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A CHARACTERIZATION OF PROJECTIVE METRIC SPACES 

BY 

ROLFDIETER FRANK 

ABSTRACT. A projective metric space is a pappian projective space 
together with a quadric and a certain equivalence relation on the pairs of 
those points which do not belong to the quadric. This equivalence relation 
is defined by means of the corresponding quadratic form and satisfies a 
condition which is a projective version of Miquel's theorem. We character­
ize the projective metric spaces of dimension at least two over fields of 
order at least 13. 

§1. Introduction. Let V be a vector space over a commutative field K, and let Q: 
V—» K be a quadratic form with the corresponding bilinear fonr\fQ. The pair (V, Q) 
is called a metric vector space. Let U(V) denote the projective space corresponding to 
V, the points of which are the one-dimensional subspaces of V, and let 2 Ĝ denote the 
set of those points of II( V) for which the quadratic form Q is not zero. On 2PG

 x &Q 
we define an equivalence relation =Q by (A,B) =Q (C,D): O There exist vectors 
a, b, c\d E V satisfying A = Ka,. . . ,D = Kd, such that one of the following state­
ments holds: 

(i) a = b and c = d\ 

(ii) a = c and b = d; 

(iii) a = d and c = Q(a)b — fQ(a,b)a; 

(iv) b = a + d and c = Q(d)a + Q(a)d. 

By [5, Lemma 3.1] =Q is the linear congruence relation defined by Schroder [7]. If 
(V, Q) is regular, then (A,B) =Q (C,D) iff crAo(jB = crcocrD, where ax is the reflec­
tion in the hyperplane perpendicular to X (see [5, Lemma 1.1]). Therefore (A,B) =Q 

(C,D) implies that A,B,C,D are on a common line and that the angle from A to B 
equals the angle from C to D. This justifies the name "linear congruence relation". The 
pair (Il( V), =Q) is called a projective metric space. In [8] Schroder characterizes the 
projective metric spaces, starting with a subset 2P of the point set of a projective space 
and an equivalence relation on 2P x 2P. In the present paper, we start with a set 2P and 
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an equivalence relation = on 2P x 2P. It turns out that the properties of the equivalence 
relation used by Schroder can also be used to embed 2P into a projective space II such 
that (II, =) is a projective metric space. 

§2. Result. Let 2P be a set and it a set of subsets of 2P satisfying | /1 ^ 2 for every 
IE it. The elements of 2P are called points, those of it are called lines. The pair (9 \ i£) 
is a /me#r space, iff for every pair of distinct points A, 5 E 2P there exists one and only 
one line / E it with A, 5 , E /. A subset 3~ of 2P is a subspace, iff it contains with every 
pair of distinct points the line through these points. If I t is a set of points, then there 
exists a smallest subspace containing M, called the hull of M. A plane is the hull of 
three noncollinear points. For any subset M of 2P we define if^ : = {/ Pi M: I E it and 
| / H M\ ^ 2}. Then (J/t, itM) is a linear space, which is embedded into (9 \ it). We 
say that ( i t , i£^) is locally completely embedded into (9\ i£), iff | / D M \ ̂  / for every 
line/ E it (see [1, p. 346]). 

PROPOSITION 1: Le/ Qbe a quadratic form on a vector space. We write 2P and = for 
SPQ and =Q . 77zeA2 the following statements hold: 

(1) (A,A) = (B,B)forallA,B E 2?. 
(2) G/ven A, 5 , C E 9\ r/iere w fl/ mo^ one X E 9 \ denoted by ABC, such that 

(A,B) = (X,C) holds. //A5C ex/ste, then so does tr(A)'n(B)'n(C)for every 
permutation Trof{A,B,C}. 

(3) Let A,B,C,D be elements of?P such that A ^ B. If ABC and ABD exist, then 
so does ACD. 

