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[The following paper was read 8th March 1907.]

On Vandermonde’s Theorem, and some more general
‘ BExpansions.

By JonN DouvaaLrr, M.A,
1. If we write

a\ a(a-1)...(a-s+1)
( s ) = 3! ’

where a is arbitrary, but s is a positive integer, then Vandermonde's
‘Theorem is

-2+ ()5 )+ (3)

Divide by ( ’s) ) , and put a for ¢, s+ for p.

The theorem takes the form

(a+‘y+1)(a+‘y+2)...(a+y+s)=l L l.ss—1 +..(1)
(y+1)(y+2)...(y +9) Ly+1 129+ 1y+2 Y7

The formula may be regarded either as summing the series on
the right, or as expanding, in a particular form, the function on the
left. It is by proceeding from the latter point of view that the
following developments suggest themselves.

As is well known, Vandermonde’s Theorem is susceptible of a
great variety of proofs. For instance, in either of the forms above,
it is one of the simplest examples of Newton’s Interpolation formula.
The proof to be given here combines in a somewhat peculiar way
the principles of symmetry and algebraic degree with the step by step
method, or method of mathematical induction.

The idea of this method obviously admitting of extension, other
functions are invented, capable of expansion in finite series of
factorials of suitable form. By increasing the number of terms
indefinitely, various interesting infinite series are summed in terms
of II functions, in particular the hypergeometric series with fourth
element unity, and several series involving the third and fourth
powers of the coefficients in the expansion of (1 - z)—.
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Although hardly within the scope of the paper, one or two
examples are added of a method of extending some of these
summation theorems with the help of Cauchy’s Theory of Residues.

2. The proof we propose to give of the theorem (1) depends
mainly on this, that when a, like s, is a positive integer, the fraction
on the left is symmetrical in o and s. In fact, when we multiply
both numerator and denominator by (y+1)(y+2)...(y+a), the
fraction becomes

(y+ Dy +2) ... (y+a+s)
(y+l). (y+a)x{y+1)...(y +8)’
the symmetry of which is obvious.

When a is zero, the fraction is unity. Now we shall define the
value of a factorial (x+ 1)(xz+2) ... (x +8) to be unity when s is zero,
and the symmetry spoken of therefore extends even to zero values
of a and s.

The theorem is then true when s =0. Assume it true (for every a)
when s=0, 1, 2,... (r—1). We shall prove it true for s=mn.

For, when s=n, the theorem is true for a=0, 1, 2,... (n - 1),
everything being symmetrical in s, «, and the theorem being true
by hypothesis for a=n and =0, 1, 2, ... (n—1).

Also when s =mn, the coefficient of the highest power of a is the
same on both sides. We have therefore two rational integral
functions of a of degree m, equal for » values of a and with equal
coefficients of a". The functions are therefore identically equal;
which proves the theorem.

3. The factorial function

(a+y+1)...(a+y+3) (B+y+1)...(B+y+s)
(y+1)...(y+8) “(e+B+y+1)...(a+B+y+3)
is the quotient of the function on the left of (1) by a function of the
same form with 8+ y for y. The same symmetry in s, a is therefore
present. We shall show that the function may be expanded in the
form

as a.a-1.8.8-1
M+B+y+s+A%+B+y+&a+B+y+s-1+
with the coefficients A,, A,, ..., A,, ... independent of s and . In
the first place, if ghis be provisionally assumed, these coefficients can
be found at once by putting s ==, multiplying by

1+A
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(a+B+y+1)...(a+B+7y+n), and then putting a=-B-y-1.
Every term on the right disappears but the last, and we get
BB-1)...(B-n+1)

=A,.n!.
GrD .. ()
The theorem to be proved is then
+y+ 1) .. (a+y+8) B+y+D)...(B+y+9)
(y+l)...(y+8) (e+B+y+1).(a+B+y+s)
1+ a.B ] a.a-1.88-1 s.8-1
T 1y +lTa+Bry+s 1.2y+ly+2 a+Bry+s.a+Bry+s-1

+.(2)

For proof, assume it true when =0, 1, 2, ... (o — 1). Then when
& =n, we have, after multiplication by (a +8+y+1).(a + B+y+n),
two rational integral functions of a of degree n equal for the n values
0 1, 2, ... (n-1), and the additional value — 8-y -1. These
functions are therefore identical, and the theorem, being true for
8 =0, is troe for s any positive integer.

