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ABSTRACT 
Autonomous vehicle solutions (AVS) are regarded as a major enabling technology to support the 
realization of 'total site solutions' in the construction equipment industry. Their full-scale deployment is 
hindered today by the need to test autonomous driving capabilities against the varying conditions an 
AVS is expected to be exposed to during its lifetime. Therefore, using virtual simulation environments 
is common to overcome the cost and time limitations of physical testing. A caveat in this virtual 
verification and validation (V&V) work is how to trade off the ‘realism’ of the V&V output (using high-
fidelity models across many scenarios) against computational time. This research investigates 
expectations and needs for value-driven decision support in the virtual V&V process, proposing an 
approach and a tool to raise awareness among decision-makers about the value associated with using 
selected simulation models/components in the virtual verification and validation task for AVS. 
Verification activities performed on the initial prototype show that its main benefit lies in facilitating 
cross-domain negotiations and knowledge sharing when negotiating the desired features of the virtual 
simulation environment. 
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1 INTRODUCTION 

The ongoing digital servitization transformation is pushing solution providers to adopt innovative 

development approaches to manage the value co-creation process with customers (Struwe and 

Slepniov, 2023). As an example, autonomous vehicle solutions (AVS) are often regarded as a major 

enabling technology to support the realization of digital servitization business models in farming, 

forestry, construction, and mining (Leminen et al., 2022). In the latter two, AVS are often pinpointed 

as critical enablers for 'total site solutions' (Frank et al., 2019). Yet the full-scale implementation of 

such 'solutions' is limited today due to several concerns, no latter safety (Rezaei and Caulfield, 2021), 

which confine AVS to sealed-off production areas. One of the most critical aspects for the deployment 

of 'site solutions' is found in the limitations linked to vehicle-level testing. It has long been known 

(see: Koopman and Wagner; 2016) that it is infeasible to perform in-real-life physical try-outs 

thoroughly enough to ensure ultra-dependable system operation. There are simply too many arbitrary 

and/or dangerous situations that cannot be covered even by the most extensive physical testing, i.e., 

the latter is both impractical and too costly (Koopman and Wagner, 2016). 

For this reason, virtual verification and verification (V&V) activities are becoming popular to inform 

decision makers about the resilience and scalability of AVS against the varying conditions they are 

expected to be exposed to during their lifetime. A caveat in this work is how to trade-off the ability of 

these virtual models to provide a realistic output against computational time (Schlager et al., 2020). 

Increasing the resolution and the level of detail of the virtual V&V models is not automatically a 

recipe for success, because this is also expected to increase computational time, which leads to a 

reduction in the number of scenarios that can be tested in a given timeframe (Schlager et al., 2020). 

Hence a question remains about where the optimum trade-off between 'fidelity' and 'scenario coverage' 

shall be found when designing a virtual V&V strategy and configuring its toolchain. 

The aim of this research is to explore the use of Value-Driven Design (VDD) and, more in detail, 

qualitative value models, to guide early-stage decisions about how to design a virtual V&V strategy 

(including its simulation components) for AVS. The research question can be described as: 'How can 

qualitative value models be applied to communicate the value of a virtual V&V strategy to the 

decision makers?'. This objective is to present the results from a study conducted in collaboration with 

a Swedish provider of autonomous transport solutions for off-road applications. After presenting the 

findings related to the expectations and needs for value-driven decision support in the virtual V&V 

process, the paper describes a decision-making tool named the 'Value Visualiser for Virtual Vehicle 

Verification and Validation' (V6), which was developed in co-production mode with the company 

partner. The application of the V6 is exemplified in a case study related to the development of an 

autonomous dumper for offroad applications. The feedback from preliminary verification activities 

and pointers to future research are presented in last section of the manuscript.  

2 V&V ACTIVITIES FOR AVS IN A VIRTUAL ENVIRONMENT 

Nowadays, V&V activities for AVS are largely performed virtually in proprietary and open-source 

simulation environments, such as AirSim, CARLA or LGSVL Simulator. These systems are based on 

gaming engines, such as Unreal Engine® and Unity 3D®, which provide a flexible platform to 

parallelize the testing activities under a variety of possible traffic, lighting, and environmental conditions 

(Riedmaier, 2020). Here, virtual V&V activities can be decomposed into two methodologies: (1) 

integrated system, where the overall simulation toolchain is tuned to replicate a distinct manoeuvre, and 

(2) sub models-based, where each ingredient of the simulation pipeline is individually validated with 

respect to its physical counterpart (Donà and Ciuffo, 2022), as shown in Figure 1.  

