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Quantum fields on time-dependent backgrounds:
Particle creation

Beginning with this chapter we will introduce quantum field theory (QFT) and
develop the necessary ideas and methods which form the basis of nonequilibrium
(NEq) QFT. We focus on quantum field systems in external fields or in a time-
varying background spacetime. The latter is included here because many basic
concepts and techniques in QFT in external fields were developed historically in
the area of QFT in curved spacetimes, especially in time-dependent backgrounds
used in relativistic cosmology. Cosmology is also the arena where some of the
basic tenets of NEqQFT were established and tested out.

In a dynamical background some basic concepts of QFT need to be reexam-
ined. We point out the problem in straightforwardly extending the methodology
of Minkowski spacetime QFT, such as the definition of particles by way of instan-
taneous diagonalization of the Hamiltonian. The vacuum state defined this way
is nonviable since particles are being created as the system evolves. We intro-
duce the Bogoliubov transformation between two sets of mode functions of the
field, and discuss how two different particle models defined at different times
are related to each other. Particle creation is a nonadiabatic process. We intro-
duce the nth order adiabatic vacuum and number state as the proper way to
construct a QFT in dynamical backgrounds. We derive expressions for sponta-
neous particle production as parametric amplification of vacuum fluctuations,
and stimulated production as amplification of particles already present in the
quantum or thermal state.

Following this we give two examples for the problem of charged particle motion
in an external field. The first one is for a uniform electric field. We show how
to use the adiabatic number state and the Bogoliubov transformation to obtain
the famous result of Schwinger. In the second problem we study periodically
driven fields based on the Floquet theory of parametric resonance. For charged
particles in an external field we derive a quantum Vlasov equation for the rate
of particle creation and show that particle creation is a non-Markovian (history
dependent) process. We point out the intrinsic relation between number and
phase of a quantum system, and under what conditions particle number may
increase and others when it may decrease.

We then turn to a discussion of the second class of problems, that of quan-
tum fields in dynamic background spacetimes. These are useful for the study
of quantum processes in the early universe. We introduce the wave equation in
curved spacetime, and discuss the conditions where one can construct a physically
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94 Quantum fields on time-dependent backgrounds: Particle creation

meaningful particle model, including the conformal vacuum for conformal fields
in conformally flat spacetimes, which are relevant to the standard model in cos-
mology. We use a simple observation to show why gravitons are not produced
in a radiation-dominated universe, and a simple model to illustrate how thermal
particle creation arises. We then demonstrate how one can identify and remove
the ultraviolet divergences in the stress–energy tensor of the quantum field by
the method of adiabatic regularization. Obtaining a physically reasonable reg-
ularized stress–energy tensor is an essential step in approaching the so-called
“back-reaction problem,” i.e. finding a self-consistent solution of the quantum
particle–EM field or quantum field–background spacetime system.

This is followed by a self-contained description of particle creation in the
squeezed state language which can better elucidate the relation between number
and phase representations. We first give the result of spontaneous and stimu-
lated production, discuss the difference between bosons and fermions, and their
dependence on the initial state. We then introduce the statistical mechanics of
particle creation and relate entropy generation to the specification of the initial
state and the choice of representations, such as the number state, the coherent
and the squeezed state. Finally we present results for the fluctuations in parti-
cle number as it is relevant to defining noise in quantum fields and the vacuum
susceptibility of spacetime. In the last section we give a description of squeezed
quantum open systems. These discussions bring out some basic issues in the sta-
tistical mechanics of quantum fields and prepare the ground for investigating the
statistical, kinetic, and stochastic features of quantum processes such as back-
reaction and dissipation, entropy generation, fluctuations, correlations, noise and
decoherence, which will be elaborated in later chapters.

4.1 Basic field theory

4.1.1 Classical fields

A field theory is concerned with extended physical systems, whose configurations
are defined by giving some set of numbers at each spacetime point associated
with an event, with coordinates denoted by a 4-vector xμ = (t,x) containing the
time and space components respectively. The simplest field theories have only
one (real) number assigned to each event (or, attached to each spacetime point)
and this number is prescribed to be the same for all observers. These are the so-
called scalar field theories. For example, if we imagine spacetime as a continuous
fluid, we may define a temperature (scalar) field T (x) whose field configuration
is given by the temperature T reading (a number) at each spatial point x at
a given time t as measured by an observer at rest with respect to the fluid.
Another familiar example of a scalar field is the magnetization density μ(x) in a
ferromagnetic material, again in the continuous spacetime approximation.

For pedagogical reasons we shall be using the scalar field theory to illustrate
new ideas and methods in this book. Extensions to vector (e.g. electromagnetic),
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4.1 Basic field theory 95

tensor (e.g. gravitational) and spinor (e.g. electron) fields can be made with
proper treatment of their specific tensor characters. In most parts of this book,
except Chapters 9 and 15, we shall work in flat spacetime, endowed with the
Minkowski metric ημν = diag(−1, 1, 1, 1), with time being the zeroth coordinate.