4. The theorem (2) is noteworthy for two reasons. The chief is
that it contains as a limiting case the highly important summation
of the hypergeometric series with fourth element unity. To obtain
this, take the limit of the two members of (2) for ¢ infinite.

The left hand member may be written
(a+‘y+1)...(a+‘y+8)8_a_,y. s! .

8! (y+1)...(y+9)
(B+7+1)(B+Y+s)g_p_.y- 8! g"’+ﬂ+7.
8! (a+B+y+1)...(a+B+y+8)
But according to Gauss’s definition of the II function,

1
Iz = Limi 8!
Z= e 2) et

so that the limit of the left hand member of (2) is

Iy . M+ B+y)

H(a+y) (B +v)
(It may be noted here, in connection with the II function that the
definition gives at once

Z+1)(z+2)...(z+n)=

II(n + 2)
I °*
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s0 that the definition itself may be read
IIs
t =1,
s=w 11(8+2)

or (z+1)(2+2)...(z+8)= HLzs'IIs, asymptotically.)

Hence the limit of the series on the right of (2) has this value,
whatever be the relative values of o, B8, y; this limit we can easily
show to be equal to the series of limits of the individual terms in
order, provided the real part of « + 8+ ¥ is not negative.

For under this restriction the moduli of the factors

8 s-1
atB+y+s a+B+y+s-1"""
cannot exceed unity, whatever be the value of s. Hence the residue
after n terms of the series of moduli of the terms of (2) cannot
exceed the corresponding residue in the absolutely converging series

a.f a.a-1.8.8-1
it T e yri g2t

But we can choose n, independent of s, so that the latter residue is
as small as we please, and, having so chosen n, we can then make

& infinite.
Hence
. .a-1.8.8- I
14 0B qoe-lfpol  Hy MatBey) g
l.y+1 1.2.y+1.y+2 (e + ) II(B + 7)

The equation (3) which we have proved subject to the restriction
R(a + B +7)<0, holds, in fact, so long as the series converges, that
is, so long as R(a +B+7y)> ~ 1.

The equation is obviously equivalent to the more familiar form

F("" /3’ Y I)E
a.f a.a+l.B.8+1 =H(7—1)H(y—a—ﬁ—l)
1+1-7+ T.3.7. 741 +... My =D -E-1)

Vandermonde’s Theorem is the special case of (3) for one of a, 8
a positive integer.

5. A second point of interest about the equation (2) is that with
its aid a proof by actual multiplication can be given of the theorem

Flo, B, 7, 2)=(1 -2)Y * " PF(y a0,y =B, 3, 2). - (4)
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For if we multiply

a.f a.a+l.B8.8+1
FaBpa)=l+y ot 377 "+

by
(1_x)—w-a—ﬁ):l+7—t;—,3x+~/—a—ﬂ-lyga—B+1#+___

.

and arrange the product by powers of =, as we are entitled to do,
if |a|<]1, the coefficient of 2™ is

(y-o-P)(y-a-B+n-1)
n!
"l+ﬁ n a.a+l1.8.8+1.n.n—1
UVt Ty e Bn-1tT27y+1ly-a-B+n-1y-a-B+n-2
(ma-Bly=a-Btn-1) (y-a)(y-etn-1) _(-fl.ly=f+n-1)
n! T oyey+n-1) (y—a-B)(y-a-B+n-1
as we find from (2) by changing a into - o, B into - B, y into y -1,
and s into =.

+..

This is the same as the coeflicient of =* in F(y-a, y - B, y, z),
whence the theorem.

It is also worthy of remark that just as (2) has been used to
prove (4), so Vandermonde’s Theorem (1) may be used to prove the
equally important relation

Fo, B, 7 #)=(1-2) “F(,7-B v 727)- - - )

z-1
Having found (5) in this way, we might deduce (1) in either of
two ways; (i), by applying to F(y -B, a7, ﬁi) the same trans-
formation as is applied to F(a, 8, y, «) in (5), thus finding

a y - 2N (1-E VTR, -8, y- :
F<:7 B’Y’x—l) (1 x_1> Fiy-Bv-ayv2);

or (ii), simply from the symmetry of F(a, 3, ¥, ) in a, # by deriving
from (5)

¢ -:z:)_aF<a, Y-8 “i‘):(l'm)‘ﬂF(B’ YT=%7 ;,-f_l)’

x-1
which is merely another way of writing (4).