Virtual models for sensors (see: Schlager et al., 2020) and vehicles (see: Schramm et al., 2016) belong 

to 3 major categories; Low-, Medium- or High-fidelity models (also named as 'Black-', 'Grey-', or 

'White-box' models). Low-fidelity vehicle models use a point-mass representation, while the sensor 

models are only able to detect objects that are inside the field of view, not occluded by any other 

object. Medium-fidelity vehicle models exploit single- or double-track chassis models with linear or 

non-linear tires, while the sensor models can detect the shape and texture of an object together with 

other environmental effects. High-fidelity vehicle models consider suspensions, drivetrains, wheels, 

and tires along with electronic controllers, while sensor models try to replicate the physical 

phenomena regulating the interaction between the sensors and the external environment in simulation. 
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Figure 1. Simulation environments' setup for V&V of AV systems (Donà and Ciuffo 2022). 

Table 1 exemplifies the pros and cons for Low-, Medium-., and High-fidelity sensor models, with 

emphasis on the computational power needed vs. the level of realism obtained by the simulation.  

Table 1. Pros and cons of different fidelity levels (adapted form Schlager et al., 2020). 

Model Fidelity → Low (black-box)  Medium (grey-box)  High (white-box)  

Operating 

principles  
Geometrical aspects  

Physical aspects, 

detection probabilities  

Rendering (rasterization, 

ray tracing, etc.)  

Input  Object lists  Object lists  3D scene (mesh)  

Output  Object lists  Object lists or raw data  Raw data  

Pros  
Low computational 

power needed  

Trade-off between 

computational power and 

realistic output. 

Most realistic output  

Cons  
High abstraction level, 

no realistic output  

Lots of training data may 

be required  

High computational 

power needed  

2.1 Major limitations of current virtual V&V processes 

A simulation model, no matter how detailed, will always approximate the real-world phenomena and 

will only serve the need of the specific application it aims at replicating. For this reason, the literature 

stresses the context-dependent nature of the validity analysis, postulating that the absolute validity of a 

virtual testing toolchain is generally not achievable. As shown by Donà and Ciuffo (2022) an ultimate 

'validation criterion' is not available. One a practical level, the validation procedure must be first tailored 

to the specific application domain, and one shall be aware that obtaining validation-grade data might be 

very challenging, extremely costly, or even impossible (e.g., for a system not yet existing), thus limiting 

the applicability of the analysis. Another gap identified in literature concerns the selection of scenarios 

used for AV validation. Most are staged in residential areas and motorways, neglecting off-road 

applications. Furthermore, their ability to handle 'exceptions' from the classic 'sunny day' (e.g., to include 

rain, snow, fog, ice, dust and more) is limited. Worse still is that the combinations of environmental 

factors, road characteristics and driving conditions that can occur are simply too many to enumerate in a 

classical written requirements specification. Perhaps not all combinations need to be covered if results 

are likely to be innocuous, but the requirements should be clear about what is within the scope of system 

design, as well as what is not (Koopman and Wagner, 2016).  Furthermore, the literature rarely addresses 

the value of including new virtual model components (e.g., to simulate rain or fog) in the V&V 

simulation and does not elaborate on how to balance (computational) cost and value when designing a 

virtual V&V strategy. Little is said about how decision makers can be supported when weighting the pro 

and cons of choosing a computationally intensive alternative for the virtual simulation (e.g., using high-

resolution simulation components) vs. a more approximated one. 

3 RESEARCH APPROACH 

The overall research effort can be framed in the Design Research Methodology (DRM) proposed by 

Blessing and Chakrabarti (2009) and is based on a single-case design (Yin, 2011). The research 

question was defined in collaboration with a company that develops and commercialises industrial 

autonomous transport solutions for offroad applications. This setting has provided a unique viewpoint 

from which to investigate the issue related to the value of virtual V&V modelling components. The 

way the research was conducted likens Participatory Action Research (PAR) (Argyris and Schön, 

1989), with researchers and practitioners mutually involved in the research design and development. 
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Field data were collected through (1) regular bi-weekly virtual gathering, (2) the review of internal 

company documents, and (3) co-located workshops at the company facilities, to ensure triangulation. 