A scalar field theory describes the field variable φ (x), namely, the single real
number to be prescribed at every event. Its dynamics is given by the action S[φ]
of the theory; for example

S [φ] =
∫

d4x

{
−1

2
(∇φ)2 − V [φ (x)]

}
(4.1)

where (∇φ)2 in Minkowski space is equal to ∂μφ∂
μφ = (∂φ)2 and the potential

V (φ) is a real functional of the field variable φ. In this chapter we choose units
such that the speed of light c = 1. A common example for massive interacting
fields is the φ4 potential

V (φ) =
1
2
m2φ2 +

λ

4!
φ4 (4.2)

where m is the mass of the field (also known as the inverse correlation length) and
λ is the coupling constant. The equations of motion are given by the variational
principle δS/δφ = S,φ = 0. In our case they read

∇2φ− V ′ (φ) = 0 (4.3)

where ∇2 = ∂μ∂
μ in Minkowski space and V ′ = dV/dφ. We can define the field

momentum as π = φ,t

(
φ,t ≡ φ,0 or φ̇

)
. A particular solution of the equations of

motion is identified by its Cauchy data φ, π on a constant time surface. (There
are more general surfaces one can use, the so-called Cauchy surfaces, but we
won’t go into that here.) The dynamics inherits the symmetries of the action,
which in Minkowski spacetime possesses Poincaré invariance, and, for an even
potential such as in equation (4.2), φ → −φ symmetry.

The second-order equation (4.3) can also be written as a first-order equation
for π, namely

∂π

∂t
= ∇2φ− V ′ (φ) (4.4)

The definition of π and (4.4) together have the structure of canonical equations
derivable from a Hamiltonian

H =
∫

d3x
[
1
2
π2 +

1
2

(∇iφ)2 + V (φ)
]

(4.5)

Observe that the integral extends over space variables only. In other words, the
nondenumerable set

{
φ (t,x) ,xεR3

}
defines the canonical coordinates at time

t, and the π’s are their conjugate momenta. These canonical variables obey the
equal-time Poisson brackets

{φ (t,x) , φ (t,x′)} = {π (t,x) , π (t,x′)} = 0; {π (t,x) , φ (t,x′)} = δ (x − x′)
(4.6)

This formulation is called the canonical formalism of field theory.
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96 Quantum fields on time-dependent backgrounds: Particle creation

4.1.2 Quantum fields

The theory is quantized by replacing the field variable φ by an operator-valued
distribution Φ. In the Heisenberg picture, for each event x there is an operator
Φ (x) acting on some Hilbert space H of states. The conjugate momentum π

goes over to the momentum operator Π, and the Poisson brackets equation (4.6)
become the equal-time canonical commutation relations (ETCCRs)

[Φ (t,x) ,Φ (t,x′)] = [Π (t,x) ,Π (t,x′)] = 0; [Π (t,x) ,Φ (t,x′)] = −i�δ (x − x′)
(4.7)

The field operator moreover obeys the equation

∇2Φ − V ′ (Φ) = 0 (4.8)

which is equivalent to the first-order system

Φ̇ =
i

�
[H,Φ] ; Π̇ =

i

�
[H,Π] (4.9)

leading to the rule

Φ (t,x) = U† (t, t′) Φ (t′,x)U (t, t′) (4.10)

where U is the evolution operator

U (t, t′) = e−i(t−t′)H/� (4.11)

More generally, we may introduce the generators Pμ of translations. The Pμ

operators commute among themselves, as dictated by the algebra of the Poincaré
group, and equation (4.11) is a particular case of the transformation rule

Φ (x) = e−iPx/�Φ (0) eiPx/� (4.12)

after identifying the Hamiltonian H = P 0.

4.1.3 Free fields

A free field corresponds to a quadratic potential V (Φ). A generic example is
a free massive scalar field with V (Φ) = (1/2)m2Φ2. The Heisenberg equation of
motion for this field becomes the Klein–Gordon equation ∇2Φ(x) −m2Φ(x) = 0.

Assuming that the field lives in a finite large volume V and expanding the
scalar field operator in (spatial) Fourier modes, we have

Φ(t,x) =
1√
V

∑
k

ϕk(t)uk(x) (4.13)

where k = 2πn/L, and n = (n1, n2, n3) in general consists of a triplet of integers.
In Minkowski space the spatial mode functions are simply uk = eik·x. In the
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4.1 Basic field theory 97

infinite volume continuum limit this becomes

Φ(t,x) =
∫

d3k

(2π)3/2
eikxϕk (t) (4.14)

The (operator-valued) amplitude function ϕk(t) for each mode k obeys a har-
monic oscillator equation

d2ϕk

dt2
+ ω2

kϕk = 0 (4.15)

where ω2
k = |k|2 + m2 in Minkowski space.

Given two complex independent solutions fk, f∗
k of equation (4.15), we may

write

ϕk (t) = fk (t) ak + f∗
k (t) a†−k (4.16)

Let us introduce the Wronskian (f, g) = fġ − gḟ , which is conserved by equation
(4.15), and impose the normalization

(fk, f∗
k ) = i� (4.17)

The ETCCRs are equivalent to

[ak, ak′ ] =
[
a†k, a

†
k′

]
= 0;

[
ak, a

†
k′

]
= δ (k − k′) (4.18)

These operators may be interpreted as particle destruction and creation oper-
ators. We say that each choice of the basis functions fk constitutes a particle
model , where fk is the positive frequency component and f∗

k is the negative fre-
quency component of the kth mode; the state which is destroyed by all the ak’s
is the vacuum of the particle model. The vacua of different particle models are
in general inequivalent. This situation becomes more challenging for quantum
fields in a dynamical background field or spacetime, which is the central theme
of this chapter.