Because of(\), (2), (3) R: = {(A,B,C): A,B, C E 9> and ABC exists} is a ternary 
equivalence relation {see [1, pp. 64-65]). Therefore we get a linear space with point 
set 9 \ if for every pair of distinct points A,B E 2P we define the line A + B: — 
{X E (3>: ABX exists} through A and B. We denote this linear space by L ( 9 \ =) and 
the set of all its lines by it. For the linear space L (2P, =) the following statements hold: 

(4) Let a,b,c E i£ be pairwise intersecting lines contained in a plane e. Then every 
line contained in e meets at least one of them. 

(5) Let e be a plane containing points A,B,C,D, no three of them collinear, such 
that C(B (AXA) B)C = DXD for every X E e. Then for every line I E i£e and 
every point X E e there is at most one line m E ite through X, which does not 
meet I. (This means that(e, it J is a semi-affine plane as defined by Dembowski 

[3].) 
(6) (Hexagram condition of[8, Theorem 7]) Let A,.. . ,G be elements ofty. If each 

of the sets {A,B,C}, {C,D,E}, {E,F,G}, {B,D,F}, {A,BDF,G} is col­
linear, then the set {ABC,CDE,EFG} is also collinear, and (ABC) (CDE) 
(EFG) = A(BDF)G. 

PROOF: The validity of (1), (2), (3), (4) and (6) follows from [8, Theorem 7]. We 
show that (5) is true. Let e be a plane containing points A,B, C,D, no three of them 
collinear, such that C(B(AXA)B)C = DXD for every X E e. There is a three-
dimensional metric vector space ( V,q) corresponding to e. If the underlying field K has 
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only two elements, then (5) is obviously true. Therefore we may assume |AT| ^ 3. 
We choose vectors a,b,c,d E V such that A = Ka,. . . ,D = Kd and define a map cra : 
V—» V; JC»—» x — q(a)~] fq(a,x)a. Now va and —ua are the only isometries of V to 
induce the map A: e—» e;Xi—» AXA (see [6, Lemma 3.4]). Therefore da°(jh

ocjc = vd. 
Because a,b,c are linearly independent, this implies dim(Rad V) ^ 2 (see [6, 
Proposition 3.5]). In case dim(Rad V) = 2 we have char K ^ 2, and hence 
q(x) — 0 is equivalent tofq(x,x) = 0 which in turn is equivalent t o i 6 Rad V. 
If dim (Rad V) = 3, then <?(* + y) = q(x) + q(y) for all x,y E V. In each case the 
set {x E V: ^(JC) = 0} is a subspace of V. The assertion of (5) follows. • 

The hexagram condition was stated first by Schroder [8]. The following example 
illustrates its significance for elementary geometry. Let V be the three-dimensional real 
vector space and Q the square of the Euclidean length. Then the affine geometry 
corresponding to ( V, Q) is the three-dimensional Euclidean space. Let eight points of 
V be attached to the vertices of a cube in such a way that for five of the six faces of 
the cube the vertices correspond to points on a circle. The vertices of any quadrangle 
lie on a circle iff opposite inner angles add up to 180°. Consequently four points 
A,B,C,D, no three of them collinear, lie on a circle iff (R(A-fl) , U(C-B)) =Q 

(R(A—D), U(C—D)) in the projective metric space corresponding to ( V, Q). There­
fore the hexagram condition implies that the vertices of the sixth face of the cube 
correspond to points on a circle too, which is the assertion of the theorem of Miquel 
(see [2, p. 131]). Schroder [8] calls the hexagram condition a projective version of the 
theorem of Miquel. By [2, pp. 236-238] a circle plane is projectively embeddable if 
the theorem of Miquel holds. In view of this fact, Theorem 2 confirms Schroder's 
interpretation. 

THEOREM 2: Let & be a set and = an equivalence relation on 2P x 2P satisfying 
conditions (1) —(6) stated in Proposition 1. Let the linear space L(9 \ =) contain at 
least two lines, on every line at least three points and on one line at least 13 points. 

Then L(9,=) is locally completely embeddable into a projective space II, and 
( I I , = ) W Û projective metric space. 