These data were used in the research to create preliminary demonstrators of a qualitative value model, 

that were discussed with a cross-disciplinary group of experts (about 20 people, participating 

physically and on-line) having knowledge in engineering design, vehicle dynamics, sensor modelling, 

virtual prototyping, and autonomy. The lessons learned gathered through the demonstration of 

emerging modelling concepts have allowed the researchers to close the look-think-act learning circles 

typical of PAR. The validation of the impact of the Prescriptive Study results (the V6 tool) 

corresponds to the 'Support Evaluation' phase of the DRM. Due to the lead time of new autonomous 

vehicles development projects this paper does not encompass the 'Descriptive Study II' stage that 

concerns the 'Application Evaluation' and the 'Success Evaluation' phases. 

4 DESCRIPTIVE STUDY FINDINGS 

The literature analysis and the case study data have both shown the need to work in a more systematic 

way when defining proxies for 'good' vs. 'bad' decisions in the design of a virtual V&V strategy. The 

practitioners raised two main issues in this regard: how to define a hierarchy of metrics/dimensions for 

‘good decisions’ (considering all the involved parties), and how to visualise the trade-off among 

conflicting dimensions in a way to understand how much of a trade-off (i.e., between fidelity and 

computational cost) can be tolerated by the decision makers. The notion of Value Creation Strategy 

(VCS), as proposed by Monceaux and Kossmann (2012) and Isaksson et al. (2013), was extensively 

discussed in this regard. On the one end, the virtual simulation environment shall be configured so to 

predict with precision the behaviour of an AVS. For instance, the computer-based environment shall 

make possible to virtually test if the AVS is able to 'read' a scenario correctly, so to prevent accidents, as 

well as if it is able to continue its operations in front of non-critical disturbances (e.g., a bird standing on 

the track, a pile of soft snow), to maintain the desired level of productivity. Increased capabilities for 

testing such behaviours come with additional requirements, not only in terms of computational time and 

cost, but also with regards to the availability of human expertise, the accessibility to computational 

resources, and more. These aspects must all be factorised in when defining a V&V strategy and play an 

important role in the timely delivery of site solutions. Furthermore, more intangible aspects of value 

were discussed during the study. These include the opportunity of growing new knowledge on a 

particular software or model add-on, as well as the possibility to spin-off virtual V&V activities into new 

businesses, and more. The study further identified the need to be able to manipulate the VCS through an 

interactive user interface, so to simulate alternative scenarios in real time, to facilitate both 

communication and decision making in the cross-functional team.  

4.1 Defining the value function for virtual V&V studies 

Fidelity was indicated early on by the industrial practitioners as the main dimension for 'value' in virtual 

V&V activities. However, the widespread opinion among the industrial experts was that comparing 

virtual V&V studies using 'fidelity' as a metric is far from being a trivial task, mainly because a 

conclusive unit of measure for the concept is missing. Furthermore, even though several approaches in 

literature claim to provide a scalar number for fidelity, it remains still uncertain how to interpret such a 

number. For instance, experts and process owners have debated in the study what actions could be 

triggered by receiving the information that a simulation has received '79% fidelity' score. The latter 

neither clearly indicates the way forward when architecting a virtual V&V study, nor suggests how much 

'fidelity' can be traded-off with cost, effort, and computational time. While the practitioners agree that 

such a trade-off is a moving target - following the evolution of computer technologies and the increase in 

the capacity of CPUs and graphical cards - it is still important to quantify the level of fidelity that is just 

'good enough' for the purpose of a study. As pointed out by one of the respondents: 

 

"If we want perfect fidelity, we'll probably need to run the (virtual) scenarios at a speed that is slower 

than real life. In fact, we want to run the simulation way faster than that." 

 

Another issue being discussed is how to balance the number of scenarios being studied and their level 

of precision and completeness. A unique revelatory aspect connected with the case study is that virtual 

V&V activities shall be performed both for existing off-road sites (for which a detailed description of 
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exists) and for future sites (for which detailed information is not simply available). This is seen to 

significantly increase the number of scenarios to investigate and raises the level of complexity of the 

virtual V&V activity to the next level. 

4.2 Assessing the value of virtual model components 

Early on in the study, the practitioners identified 'weather' as a major virtual modelling capability of 

interest for off-road applications. For this reason, the study was directed towards exploring of how assess 

the value of rain, snow, fog, smoke, and dirt model add-ons for Unreal Engine® and Unity 3D® engines. 