By using the latter method, it will be seen that through the
medium of these hypergeometric series we might derive (2) from (1).
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6. In proving (1) and (2) we have taken advantage of two
(z+a+l)..(x+a+3)

(a+1)...(a+)s ?
namely, that it is of degree s in z, and that when x, like s, is a
positive integer, it is symmetrical in s, @. By joining to these a
third property of factorials we can invent a much more general
expansion.

properties of such a factorial function as

The new property is that the product of two factorials
(+a+l).(x+a+s) and (x+b+1)...(x+d+3)
is not altered by the substitution of —x—-a—-b-3s-1 for .
In fact obviously (z + p)(x+¢) remains unchanged when - z—p-¢
is written for «, and the factors of the above product can be
arranged in pairs
(z+a+1)x+d+s), (x+a+2)(z+a+b+s-1),...
of the form (x + p)(z +¢), with p + ¢ the same for all, namely, equal
toa+b+s+1.
Consider now the function
z4+a+ 1) (z+ats). (x+b+1)..(x+b+s) (c+1)...(c +8).(d+1)...(d+5)
ztc+l) (z+c+s).(x+d+1)...(z+d+s) (a+1)...(a+s). (B +1)...(b +3)

This has clearly the property of symmetry in «, s when « is a
positive integer. It will also have the property of remaining
unchanged when ~ 2 ~a - b -3 -1 is put for x, provideda + b =c¢ +d.

It can be expanded in a series of functions of w, s, all of which
possess these two properties, namely, in the form

x.8.x+a+b+s+1
‘“c+c+l.s+c+1l.x+d+s

1+A

z.x-1.8.8-1.2+a+b+s+1.c+a+b+s+2

A LA :
+ e+ l.x+c+2.5+c+1l.8+c+2.x+d+s.x+d+s-1

ey

where the A’s are independent of s and .

The proof is practically the same as in §3. Thus, assuming the
theorem for a moment, we determine A, by giving s the value =,
multiplying by

(z+c+1)...(x+ec+n).(x+d+n)... (x+d+1),

and putting -d -1 (or —¢-n) for «.
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If we take ¢ as a function of , y, 2, s and a new variable ¢,

defined by the equation
x+y+z+2c+8+1=—1t
so that c=-Hx+y+z+s+t+l), - - (7)

then the series on the right of (6) has its general term symmetrical
inx, ¥, %, 8 ¢ It is easy to see that the function on the left is also
symmetrical in &, y, #, ¢, for interchange of « and ¢ is equivalent to
the substitution of ~x -y —-2—2¢ -3~ 1 for a.

It may be pointed out that there is another set of substitutions
under which the function on the left of (6) is invariant; e,g.,
-y, =% y+2+c for y, 2, ¢ respectively. If the value (7) of ¢ is
first substituted, this is equivalent to change of sign of y, 2 only.
The signs of x, ¢ may also afterwards be changed ; the result is the
same as that found by writing -, -y, -2, —c-s-1 for z, 9, 2, ¢
in the series (6). We have thus altogether three different types of
expansion of the function on the left of (6).

If we take x+y+2+c=0, s disappears from the general term
of the series (6), and the function on the left gives the sum of s+ 1
terms of the series, as may easily be verified by the method of
differences.

8. The formula (6), involving five variables, contains, of course,
a large number of special or limiting cases. For example, by writing
u -z for ¢, and making z infinite, we deduce (2), which itself, when
B is made infinite, gives (1).

But the most interesting results are those obtained by making
the positive integer s infinite, either with or without previous change
of variables.

First take (6) as it stands.