In terms of the creation and destruction operators, the Hamiltonian is

H =
∫

d3k

(2π)3

{
A�ωk

(
N̂k +

1
2

)
+ Fkaka−k + F ∗

ka
†
ka

†
−k

}
(4.19)

Here,

N̂k = a†kak; A�ωk ≡
(∣∣∣ḟk∣∣∣2 + ω2

k |fk|2
)

; Fk ≡ ḟ2
k + ω2

kf
2
k (4.20)

We may diagonalize the Hamiltonian at any time t = 0 by imposing the con-
dition ḟk (0) = −iωkfk (0) , making Fk(0) = 0. In Minkowski space, and with
the natural time coordinate, the Hamiltonian stays diagonal at all times. The
corresponding particle model in Minkowski space is given by

fk (t) =
√

�

2ωk
e−iωkt; A = 1 (4.21)
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98 Quantum fields on time-dependent backgrounds: Particle creation

which possesses a well-defined meaning of particles at all times. This is the
framework of (flat space) quantum field theory implicitly assumed in textbooks.

4.1.4 Particle creation

We now consider quantum fields propagating on dynamic backgrounds. When a
mode decomposition is available the (c-number) amplitude function of the kth
mode obeys, from equation (4.15), the wave equation

d2fk
dt2

+ ω2
k(t)fk(t) = 0 (4.22)

where the natural frequency ωk now acquires an explicit time dependence.
In Minkowski space QFT we are accustomed to the notion that positive energy

solutions to the wave equation for every normal mode correspond to particles
while negative energy solutions correspond to antiparticles. One can diagonalize
the Hamiltonian to select a preferred particle model, e.g. the Minkowski modes
(4.21). However for a time-dependent background field this notion becomes
meaningless and the criterion of instantaneous diagonalization of the Hamil-
tonian is inviable as a particle model. This is because the mode equation (4.22)
generally possesses time-dependent solutions which have no clear a priori phys-
ical meaning in terms of particles or antiparticles. The energy of individual
particle/antiparticle modes is not conserved, and a consistent separation into
positive and negative energy solutions of the wave equation is not always possi-
ble. This is just a reflection of the fact that physical particle number does not
correspond to an operator which commutes with the Hamiltonian. We can see
this point more clearly by way of the Bogoliubov transformation.

The transformation between any two Fock space bases ak and ãk is known as
the Bogoliubov transformation. Let the first basis ak be associated with modes
(fk, f∗

k) , the second basis ãk with modes
(
f̃k, f̃

∗
k

)
. We may expand the field

operators in either base, leading to equation (4.16) in the first case, and to

ϕk (t) = f̃k (t) ãk + f̃∗
k (t) ã†−k (4.23)

in the second. Since both sets of solutions of the mode equations are complete,
we must have

fk (t) = αkf̃k (t) + βkf̃
∗
k (t) (4.24)

and its inverse

f̃k(t) = α∗
kfk(t) − βkf

∗
k(t) (4.25)

https://doi.org/10.1017/9781009290036.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.007


4.1 Basic field theory 99

The Wronskian condition (fk, f∗
k) =

(
f̃k, f̃

∗
k

)
= i� imposes a condition on the

Bogoliubov coefficients

|αk|2 − |βk|2 = 1 (4.26)

for each k. We can thus write

|αk(t)| = cosh rk(t)

|βk(t)| = sinh rk(t) (4.27)

where rk(t) is called the squeeze parameter for mode k, a terminology adopted
from quantum optics. In Section 4.7 we will give a description of particle creation
in the squeezed state language.

The linear relationship between the f̃ ’s and f ’s induces a corresponding trans-
formation between a, ã

ãk = αkak + β∗
ka

†
−k (4.28)

with inverse

ak = α∗
kãk − βkã

†
−k (4.29)

Each particle model is associated with a particular vacuum state, in this case,
|0〉 and

∣∣0̃〉 , defined by

ak |0〉 = 0 and ãk

∣∣0̃〉 = 0 (4.30)

separately for all k. Fock spaces can be constructed from the vacuum states by
the action of the creation operators. One can easily see that generally ãk |0〉 �= 0
because the two vacua are different by the coefficients α, β. Introducing the par-

ticle number operator
(
Ñk

)∧
≡ ã†kãk of the second particle model, we see that

its expectation value with respect to the vacuum of the first model is nonzero,
but equal to

Ñk = 〈0 |
(
Ñk

)∧
| 0〉 = V | βk |2 (4.31)

where V is the “volume” of space. An observer of the second particle model would
say that Ñk particles have been created from the first vacuum (from now on, we
shall disregard factors of V , assuming that particle counts are always referred to
a unit volume). When we think of the second particle model as defined at a time
t while the first particle model is defined at the initial time t0, we may write
the particle numbers at these two times as 〈N̂k(t)〉t, 〈N̂k(t0)〉0 respectively, i.e.
N̂ denotes a generic number operator which takes on eigenvalues N and Ñ in
the two Fock spaces respectively. (We may at times use the notation n and N
for these two values also.) In an S-matrix formulation of quantum field theory in
a dynamical background (field or spacetime), where one assumes an asymptotic
region where the background field is constant or the spacetime is static (so the
modes obtained by the diagonalization of the Hamiltonian in those regions give
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100 Quantum fields on time-dependent backgrounds: Particle creation

a preferred particle model), the states of the first (ak) and second (ãk) particle
models are conventionally called the in and the out states respectively. We will
use these nomenclatures interchangeably.