All these add-ons introduce 'noise' in the simulation, which must be dealt with by the virtual sensor 

model (see Figure 1) to ensure the correctness of the behaviour prediction (Hospach et al., 2016), such as 

recognizing obstacles and deciding if and how to reroute the AVS. A main reason for prioritizing this 

'category' of models is that, although many simulators come with weather models, currently used image 

data sets are recorded largely under good weather conditions (Cordts et al., 2016). Even though von 

Bernuth et al. (2019) show the degradation of object detection quality with growing intensity of the 

weather conditions, physically correct influences on the optical sensor are often lacking. 

The descriptive study went on to investigate how much does ‘value’ increase with increased 

capabilities/technical requirements of these model components. The demonstrators being developed 

during the study played with the idea that it should be possible to benchmark the value of alternative 

weather-related add-ons to identify the one that, given the specific requirements for the virtual V&V 

work, provides the highest value for the application. A caveat in this work is that simulating thousands 

of rain drops or even trillions of fog water particles and the corresponding light rays - as well as their 

interactions - is, while possible, terribly time consuming. The descriptive study showed that design 

decision support is needed to help the cross-functional team in identifying an optimum when it comes 

to the accuracy of a virtual model component vs. the computation continuum - and possibly against a 

longer list of value creation factors (as captured in the VCS). 

5 RESULTS: THE V6 QUALITATIVE VALUE MODEL 

The study brought to the definition of a qualitative value model named the 'Value Visualizer for 

Virtual Vehicle Verification and Validation' (V6). The process steps shown in Figure 2 are designed to 

inform decision makers about the value contribution associated to the utilization of virtual simulation 

model components in V&V tasks. The V6 performs three main functions: 

• correlate the characteristics of one or more off-road scenarios for autonomous driving to the VCS 

for virtual verification and validation; 

• provide a scalar score to represent the value of virtual model components against the selected 

VCS, together with a maturity score to indicate how much the value score can be trusted; 

• support the codification and storage of the knowledge that describe the relationship between the 

characteristics of the model add-ons and the value drivers of interest. 

 

Figure 2. Process steps of the V6 approach. 

The V6 demonstrator described in the section below is composed of a method, a tool and usage 

guidelines, and targets the evaluation of virtual model components used to simulate various weather 

conditions in a confined working area (e.g., a quarry). In its current version, it can evaluate 2 classes 

of model add-ons (a snow and a rain model) and includes 63 value drivers across 8 value dimensions.  
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5.1 Eliciting the VCS 

The V6 aims to tap into the tacit knowledge of the cross-functional team to codify all factors of 

interest on which the value analysis shall be performed. Eliciting the VCS is designed as a 4-step 

process, which is conducted in cross-functional workshops or through a larger crowdsourcing 

activity.  

 

Figure 3. Extract from the VCS for the electrical autonomous dumper. 

Figure 3 exemplifies the construction of the VCS for an autonomous electric dumper, which is a 

complete solution designed to operate autonomously in a quarry or a mine. The first step foresees the 

team making clear what are the value 'macro-categories' to be considered in the virtual V&V tasks. 

These 'value dimensions' cover aspects related to the functionality of the simulation (e.g., the ability to 

detect objects), non-functional aspects (e.g., from knowledge generation to resource allocation) and 

cost/effort-related aspects (e.g., computational time). Each dimension is rank-weighted by the team 

using ad-hoc methods - from multivoting to Multi Attribute Decision Making (MADM) techniques 

such as the Analytic Hierarchy Process. The team can also define more specific 'value drivers' for each 

dimension to increase the granularity of the assessment, which are in turn rank-weighted using 

MADM or other methods. 

5.2 Describing the scenarios and the virtual model add-ons 

Figure 4 (left) shows how a virtual snow model component is described in the V6, and how this can be 

enabled/disabled, as well as tuned in its specifications when conducting the assessment.  

 

Figure 4. Extract of the model add-on (left) and scenario (right) definition modules. 

Different configurations for the same component can be generated by fine-tuning the list of features 

that describe how this is implemented in the simulation environment. These are parametrised by using 

continuous, discrete, or binary (on/off) variables. Collision physics, fading and texture change are 

examples of binary features that can be enabled/disabled by the decision makers, while particle size 

and falling velocity can be fine-tuned to match a specific value. In practice, a Design-of-Experiment 
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(DoE) approach is often applied to reduce the number of combinations being investigated. Surrogate 

modelling techniques can then be deployed to support the identification of (what could be considered) 

the optimum point in the design of the component. 