Substituting their asymptotic values for the fuctorials (§4), we
find for the limit of the function on the left

Mz +c) My +c){z+c) I(x+y+2+¢)
My+z+c)Iz+x+c) ll@+y+c)IIc ~

As for the series, we shall show that its limit can be found term
by term, as in the case of the series (2), subject to a certain restric-
tion on the values of the variables.

https://doi.org/10.1017/50013091500033642 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500033642

122

The series of term by term limits is

w( 1y ¢+ 2n ™ 2 g 2=
0 ¢ al{x+c+ 1™ (y+e+1)™(z+c+1)™’

n

"4

n

in which the general term is of order n—2st+u+%+3 go that the
series converges absolutely if R(x+y+2z+¢)> - 1.

But if we write ¢ for « +y +2 +¢, the factor containing s in the
general term of (6) is
8 ...l (s-n+1) +o+c+1)...(s+0+c+n) (8)
(s+c+l)...(s+c+n)’ (8+0) ..(8+o-n+l)’
This is got from the corresponding factor of the previous term
by multiplying by

o
1+ 2
(3—-n+1)s+o+c+n) or +s+c+n

(g+c+n)s+o-n+1l) T
1+ ——
sg—n+1

’

which, supposing for brevity that ¢ and o are real, is not greater
than 1 if o is not negative and

s+c+n>s—n+1, that is, n>}(1 -¢).

Under these conditions, if N be any positive integer greater than
3(1 - ¢), the value of the factor (8) for any n greater than N cannot
exceed its value for n =N, which has obviously a finite upper limit
independent of s.

The residue after n terms in (6) cannot therefore exceed a certain
finite multiple of the corresponding residue in the series of limits.
Hence, as in §4, we can take the limit of the series in (6) term by
term, and obtain

Oz+c) Iy +e) Iz +c) H(x + y+2+¢)
Iy +2+c) I{(z+a+e) M(x+y+c)lle

In ™ = .y(— n) 2=

nl(@tc+ )™ (y+c+ )™ (z+c+ 1) ®)

nzo JCoF
=n§o(—1) p

The theorem has been proved for x+y+2 and ¢ real, and
xz+y+z+c>-1. It is, in fact, true if only Rz +y+2+¢)> - 1.

For the extension we may be content to rely on the general
Theorem of Continuation in the Theory of Functions.
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9. Suppose we consider the function expanded in (9) as a function
of the complex variable . The infinities of the function are those
of II(x +¢) and I(x+y +2+c). The series represents the function
over part of the x plane, and in this part the first set of infinities,
those of II(x + ¢), are indicated by individual terms becoming infinite.
It is worth remarking, as the circumstances often occur, that by a
simple change of variable, we may obtain an expansion indicating
the other set of infinities. We have only to write -y, —2, c+y+2
for y, 2, ¢ respectively.

For another instance of the point, in the ordinary hypergeometric
series

a£+a.a+1.ﬂ.ﬂ+l+ =H(‘y—1)H(y—a—B—l)
1.y 1.2.y.9+1 Iy -a-1)II(y-B-1)’

change «, B, y into —a, - B, y — a - B respectively.

1+

10. Some special cases of (9) may be set down.
In (9) put ¢=0. Then

IMa Iy Iz Tl(x + y + 2)
Iy +2) l(z +2) Il(x + y)
—1-2 x ' Y . z +2 z.x—1 . y.y-1 . z.2-1 .
z+1l y+1 241 “z+l.x+2 y+l.y+2 2+ 1.2+2
Rz+y+2)>-1. - - - (10)
In (10) let = go to infinity through real positive values. Thus
Ha:Hy= 9 ® Y o z.x-1 . y.y-1 -
I(z+y) z+1l'y+1 “z+lx+2 y+l.y+2 ’
Re+y)«-4 - - - - (1b

In (10) take 2= -}, and get
Uz Iy II( - ) (= +y - })
Mz - 4) I(y - §) (= +y)
5 X y z.x—-1 y.y-1
=1+2 . 2 .
o y+1l “z+l.x+2 y+1.y+2+ !

Rzty)>-4 ((-PH=Jym)- - - (12)
In (12) put y= + 0. Thus
IaTI( - }) s . wwel
Iz~ §) =1+2a:+1+“z+l.a:+2+"" - (13)
R(z)<0.
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Interesting results are obtained by making each of the variables
half an odd integer in the last four formule. For instance, z=}
in (13) gives Gregory'’s series for .