It is interesting to give a closed expression for the amplitude for finding ñ pairs
in the |0〉 state in terms of the Bogoliubov coefficients. We have

〈 ñk, ñ−k| 0〉 =
1
α∗
k

[
β∗
k

α∗
k

]ñk

(4.32)

4.1.5 Adiabatic vacua

The transformation of the Fock space operators described by the Bogoliubov
transformation (4.28), despite its appearance, is only a formal expression. The
creation and annihilation operators do not give particle creation unless the vac-
uum state is well defined. We will discuss below situations where there are
preferred particle models asymptotically, such as constant background fields or
stationary spacetimes at t = ±∞, or conformally-invariant fields in conformally-
static spacetimes without asymptotic conditions. Then the Fock spaces are well
defined and one can calculate the amplitude for particle creation in a S-matrix
sense. Under general conditions the particle number at any one time during
the evolution is not well-defined. A straightforward intuitive generalization from
flat space field theory – the so-called method of instantaneous diagonalization
of the Hamiltonian – leads to severe problems; see e.g. [Ful89]. One has to
appeal to other methods. If the external field (or background spacetime) does
not change too rapidly (to be quantified below by the nonadiabaticity param-
eter) there is a conceptually clear and technically simple method which has
proven to be useful in problems involving time-dependent fields (as in the exter-
nal field problem) and spacetimes (as in cosmological particle creation). It is
the nth order adiabatic vacuum or number state, and, when applied to the
removal of ultraviolet divergences in the current or energy–momentum tensor, it
is called adiabatic regularization. A selection of influential papers on this subject
is [Park66, Park69, ParFul74, FulPar74, Park76, Park77].

Both the time-dependence of the Fock space operators and the evolution of the
amplitude functions are dictated by the wave equations for the normal modes
of the quantum scalar field with time-dependent natural frequency ωk as in
equation (4.22). To single out a solution, we need to specify initial data for fk
and dfk/dt at some time t0. When ωk is constant one can use the same Fock space
representation of the field theory as it remains the same as originally defined at t0.
Staticity means that the dynamics is invariant in time, and implies the existence
of a Killing vector in time ∂t, which enforces the positive and negative frequency
components to remain separated. This means, in second quantized language,
that the particles and antiparticles are separately well-defined and their number
remains a constant. Therefore the possibility of defining a positive frequency
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4.1 Basic field theory 101

component in a field theory is the precondition for a vacuum state to exist. We
learned that maintaining such a condition in the evolution is not always possible.

If the external field or background spacetime changes gradually one can extend
this idea and define an adiabatic vacuum or number state. Recall from elementary
wave or quantum theory that a WKB solution can give a reasonable approxi-
mation to the wave equation when the system changes gradually enough. Suc-
cessively higher order WKB (or adiabatic) solutions can encompass more rapid
changes in the background field as they show up in the natural frequency func-
tion. This is the lead idea behind the adiabatic method.

The sequence of successively higher order WKB solutions to this wave equation
has been explored quite extensively by researchers working on wave propagation
in inhomogeneous media. There, the reflection of waves due to successively higher
order derivatives in the dielectric media can be treated with successively higher
order WKB solutions. Translating the variation in spatial homogeneity to time
dependence is a physically intuitive way to understanding the adiabatic vacuum.
This route explored by Hu [Hu72, Hu74] gives the same result as that established
first by Parker and Fulling. It was also shown to be equivalent to the result
obtained by Zeldovich and Starobinsky [ZelSta71, FuPaHu74] in their “n-wave
regularization.”

Consider the wave equation (4.22) in t time for the amplitude function of the
kth mode. (We shall omit the k subscript, as only one mode is being considered.)
The idea is to use a transformation of both time t and dependent variable f to
reduce this equation to one we can solve.

Define a new time variable t1 = t1 (t) , and write equation (4.22) as(
dt1
dt

)2
d2f

dt21
+
(
d2t1
dt2

)
df

dt1
+ ω2f = 0 (4.33)

The equation is simplified by choosing

dt1
dt

= ω (t) (4.34)

whereby

d2f

dt21
+

1
ω

(
dω

dt1

)
df

dt1
+ f = 0 (4.35)

The first-order term is eliminated by writing

f = ω−1/2f1 (4.36)

obtaining

d2

dt21
f1 + w2

1f1 = 0 (4.37)
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102 Quantum fields on time-dependent backgrounds: Particle creation

where

w2
1 = 1 + ε2, ε2 = − 1

ω1/2

d2

dt21
(ω1/2) (4.38)

Observe that equation (4.37) has the same structure as the original equation
(4.22). If ω varies sufficiently slowly, we can neglect ε2, and it becomes trivial.

Higher order WKB approximations to the wave equation are obtained by iter-
ating this procedure. Define (note r here is an adiabatic order parameter, not
the squeeze parameter introduced earlier)

dtr ≡ wr−1dtr−1 ≡ Wrdt (w0 ≡ ω, t0 ≡ t) (4.39)

fr ≡ w
1/2
r−1fr−1 = W 1/2

r f (4.40)

Wr ≡ w0w1 · · ·wr−1 (4.41)

Θr ≡
∫

Wrdt (4.42)

The n(= 2r)th-order WKB equation is given by (r = 1, 2, . . .)

d2

dt2r
fr + w2

rfr = 0 (4.43)

where, for r = 1, 2, 3 . . .,

w2
r = 1 + ε2r, ε2r = − 1

w
1/2
r−1

d2

dt2r
(w1/2

r−1) (4.44)

The quantities ε2r are called the adiabatic frequency corrections [FuPaHu74]. If
|ε2r| � 1, the solution of the wave equation correct up to the n(= 2r)th order of
derivatives of the natural frequency w2(t) with respect to tr is given by

f(n)(t) =
�

1/2

(2Wr)
1/2

[
Ae−i

∫
Wrdt + Bei

∫
Wrdt

]
(4.45)

where A,B are complex functions. The subscript (n) on f indicates that a solu-
tion to the full wave equation is sought including up to the nth adiabatic order. In
contradistinction, we define a n(= 2r)th-order adiabatic solution as the solution
with ε2r set equal to zero.