The descriptive study has also shown that a virtual model component holds an intrinsic and an 

extrinsic value. A component can be intrinsically valuable for a VCS (e.g., a 'reactive snow' feature is 

highly relevant to virtually verify longitudinal trajectory deviations), yet its implementation in a virtual 

validation toolchain makes little sense if the target market is located in a tropical region where snowy 

conditions are not an issue. Similarly, a fog model might be of little significance if the targeted 

application domain is rarely affected by the phenomenon. For this reason, the right-end side of Figure 

5 shows how decision makers can input the characteristics of the scenario in the value analysis, by 

defining a site profile to fine-tune the weights of value dimensions and drivers. Such a profile can be 

inputted manually, using both qualitative and quantitative information across a set of parameters for a 

site, or can be automatically generated from existing site data. Site profiles descriptors are agreed upon 

by the cross-functional team dealing with V&V activities and typically include road, weather, and 

other environmental conditions of interest, modelled from existing datasets. 

5.3 Assessing the value of the model components 

The description of an add-on weather model component is inputted in a Multi Criteria Decision 

Making (MCDM) matrix adapted from the EVOKE model proposed by Bertoni et al. (2018), and 

originally by Eres et al (2014). The matrix is implemented in MS Excel® and computes a value score 

associated to a given configuration together with a knowledge maturity index, which indicates how 

much the results of the assessment can be trusted. The decision makers must first indicate how much 

an add-on model feature is expected to impact a given value driver, typically by using a high, medium, 

and weak or null correlation, expressed through a coefficient (0.9, 0.3, 0.1, and 0 as in Figure 5).  

To compute a scalar score for each proposed component configuration, they must also indicate the 

type and shape of value function that links the model feature with the value driver of interest. The V6 

uses four different functions to calculate a performance value score for a proposed design: maximising 

(Max), minimizing (Min), optimizing (Opt), and avoiding (Avo). The first one describes a situation 

when value is increased by increasing the number associated to virtual model component feature (i.e., 

the maximum level of fulfilment is reached when the value of the parameter gets close to infinity). In 

the case of a minimization functions, the logic is opposite (i.e., the maximum level of fulfilment is 

reached when the value of the parameter approximates zero). In the case of an optimization function, 

the maximum value is achieved when a model component parameter reaches a target value set by the 

cross-functional team. An avoidance function follows the opposite logic than the optimization one. 

 

Figure 5. Extract from the EVOKE model linking value drivers and add-on model features. 

In the V6, the value function can assume 4 different shapes: linear, concave, convex and step, to better 

capture the non-linear dependencies between value drivers and model component features. Step 

functions, for instance, are employed to model binary variables, such as a model component feature 

being activated or not (e.g., the Reactivity/collision feature presented in Figure 4). A Knowledge 

Maturity Index (KMI) is computed together with a value score to indicate how much the cross-functional 
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team might trust the results of the value assessment activity. Following the approach proposed by 

Johansson et al. (2017), the team is required to assess the maturity of the knowledge used at each 

intersection in the matrix to set correlation coefficients, value functions and their shapes. This is done by 

using a qualitative scale - from 1 (minimum) to 5 (maximum) - computed over three dimensions: input, 

method (tool), and expertise (experience). If the KMI is below a critical value set by the team, the model 

issues one or more 'warnings' that are presented to the decision makers together with the total KMI index 

for a configuration, which is obtained by aggregating the scores from each individual assessment. Both 

the value score and the KMI are logged at each iteration and used to support the selection of the best 

design (or to pinpoint areas where knowledge is not sufficient to decide on the most value-adding 

design). The results form the value assessment activity are visualised to the design team in a way to 

emphasise how a new model configuration is related to a given baseline design.  

 

Figure 6. Results visualization panel for the V6 tool. 

The panel on the left-end side of Figure 6 displays the features of a baseline design together with its 

calculated value and maturity information. The panel on the right-end side displays the results for a 

new configuration, pinpointing the delta with the baseline design as well as providing in depth 

information about the KMI warnings. It is further possible to visualise the value contribution across 

each driver by clicking on the interface. 