11. In (9) put 2= - }c¢. Thus
=0 o) - y(-—")

N —
a0 ml(z+c+ )™ (y+c+ )™

H(m+c) I(y +¢) I‘I% II(a,+y+_>
L .

’

¢
H x+ 2>H(y+ —§->H(x+y+c)ﬂc

R(:c+y+—_c,—)> -1

In (14) put x=y~= -c. Hence
i 3¢
ng(-3)

"=§° c(c+1).. (c+n—1)
{ } <>H<——>H(—0)Hc

n=0
3c
H(—E‘ - (19)

(-5
(since oI —a) = si:;); R(c)<%.

This gives the sum of the cubes of the coeflicients of the
For a proof by means of the theory of

‘ﬂ'c
53

expansion of (1-—x)=*
hypergeometric functions see Dixon, “ Summation of certain Series,

o
Proc. Lond. Math. Soc., Vol. 35, page 284
In (9) make 2 infinite, x and y = —c.

Then
"ot In c(c+1)...(o+n—1)}“_§imrc
,,:o(— ) ¢ { n! T owe
cpl. - - - - (16)

In (9) make x=y=2= —c. Then
"SE et 2n ”c(c+1)...(c+n—1)}‘_simrc II( - 2¢)
\ BER L EDNY
- - - (17)

n=0 c n!
c<}.
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e + 1
In (9) make x=y= —¢ and 2+ (z+¢+1)=0 orz:-——c-:
Then
c-1 3ec+1
simrcn( 2 )H<_ 2 )
nc c+ 1 \“’
{H(‘ 2 )J
=w — 3
="2 c+2n<c.c+1...c+n 1) . 18)
a=0 C n!

12. Another limiting case of the fundamental theorem (6)
deserves attention, less perhaps for the result itself than for the
unusual way in which one has to go to the limit to obtain it. The
example illustrates the necessity of caution before taking the limit
of a series term by term, even when a definite limit exists, and the
series of term by term limits converges.

In (6) put ¢=a—s and let s increase indefinitely.

Consider first the sum of the series.

We have

(c+1)...(c+8)=(a-8+1)...a
=(~-1y(e-a-1)...(-a)
=(-1y(s-a-1)/II(-a-1)
= (- 1)s'IIs/II( - a — 1), asymptotically,
and similarly with the other factorials on the left of (6), the limit of
which is therefore
I(-2-a-1)I(-y-a-DNI(-z-a- ) [I(-2x-y~2-a-1)
O(-y-z-—a-D(-z-z-a- HIO(-2-y-a-H{-a-1)

(189
Next take the series itself. This is
n=s a-8+2n (a—8)™ & ™
2 (-1 . .
n=0 (=1) a-—3 n! (a+1)""(x+a—-s+1)""do Y %
(x+y+z+2a—-s+ 1) i ) ) - (9

(+y+z+a)™

(the contraction do. y, 2, signifying that two factors have to be put

in, the same functions of y, z respectively as the immediately
preceding factor is of «), and the series of term by term limits is

n=w =) ) )

p>
a=0 nl(a+1)* (z +y+2z+a)—’

- - (20)
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13. For the sake of pointing out some natural extensions of
the preceding results, we will now abandon the purely elementary
methods hitherto used, and take advantage of the powerful weapon
furnished by the Theory of Complex Integration and Residues.

As one of the simplest subjects for the extension contemplated
take the ordinary hypergeometric series

af3 a.a+1.,3.ﬂ+l+
1.y 1.2.y.y+1
This may be written
II(y - 1) 1z* {a—1+n)I{(B-1+n)
(e - DI(B-1) »<o HnIl(y - 1+n)

The sum of the series is known ; we proceed to find the sum of

the more general series

14—

g nEw II(a + n) H(b+n)’ i - (26)
n=-w ¢ +n) II(d +n)
which reduces to the preceding when ¢ or d is zero, or an integer.

Consider the function of the complex variable z,

II(a + 2) I1(b + 2) wcoswz
f@)= M(c + z) 1(d +2) sinwz ~ i - @D

This function has three sets of simple infinities, namely, those of
Il(a +z), II(b + z) and 1/sinwz; the series 8 is obviously the sum of
the residues of the function at the poles of 1/sinwz.

It may be proved that, subject to a restriction on the values of
a, b, ¢, d, the sum of the residues of f(2) at all its poles is zero.