The nth-order adiabatic vacuum is defined such that there is no negative fre-
quency component in the nth-order WKB solution. What this means is that, at
the nth adiabatic order approximation the nth-order adiabatic number state is
obtained by assuming that the wavefunction f(t) is given only by the positive
frequency nth-order WKB solution

f(t) � f+
(n)(t) =

Ae−i
∫ t Wn/2dt√
2Wn/2

(4.46)

So intrinsically this is a quasi-local (in time) expansion counting time derivative
orders, which can be translated to frequency ranges. In terms of what adiabatic
order will encompass what range of frequencies we shall see how this method
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4.1 Basic field theory 103

becomes useful for identifying and isolating ultraviolet divergences in quantum
field theory in dynamical spacetimes, as in cosmology. This method, known as
adiabatic regularization, will be discussed in a later section.

4.1.6 Hamiltonian mean field dynamics and

general Gaussian ansatz

Let us broaden our scope somewhat to introduce an important class of approx-
imations in quantum field theory which shares the same dynamics as the prob-
lem under discussion so far. This is the mean field (or Gaussian) approximation.
Mean field methods have a long history in such diverse areas as atomic physics
(Born–Oppenheimer), nuclear physics (Hartree–Fock), condensed matter (BCS)
and statistical physics (Landau–Ginzburg), quantum optics (coherent/squeezed
states), and semiclassical gravity. Because no higher than second moments of
the fluctuations are incorporated, the mean field approximation is related to a
Gaussian variational ansatz for the wavefunction of the system.

For the mixed state density matrix ρ Habib et al. [HKMP96] have shown
that the time-dependent mean field approximation is equivalent to the general
Gaussian ansatz. It is instructive to follow the exposition of this feature.

As a matter of principle, the Hamiltonian nature of the evolution makes it clear
from the outset that the mean field approximation does not introduce dissipation
or time irreversibility at a fundamental level. Any such behavior must come from
some assumption in coarse graining some information of this closed system away.
We shall remark on this aspect at the end of this section and further in Chapter 9
on entropy generation.

Consider again the one-dimensional harmonic oscillator with Hamiltonian

Hosc(q, p; t) =
1
2
(
p2 + ω2(t) q2

)
(4.47)

where ω(t) is the natural frequency. The most general Gaussian ansatz for the
mixed state normalized density matrix is

〈x′|ρ|x〉 = (2πξ2)−
1
2 exp

{
i
p̄

�
(x′ − x) − ζ2 + 1

8ξ2

[
(x′ − q̄)2 + (x− q̄)2

]
+ i

η

2�ξ

[
(x′ − q̄)2 − (x− q̄)2

]
+

ζ2 − 1
4ξ2

(x′ − q̄)(x− q̄)
}

(4.48)

in the coordinate representation. The five parameters (q̄, p̄, ξ, η, ζ) of this Gaus-
sian may be identified with the two mean values, q̄ = 〈q〉 ≡ Tr(ρq), p̄ = 〈p〉 ≡
Tr(ρp), and the three symmetrized variances via

〈(q − q̄)2〉 = ξ2, 〈(pq + qp− 2q̄p̄)〉 = 2ξη

〈(p− p̄)2〉 = η2 +
�

2ζ2

4ξ2
(4.49)
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The one antisymmetrized variance is fixed by the commutation relation, [q, p] =
i�. The parameter ζ measures the degree to which the state is mixed: Tr ρ2 =
ζ−1 ≤ 1, with unity for pure states. If the state is pure, ρ = |ψ〉〈ψ|, and only two
of the three symmetrized variances in (4.49) are independent.

The Gaussian ansatz for the density matrix is preserved under time evolu-
tion. In the Schrödinger picture ρ evolves according to the Liouville equation,
ρ̇ = −i[H, ρ]. Substitution of the Gaussian form (4.48) into this equation with
Hamiltonian (4.47) and equating coefficients of x, x′, x2, x′2 and xx′ gives five
evolution equations for the five parameters specifying the Gaussian,

q̄,t = p̄ ; p̄,t = −ω2(t)q̄
ξ,t = η ; η,t = −ω2(t)ξ + �

2ζ2

4ξ3

(4.50)

and ζ̇ = 0. Since ζ is a constant and the von Neumann entropy −Tr ρ ln ρ of the
state (4.48) is a (monotonic) function of ζ alone, this quantity is also a constant
of the motion. This establishes the equivalence between mean field methods and
Gaussian density matrices for all evolutions of the form of equations (4.50).

An essential property of the evolution equations (4.50) is that they are Hamil-
ton’s equations (hence, time reversible) for an effective classical Hamiltonian
[RajMar82], with η playing the role of the momentum conjugate to ξ,

Heff(q̄, p̄; ξ, η) = Tr(ρH) =
1
2
(
p̄2 + η2

)
+ Veff (4.51)

and Veff(q̄, ξ) depending on the particular form of ω2(q̄(t), ξ(t); t).
The unitary time evolution operator U(t) for the density matrix (4.48),

ρ(t) = U(t)ρ(0)U†(t) , U(t) = exp
(
−i�−1

∫ t

0

Hdt

)
(4.52)

is given explicitly in the coordinate basis by

〈x′|U(t)|x〉 = (2πi�v(t))−
1
2 exp

{
i

2�v (t)
(
u(t)x2 + v̇(t)x′2 − 2xx′)} (4.53)

in terms of the two linearly independent solutions to the classical evolution equa-
tion, (

d2

dt2
+ ω2(t)