§3. Towards the Proof of Theorem 2. Throughout this paragraph, SP is a set 
and = is an equivalence relation on SP x SP satisfying conditions (1) —(6) stated in 
Proposition 1. e is a plane of L(9\ =) containing at least three points on every line 
/ E i£e. Our aim is the proof of the following proposition. 

PROPOSITION 3: The linear space (e,i£e) is locally completely embeddable into a 
projective plane. 

For every A G ewe define a map À: e - ^ e ; X H AXA. By [8,(22) and (24)] 
Â is a collineation satisfying Â°Â — ide. For collinear points A,B,C E e we have 
ÂoBoC = ABC by [8, (23)]. We remark that although Schroder proves (22)-(24) in 
[8] under stronger assumptions, his proof remains valid without changes in our more 
general situation. If for A, B, C E e there is a point D E e such that Â°B°C = D only 
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if A,B,C are collinear, then the assertion of Proposition 3 follows from [6, Main 
Theorem 6.31]. Hence we may assume that e contains non-collinear points A0, B0, C0 

and a point D0 such that Â0
oÉ0°C0 — D0. 

LEMMA 4: Let (e, i£e) be a semi-affine plane, g and ft disjoint elements of i£e, and 
X a point oft not on g. Then there is a line I E i£e such that X E / and I f! g = 0. 

PROOF: We may assume X ^ ft, as otherwise the assertion is obvious. We choose 
two points H] and H2 on h. The line X + H] meets g in a point Gi. The point Z: = 
/ / , G ! X is collinear with X and //j and distinct from both. The line Z + H2 meets g in 
a point G2. The point Y: = G2H2Z is collinear with Z and G2. Also (X + //, ) D (Z + 
G2) = {Z} and X ^ Z imply X ^ Y. We show that the line /: = X + Y is disjoint to 
g. Assume there is a point S E I f) g. Then each of the sets {Z, X, G i}, { G i, S, G2}, 
{G2, F,Z}, {X, 5, F}, {Z,XSY,Z} is collinear, and the hexagram condition implies that 
the set {ZXG],G]SG2,G2YZ} is also collinear. BecauseZXGX = // , and G2YZ = H2 

we have GXSG2 E ft, a contradiction to G{SG2 E g and g fl ft = 0. • 

LEMMA 5: 7/e d<?es not contain distinct points U and V such that Û = V, then we 
have: 

(i) Let A,. . . ,D be elements of e satisfying A°B — D°C. If A,B,C are non-
collinear, then (A + B) H (D + C) = 0 = (A + D) H (B + C). 

(ii) The linear space (e,i£e) is a semi-affine plane. 
{Hi) For every line I E i£€ fft̂ re w « /m£ m E i£e swcft Jftar / H m = 0. 

PROOF: (J ) Assume there is a point X E (A + B) D (D + C). Then we have 
A£X = A°B°X = D°CoX = DCX which implies A£X = DCX and therefore X, 
A£X E(A + B) (1 (D + C). This contradicts A + B + D + C, for X = A£X would 
imply A = B. Hence (A + B) D (D + C) - 0 is true. Similarly (A + D) n (5 + 
C) = 0 follows fromA°D = £°C . 

( // ) By ( / ) no three of the points A0,B0,C0,Doare collinear. Therefore ( // ) follows 
from condition (5). 

(Hi) We may assume that / meets A0 + B0. Then by (/) and (//) / meets D0 + 
C0 too. We call the points of intersection Ax and Dx. There are points Bx E A0 + 
B0 and Cx E D0 + C0 such that A i 0 ^ = A 0 °5 0 = D 0

o C 0 = DX°C\. Because A,, 
5 , , Ci are noncollinear, (/) implies (A, + D,) H (/?, + C,) = 0. Together with / = 
A, + Dx this proves (///). • 

LEMMA 6: //"/or « point A E e the collineation A fixes three noncollinear points 
X,Y,Z E e — {A}, rfteft A /s ffte identity map on e. 