To prove this, we have to consider the form of the uniform
function f(2) for 2 infinite.

Now, when # tends to infinity, we have the asymptotic expression

(z)= N 2r eleHilon—s . . - (28)
valid on the supposition that the argument or phase of z lies
between — 7 and w. If the real part of z is large and negative, but
its imaginary part is not large, the form (28) fails; but in this case
the asymptotic form of TI(2) is easily deduced from the fundamental
relation

M2 II( - ) = wz/sinxz. - - - (29

From (28) it follows easily that, asymptotically,
II(z + @) =2 T1(z).
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Hence, unless the phase of z tends to + =, we have
II{a + 2) I1(b +2)
(e +2) II(d +2)
In the excepted case, write z = — {; then
a+2)=T(a - {)
1 a¢-a)
T II(¢ - a) sinw({ - a)’
sinw(z + ¢)sinr(z + d)
sinw(z + a)sinw(z + b)

=z**=—4, asymptotically.

II(a + 2) II(b + 2) = e
II(c +2) I(d +2) B
It may easily be proved that we can, avoiding any zero of

sinw(z +a) or sinw(z+b) or sinwz, describe a circle in the z plane
of radius » as large as we please, along which

, asymptotically.

sinm(z + c) sinw(z + d) coswz
sinm(z + a) sinw(z + b) sinwz

has a finite upper limit independent of ».

Also the integral J- | z*+*—<—4dz | taken along the circle will tend

to zero as » increases, provided the real part of a+bd—c-d is less

than - 1.
Hence if R(a+b—-c~d)< -1, the sum of the residues of f(z)
i8 zero,
The residue of II(z +a) at the pole z= —a-p -1 (p=0, 1, ...)
is (- 1)7/1Ip.
The residue of /(z) at this pole is therefore
(-1)r d-a-p-1)

lp Me-a-p-Di@-a-p-T)¢ "o
and the sum of the residues at the poles of Il(a +2) is
bd-a-1)

~ oot e —a - 1) II@-a-1)

l+a—c+1.a—d+1+a—c+1.a—c+2.a—d+1.a—d+2 }
{ l.a-b+1 1.2.a-b+1.a-0+2 h
Hp-a-1) I(a-b)I{c+d—a-b-2)
= - oot e —a- D@ -a-1) T(e-5-1)I@-b_1)
cotra Iec+td~-a-b-2)

=ﬁdnﬂa—b)H@—a—lﬂﬂd-a-l)ﬂ@—b—lﬂud—b—lf
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For the sum of the residues at the poles of II() + z) we have only
to interchange « and b in this.

Hence
S = — sum of residues at poles of II(z + a) and II(z + b)
= M(c+d—a-b-2)
“sinrasinmb O(c —a - )I(d —a— 1) H(c-6- 1)II({d -b-1)’
(30)
We may write
n=w n=-w
= 2 4+ =
n=0 n=-1
Ila 115 a+l.64+1 a+1.a+2.04+1.5+2
“tenidf 'texl.d+1Tcrl.c+2.d+1.d42 "
cd c.c-1.d.d-1
ab + a.a-1.5.b-1
For a, b write —a -1, —b -1 and the result becomes
ab a.a-1.5.5-1
]+c+l.d+1+c+l.c+2.d+1.d+2+"'
cd c.c-1.d.d-1
Yorl o+l asl.ass.be1 5427
HaTlbTIcId I{a+ b+ ¢+ d) (31)

THa+o)(a+d) b +o)ll(b+d)’

Ra+b+c+d)>-1.
This reduces to (3) when d is zero.

14. The result (9), which reduces to the summation of the
hypergeometric series, just generalised, when we put z=u-c and
make ¢ infinite, may be extended by a similar process. After
putting x —¢, y ~¢, 2 —¢ for x, y, 2 in (9), we may write it in the

form

n=ow

IMec-1+n)II{c—1 -2+ n)
o (¢ +2n) IIn ) H(x+ n)
CIe-ax-1D)Ie-y-1)T(c-2-1)I(z+y+2—2c)
My+z~c)llz+a-c)I(x+y - c) ’
‘With the help of this theorem and the method of residues, we
can sum the more general series

e He~1-t+mn)
S= n=2_m(c+2n) T H@rn)
which reduces to the series of (32) when ¢=0.