6 DISCUSSION  

The goal with the development of the V6 was to create a 'demonstrator', which has a primary use as 

communication tool, to provide evidence of product benefits (see Bobbe et al. 2023). The V6 is mostly 

aimed at communicating the hypothesis that value models are beneficial to shape the virtual V&V 

strategy for AVS, rather than at evaluating such hypothesis. Being a demonstrator and not a full-

fledged prototype, the V6 wants to engage practitioners and experts in providing cues on how to 

interact with qualitative value models, so to better understand (and lower the barrier related to) how to 

introduce a value thinking in the V&V task. The design principle of 'try' (see: Bobbe et al. 2023) was 

at the core of every iteration of the tool, which was first and foremostly designed with the intention of 

letting the potential users to try the solution and experience it first-hand. 

The verification activities performed on the V6 show that the tool is deemed suitable by industrial 

practitioners to raise awareness about the desirability, viability, and feasibility of adopting alternative 

model components in the virtual V&V toolchain. The interaction with the practitioners showed that 

the main advantage of value-driven design approach is found in the possibility to support a set-based 

engineering approach early in the V&V strategy design process, helping the team in filtering out those 

strategies that are considered to be of low 'value' for both customers and solution providers. A 

qualitative value-based approach was found to be mainly beneficial for the decision makers when 

elaborating on (1) what model components shall be included in the V&V work, depending on the 

specific product and business case, and (2) the resolution of such components, in terms for trade-off 

between realism vs. computational time and effort (and more, depending on what the provider 

considers as an internal value dimension of interest). The V6 was found to help individuals in learning 

about dependencies (and specify differences) across the organizational boundaries, which is to 

catalyse the tacit knowledge related to the virtual V&V task and to communicating the rationale of 

V&V decisions to those roles that do not have in depth experience with the technicalities of the virtual 

testing platform. 
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On the other end, the work pinpointed issues when it comes to the utilization of qualitative value 

models in the V&V process. An important lesson learned from the work is that it is not intuitive for 

several roles and expertise in the cross-functional team to understand the contribution of models such 

as the V6 in the virtual V&V toolchain. Simply stated, high-fidelity, white-box models are perceived 

by many as 'best' no matter what, and one shall always strive for obtaining the most realistic output 

from the simulation work. Even though the descriptive study shows that challenges do exist when 

striving from absolute realism, more work needs to be done to adapt qualitative value models to the 

needs of the simulation experts and to integrate the tool with the other items in their engineering 

toolbox. More specifically, when looking at the V6 demonstrator, the ability of modularizing the 

approach, being applied to different sites and being scaled up through the assessment of a large 

number of model components, has room for improvement. At the same time, the value scored obtained 

from the model shall be better related to the concept of 'fidelity', which was found to be a particularly 

popular 'boundary object' in the cross-functional in the team. 

7 CONCLUSIONS 

Virtual V&V activities for AVS are becoming increasingly common, yet it remains unclear how the 

increasing level of granularity and detail of a simulation shall be compared against computational 

power and cost. The findings from the work show that the knowledge base on which V&V decisions 

are taken (e.g., with regards to what model components shall be included in the virtual validation 

toolchain) needs to be expanded, so to raise awareness about a broader set of factors critical for the 

successful deployment of servitized solutions to the customers. Since the optimum is not found at the 

end of the scale (i.e., maximum realism) but rather as a trade-off between such dimensions, qualitative 

value models become of interest to identify the most value adding virtual V&V strategy. The paper 

shows that the development of such a strategy shall be treated as a value-driven design problem, 

balancing precision and effort in the virtual modelling work. The study further demonstrates the 

applicability of a value modelling approach to support the design team in identifying the 

characteristics of the modelling environment that are believed to deliver the best value for the system 

decision makers. The sweet spot for the application of qualitative models is found in the earliest stages 

of the virtual verification and validation process, when quick what-if analysis are performed to filter 

out those strategies that are believed to be too computationally intensive, or, on the other end, not 

enough 'realistic' for the scope of the V&V activity. Noticeably, the notion of Knowledge Maturity 

(KM) was also found to be very relevant to provide a trustworthiness measure of the value modelling 

results, highlighting those areas needing more knowledge about the relationship between virtual model 

components and V&V strategy goals.  

Future work will aim at further developing the proposed demonstrator and at expanding its application 

outside the offroad sector. They will also aim at scaling up and expanding its coverage, applying it not 

only in the frame of the evaluation of virtual simulation model add-ons, but also to assess the value of 

other aspects of the autonomous transport system (such as connectivity protocols and more) to orient 

early-stage design decisions towards more value adding solutions. Experimentation activities in 

selected design episodes - typically through protocol analysis - are also in focus to further verify how 

the tool is used (and its main benefits and drawbacks) in different contexts.  
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