)(
u

v

)
= 0 ;

u(0) = v̇(0) = 1
u̇(0) = v(0) = 0

(4.54)

The Gaussian dynamics may be expressed as well by means of a Fock repre-
sentation of the time-dependent Heisenberg operators,

q(t) = U†(t) q(0)U(t) = q̄(t) + af(t) + a†f∗(t)

p(t) = U†(t) p(0)U(t) = p̄(t) + aḟ(t) + a†ḟ∗(t) (4.55)

where [a, a†] = 1. The complex mode functions f satisfy the evolution equation
(4.54) and the Wronskian condition (4.17). This shows that Gaussian time evo-
lution is essentially classical, with � appearing only in the time-independent
condition (4.17) enforcing the quantum uncertainty relation.
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4.1 Basic field theory 105

Time-dependent basis

One can choose a basis in which all expectation values vanish, except

〈a†a〉 = 〈aa†〉 − 1 ≡ N ≥ 0 (4.56)

The Gaussian density matrix is diagonal in the corresponding a†a time-
independent number basis,

〈n′|ρ|n〉 =
2δn′n

ζ + 1

(
ζ − 1
ζ + 1

)n

(4.57)

with ζ = 2N + 1 = A (the parametric amplification factor as introduced in
equation (4.20)) and ξ2(t) = ζ|f(t)|2. Upon identifying ζ = coth(�ω/2kBT ), the
diagonal form (4.57) will be recognized as a thermal density matrix at temper-
ature T . The pure state Gaussian wavefunction (ζ = 1) corresponds therefore
to a coherent, squeezed zero temperature vacuum state. The smoothness of the
finite temperature classical limit �ζ → 2kBT/ω as � → 0, ζ → ∞ shows that
quantum and thermal fluctuations are treated by the mean field approximation
in a unified way.

Instantaneous diagonalization

It is always possible to diagonalize (4.47) at any given time, bringing the
quadratic Hamiltonian into the standard harmonic oscillator form, Hosc =
�ω
2

(
ãã† + ã†ã

)
with ã time dependent. This time-dependent basis is defined by

the relations,

q(t) = ãf̃ + ã†f̃∗, p(t) = −iωãf̃ + iωã†f̃∗

f̃(t) =

√
�

2ω(t)
exp
(
−i

∫ t

0

dt′ω(t′)
)

(4.58)

in place of (4.55). In the ã†ã number basis, ρ is no longer diagonal, 〈ã〉, 〈ãã〉, etc.
are nonvanishing, and Ñ ≡ 〈ã†ã〉 �= N in general, becoming equal only in the
static case of constant ω. As cautioned by Fulling [Ful89] this is the incorrect
way to establish a quantum field theory in dynamical backgrounds.

Adiabatic basis

If ω(t) varies slowly in time, an adiabatic invariant may be constructed from the
Hamilton–Jacobi equation corresponding to the effective classical Hamiltonian
(4.51). By a simple quadrature we find the adiabatic invariant,

W

2π�
=

〈H〉
�ω

− ζ

2
= Ñ(t) −N (4.59)

Since N is time independent, Ñ(t) is an adiabatic invariant of the evolution. On
the other hand, the phase angle conjugate to the action variable W varies rapidly
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in time. Since the diagonal matrix elements of ρ in the Ñ basis are independent
of this phase angle, they are slowly varying, whereas the off-diagonal matrix
elements of ρ in this basis (which depend on the phase angle) are rapidly varying
functions of time. If we are interested only in the effects of the fluctuations on the
more slowly varying mean fields it is natural to define an effective density matrix
ρeff(t) by time-averaging the density matrix (4.48), thereby truncating ρ to its
diagonal elements only, in the adiabatic Ñ basis [HuPav86, Kan88a, Kan88b].
Clearly, for this truncation to be justified there must be very efficient phase
cancellation, i.e. dephasing, either by averaging the fluctuations over time or by
summing over many independent fluctuating degrees of freedom at a fixed time.
This is perhaps the most direct way to understand the decoherence of the mean
field. We shall discuss this issue in Chapter 8.

4.2 Particle production in external fields

After the above simple introduction we can begin to explore two classes of
problems involving quantum fields in dynamical backgrounds. In this section
we study the production of charged scalar particles in an external field, rel-
evant to problems of collective excitations in QED plasma (and by extension
to QCD quark–gluon processes). There are good introductions to this topic
in standard texts, such as [ItzZub80]. In the next section we study a neu-
tral scalar field in a dynamical spacetime, applicable to cosmological problems,
such as vacuum particle creation at the Planck time or reheating after GUT
(Grand-Unified Theory) scale inflationary expansion. Both problems have been
studied extensively; the former began with the works of Klein [Kle29], Sauter
[Sau31, Sau32], Heisenberg and Euler [HeiEul36], Schwinger [Sch51], and others
[Greiner, GrMaMo88, FrGiSh91, Ginz87, Ginz95]; the latter by Parker, Sexl and
Urbantke, Zel’dovich and Starobinsky, Fulling, Hu, and many others. For later
and current developments, see [DeW75, BirDav82, Bordag]. For the first part in
this section our treatment follows the work of Kluger, Mottola and Eisenberg
[KlMoEi98]. For the second part in the next section, we follow the approach of
Zel’dovich, Starobinsky [ZelSta71] and Hu [Hu72, Hu74, FuPaHu74].