do. y, z

UMl

n

(32)

do. z, y, 2, - (33)
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Take the uniform function of ¢,

S =(c+2{) _(ct*m do. @, 4, 2 . rcosm{

The sum of the residues of the function will be zero, if
R(t+x+y+2z-2¢)> —~1. The sum of the residues at the poles of
1/sinx{ is 8. For the poles of II(c—1-¢+¢) the sum is, as in last

sinw{

article,
n=0cw (_l)n 1 H(t—x—n-—l)
— - -9 . Z
weotw(t — ¢) n§=30 (—c+2t-2n) Tin 112 —c—n) I+ 2 —c —n) do. v, z,
. sinw(t +x — ¢)
= —cotw(t—c)smr(?t —C) W do. Yy 2y X

nzw® Me-1-2t+n){c~1-t-2+n
Z (e-2t+2n) { Tin ) I e —t+n) )
The sum of the series in the last line is obtained from (32) by
writing ¢ - 2¢ for ¢, z — ¢ for z, etc., and is
e-t-z-1)I(e-t-y- 1)H(c-—t—z—l)H(t+x+y+z~‘)c)
Dy +z-c)(z+x—c) Iz +y—c)
Hence (34) becomes

do. y, 2.

IMt+ax+y+2-2c)
H(y+z——c)II(z+:r—c)H(:c+y-c)H(t+m—c) do. y, z

sinm (2t - ¢) cosw (¢ —¢)
sinw(¢ — ¢) sinw(t — x) do. ¥, 2

- - - - . (35)

The first line here is symmetrical in ¢, @, y, z; hence the sum of the
rvesidues of f({) at the poles of the four II functions II(c - 1-¢+ (),
ete., (that is, - 8), is the product of the first line of (35) by the sum
of the four expressions like that in the second line.

To find the sum of these four expressions, consider the function
of {,
wsinr(2( - ¢) cosm({ - ¢)

()= sinw (¢ — o) sinw({ — ¢) do. =, ¥, 2

within a strip of the { plane bounded by two lines parallel to the axis
of imaginaries and at unit distance apart. On these two lines
¢(¢) has equal values, and it vanishes exponential-wise at infinity.
By Cauchy’s Theorem the sum of the residues of ¢({) at the poles
within the strip accordingly vanishes,

https://doi.org/10.1017/50013091500033642 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500033642

132

But the second line of (35) is the residue at the pole of
1/sinw({ - t). Hence the sum of the four similar expressions

= - residue at pole of 1/sinw({ - ¢)
_ sinwre
T Tsinm(t-¢)do. x, y, 2
Thus for the sum of the series in (33) we have
wsinme
= — X
sinw(¢t - ¢) do. =, ¥, 2

It +x+y+2-2c) 36
My+z~c)Hz+x—c)[{(x+y—c) It +2—c) do. y, 2’ (36)
where R{t+x+y+2-2¢)> - 1.

To exhibit the result as the summation of a series of rational
terms, multiply both sides of (36) by

1t Il Ty T2
Mec-1-¢t)do. z, g, 2~

Then

c—~1 (c—t)""
c+(c+2) T do. z, ¥, %, +...+(c+2n) TG do. =, ¥z +...

=
mdo. T Y % + ...
sinme Y1¢ Ta Ty Ilz 11(¢ - ¢) H(x — ¢) Iy — ¢)1(z - e)I(t + 2 + y + 2 — 2¢)
TTr Hy+z-oll(z+x—c)I(z+y — c)lI(t+z - c)I(¢+y - )(t+2 - c) (37)
For t =0, this is equivalent to (9).

+(c-2)

4
c—-t—ldo' 2,4 2% +...+(c-3n)

The result may be put in somewhat more striking form by
writing 2 for ¢, and then ¢+a, x+a, y+o,2+a for ¢, o, y, 2

Of special cases of (37), those obtained by writing ¢ =¢/2, t = =,
t=(c - 1)/2 may be mentioned.

On the Resolution of Integral Algebraic Expressions
into Factors.

By R. F. MuirrEaD, M.A., D.Sc.

On Arithmetical Approximations.
By R. F, Davis, M.A,
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