PROOF: Because A fixes every line through A, the following is obvious: If A fixes 
points R,S E e not collinear with A, then A fixes the line R + S pointwise. We will 
frequently make use of this fact. Because every line of !£e contains at least three points, 
we may assume A f. X + Y, Y + Z, Z + X. We choose points U EX + Y,V EY + 
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Z, W E Z + X distinct from X, Y,Z and may assume A f U + V, U + W. For 
every point P E e — {Z} the line P + Z meets at least one of the lines U + V, V + 
W, X + F in a point distinct from Z. Hence A fixes every point of P + Z if P and Z 
are not collinear with A. Therefore A fixes all points of e, except perhaps the points on 
the line A + Z. But then Â must be the identity map on e. • 

LEMMA l:Ife contains distinct points U and V such that 0 — V, then we have: 
(/) A is the identity map on efor every A E e. 
(ii) (e, i£e) is a semi-affine plane. 
(Hi) The diagonals of any parallelogram in (e,i£e) do not intersect. 

PROOF: (/) Let X be a point of e not on U + V. The map Û (= V) fixes the lines 
U + X and V + X, and hence fixes X. Therefore Û is the identity map on e. Let A be 
a point of e not on U + V. The map A fixes £/ and V. We choose a point W E A + 
£/ distinct from A and U. BecauseAWA = AW(UAU) = (AWU)AU = ((/WA)A£/ = 
LW(AALO = IWt/ = W, A fixes W too. Hence A is the identity map by Lemma 6. 
If B is a point on £/ + V distinct from U and V, then 5 fixes the noncollinear points 
U, V, A and hence is the identity map by Lemma 6. 

(//) e contains four points A, , . . . ,A4 such that no three of them are collinear. By 
(/) we have Â,oÂ2

oÂ3 = Â4. Hence (//) follows from condition (5). 
(///) Let A,B,C,D be distinct points of e such that (A + B) H (C + D) = 0 = 

(A + D) Pi (5 + C). We show that A + C and 5 + D do not intersect. Assume 
there is a point X E (A + C) H (B + D). Then (XAC + XBD) H (A + D) = fi; for 
if there is a point K E (XAC + XBD) fl (A + D), the hexagram condition implies 
C((XAC)Y(XBD))B = (XA(XAC)) ((XAC)Y(XBD)) ((XBD)DX) = X(AYD)X = 
AYD, and hence AYD e (A + D) fl (£ + C). Similarly we get (XAC + XBD) H 
(A + 5 ) = 0. But now there are two lines (namely A + D and A + B) containing A 
which do not meet the line XAC + XBD. By (//) this is not possible. • 

If e does not contain distinct points U and V such that Û — V, then we deduce from 
Lemma 4 and Lemma 5 that (e, ££e) is an affine plane. Hence Proposition 3 is true in 
this case. If e does contain such points, define an ideal point to be a set of pairwise 
nonintersecting lines which fill out e. An ideal point is to lie on each of its lines. If there 
exist at least two ideal points, then we define the set of all ideal points to be a new line. 
We deduce from Lemma 4 and Lemma 7 that in this way we get a projective plane. This 
concludes the proof of Proposition 3. 

PROPOSITION 8: Let (2P, X) be a linear space containing at least two lines, on every 
line at least three points and on one line at least 13 points. If every plane eofi^^X) 
is embeddable into a projective plane H(e) such that (n(e), =€) is a projective metric 
plane for a suitable equivalence relation =eone X e, then (9 \ i£) is locally completely 
embeddable into a projective space II. 

PROOF: The proof of Proposition 8 is contained in the proof of Theorem 2.3 in [4]. 
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§4. Proof of Theorem 2. Let e be any plane of the linear space L (27\ =) and denote 
by = e the restriction of = to e X e. By Proposition 3 the linear space (e, i£€) is locally 
completely embeddable into a projective plane 11(e). Now [8, Theorem 7] yields that 
(11(e), = e ) is a projective metric plane. We deduce from Proposition 8 that L(9\ =) 
is locally completely embeddable into a projective space II. The pair (II, =) satisfies 
the conditions of Theorem 7 in [8] and hence is a projective metric space. 
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