Assuming that the electric field is spatially homogeneous, in the Coulomb
gauge, we can express the vector potential as

A = A(t)ẑ, A0 = 0 (4.60)

and the electric field as

E = −Ȧẑ = Eẑ (4.61)

Assuming also the field lives in a finite large volume V we can expand
the charged scalar field operator in Fock space in Fourier modes. Since parti-
cles are physically distinct from antiparticles, we need two independent sets of
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destruction operators

Φ(x, t) =
1√
V

∑
k

eik·xϕk(t) =
1√
V

∑
k

{
eik·xfk(t)ak + e−ik·xf∗

−k(t)b†k
}
(4.62)

Denote the time-independent annihilation operator of a particle in mode k
by ak and the creation of an antiparticle in mode −k by b†k. They obey the
commutation relations

[ak, a
†
k′ ] = [bk, b

†
k′ ] = δkk′ (4.63)

Therefore

N+(k) ≡ 〈a†kak〉
N−(k) ≡ 〈b†kbk〉 (4.64)

are the mean numbers of particles and antiparticles respectively. Without loss
of generality we can make use of the freedom in defining the initial phases of
the mode functions to set the correlation densities 〈akak〉 = 〈bkbk〉 = 0. In a
Hamiltonian description we can take for each mode k

ϕk(t) ≡ fk(t)ak + f∗
k(t)b†−k (4.65)

as the (complex) generalized coordinates of the field Φ and

πk(t) = ϕ̇†
k(t) = ḟ∗

k(t)a†k + ḟk(t)b−k (4.66)

as the momentum canonically conjugate to it. By virtue of the commutation
relation (4.63) they obey the canonical commutation relation,

[ϕk, πk′ ] = i�δkk′ (4.67)

provided that the mode functions satisfy the Wronskian condition (4.17).
The complex amplitude function fk(t) of the kth mode satisfies the equations

of motion (4.22), where the time-dependent frequency ω2
k(t) is given by

ω2
k(t) = (k − eA)2 + m2 = (kz − eA(t))2 + k2

⊥ + m2 (4.68)

where kz is the constant canonical momentum in the ẑ direction while the phys-
ical (gauge-invariant) kinetic momentum is given by

pz(t) = kz − eA(t); ṗz = −eȦ = eE (4.69)

(In the directions transverse to the electric field the kinetic and canonical
momenta are the same: p⊥ = k⊥.) Any function of the kinetic momenta con-
tains these two components, e.g. ω(pz, p⊥) =

√
p2
z + p2

⊥ + m2.
Since the definition of particle number becomes very different from that con-

ceived in QFT in Minkowski space, especially in arbitrarily strong and rapidly
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time-varying fields, it is often easier to deal with the conserved physical cur-
rents like j(t) in an external field problem (or the stress–energy tensor Tμν(x) in
curved spacetimes). For a spatially homogeneous electric field (i.e. ∇·E = 0), by
Gauss’ law, the mean charge density must vanish,

j0(t) = e

∫
d3k [N+(k) −N−(−k)] = 0 (4.70)

The mean current in the ẑ direction is

j(t) = 2e
∫

d3k [kz − eA(t)]|fk(t)|2(1 + N+(k) + N−(−k)) (4.71)

One can further restrict to the subspace of states for which

N+(k) = N−(−k) ≡ Nk (4.72)

Clearly the vacuum N+(k) = N−(−k) = 0 (as well as a thermal state) belongs
to this class of states.

Particle pairs will be produced in a strong background field, and in turn, affect
the strength and evolution of this background field. At the first level of sophistica-
tion (simplification), one can assume the background field (electric field or space-
time) is fixed in what is called a “test field” approximation (language also used
in QFT in curved spacetime). At the second level, one looks for a self-consistent
solution of the mean electric field E(t) (or the classical background spacetime)
coupled to the expectation value of the current j(t) of the quantum charged scalar
field (or, in the case of cosmology, the energy–momentum tensor of the quantized
matter field). This is known as the dynamical back-reaction problem. For the
creation of charged particles in a homogeneous electric field, the back-reaction
problem involves solving for the current j(t) from the charge field ϕk(t), and
using it as source in the Maxwell equation for the vector potential A. In a spa-
tially homogeneous electric field, the only nontrivial Maxwell equation is simply

−Ė(t) = Ä(t) = j(t) (4.73)

where the current is given by (4.71). Since the charged scalar field depends
on the vector potential A to begin with, fk(t) and A(t) need to be solved
self-consistently from equations (4.22) with (4.68) and (4.73).

4.2.1 Particle creation in a constant electric field

As a concrete example of particle creation in strong fields, let us review the well-
known case of a uniform time-independent electric field worked out by Schwinger
[Sch51]. There is a very detailed treatment of this problem in [KlMoEi98]. We
may take E to be along the z direction with A (t) = −Et. The wave equation for
the amplitude function of the kth mode can be written in terms of a new time
τ (we omit the mode subscripts, since only one mode is considered):

d2f

dτ2
+ ω2(τ)f = 0 , ω2(τ) = ν2

0 + ν4
1τ

2 (4.74)
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where

τ = t +
kz
eE

, ν2
0 = k2

⊥ + m2, ν4
1 = e2E2 (4.75)

We are interested in the strong-field case ν2
1 ≥ ν2

0 . It is obvious that the natu-
ral frequency is never constant. However, the second-order adiabatic frequency
correction (4.38)

ε2 = − 1
ω

1
2

d2

dτ2
1

(ω
1
2 ) =

ν4
1

[ν2
0 + ν4

1τ
2]2

{
3
4
− 5

4
ν2
0

[ν2
0 + ν4

1τ
2]

}
(4.76)

is small provided |τ | � ν−1
1 ≥ ν0/ν

2
1 . Therefore, for this problem, the zeroth-

order adiabatic vacua already can provide a consistent particle definition both
in the distant past and future.

