be a linear space containing at least two lines, on every
line at least three points and on one line at least 13 points. If every plane € of (P, <L)
is embeddable into a projective plane 11(€) such that (1l(€), =.) is a projective metric
plane for a suitable equivalence relation =, on € X €, then (P, <) is locally completely
embeddable into a projective space 11.

ProoOF: The proof of Proposition 8 is contained in the proof of Theorem 2.3 in [4].
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§4. Proof of Theorem 2. Let € be any plane of the linear space L (%, =) and denote
by =, the restriction of = to € X e. By Proposition 3 the linear space (€, £.) is locally
completely embeddable into a projective plane I1(e). Now [8, Theorem 7] yields that
(Il(e), =.) is a projective metric plane. We deduce from Proposition 8 that L(%P, =)
is locally completely embeddable into a projective space I1. The pair (II, =) satisfies
the conditions of Theorem 7 in [8] and hence is a projective metric space.
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