Let us then consider the nth adiabatic order positive frequency solution f+
(n) in

equation (4.46) with n = 0 and W0 = ω. To be precise, we adopt the convention
that the WKB exponent (adiabatic phase) takes on the values

Θ (τ) ≡
∫ τ

0

ω (τ ′) dτ ′ (τ ≥ 0) and Θ (τ) ≡ −Θ (−τ) (τ < 0) (4.77)

Computing the integral, we get the parametric form

Θ0 =
ν2
0

2ν2
1

[u + sinhu coshu], τ =
ν0

ν2
1

sinhu (4.78)

For large τ,

u ∼ ln
[
2ν2

1τ

ν0

]
+ O

(
τ−2
)

(4.79)

Θ =
ν2
1

2
τ2 +

ν2
0

2ν2
1

ln
[
2ν2

1τ

ν0

]
+

ν2
0

4ν2
1

+ O
(
τ−2
)

(4.80)

ω ∼ ν2
1τ + O

(
τ−1
)

(4.81)

Using equation (4.77) we obtain the corresponding form for τ → −∞,

Θ (τ) ∼ −ν2
1

2
τ2 − ν2

0

2ν2
1

ln
[
2ν2

1 |τ |
ν0

]
− ν2

0

4ν2
1

+ O
(
τ−2
)

(4.82)

ω ∼ ν2
1 |τ | + O

(
τ−1
)

(4.83)

The asymptotic behavior of the WKB-approximate positive frequency mode
function f+ is

f+ (τ) ∼ �
1/2

ν1

1√
2 |τ |

[
2ν2

1 |τ |
ν0

]iν2
0/2ν

2
1

exp
{
iν2

1

2
τ2 +

iν2
0

4ν2
1

}
(τ → −∞) (4.84)

We define the positive frequency mode associated to the in vacuum as the
exact solution fin of equation (4.74) which matches this behavior in the distant
past.
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Similarly, for τ → ∞,

f+ (τ) ∼ �
1/2

ν1

1√
2τ

[
2ν2

1τ

ν0

]−iν2
0/2ν

2
1

exp
{−iν2

1

2
τ2 − iν2

0

4ν2
1

}
(τ → ∞) (4.85)

and we define the positive frequency mode associated with the out vacuum as
the exact solution fout of equation (4.74) which matches this behavior in the
distant future. The whole point of the analysis is that fin �= fout.

A basis of solutions of equation (4.74) is given by the parabolic cylin-
der functions Dp (z) and its conjugate Dp∗ (z∗) , where z = (−1 + i) ν1τ and

p =
(
i (ν0/ν1)

2 − 1
)
/2. When τ → −∞, z ∼

√
2ν1 |τ | e−iπ/4, and

Dp (z) ∼ zpe−z2/4 =
(√

2ν1 |τ |
)−1/2 (√

2ν1 |τ |
)iν2

0/2ν
2
1

× eiπ/8eπ(ν0/ν1)
2/8 exp

{
i

2
(ν1τ)2

}
(4.86)

(τ → −∞). Comparing with the corresponding expansion of f+, equation (4.84),
we find that the normalized mode function associated with the in vacuum is

fin =
�

1/2√√
2ν1

[√
2ν1

ν0

]iν2
0/2ν

2
1

e−iπ/8e−π(ν0/ν1)
2/8 exp

{
iν2

0

4ν2
1

}
Dp (z) (4.87)

When τ → ∞, z ∼
√

2ν1τ e3iπ/4, and

Dp (z) ∼ zpe−z2/4 −
√

2π
Γ [−p]

eiπpz−p−1ez
2/4

=
(√

2ν1τ
)−1/2

e−3iπ/8

{(√
2ν1τ

)iν2
0/2ν

2
1
e−3π(ν0/ν1)

2/8 exp
{
i

2
(ν1τ)2

}

−
√

2π
Γ [−p]

e−iπ/2
(√

2ν1τ
)−iν2

0/2ν
2
1
e−π(ν0/ν1)

2/8 exp
{
− i

2
(ν1τ)2

}}

(4.88)

(τ → ∞) . Substituting this into equation (4.87) and comparing with the devel-
opment equation (4.85) we find that fin and fout are related in a way given
exactly by the Bogoliubov transformation

fin = α fout + β f∗
out = α f+ + β f− (τ → ∞) (4.89)

where f− is the corresponding negative frequency solution of the same adiabatic
order [the term with coefficient B in (4.45)]. Note that the first identity actually
holds everywhere. Hence we can identify the Bogoliubov coefficients as

α =

[√
2ν1

ν0

]iν2
0/ν

2
1

exp
{
iν2

0

2ν2
1

} ( √
2π

Γ [−p]

)
e−π(ν0/ν1)

2/4 (4.90)

and

β = e−iπ/2e−π(ν0/ν1)
2/2 (4.91)
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As a check, observe that

|α|2 = 2 cosh

[
π

2

(
ν0

ν1

)2
]

exp

[
−π

2

(
ν0

ν1

)2
]

(4.92)

|β|2 = exp

[
−π

(
ν0

ν1

)2
]

(4.93)

obeys the Wronskian condition |α|2 − |β|2 = 1.
It is clear that if we set up the quantum state to be the in vacuum, when we

arrive at the out region we find

N = |β|2 = exp
{
−π

(
k2
⊥ + m2

eE

)}
(4.94)

particles in each mode. This is Schwinger’s celebrated result [Sch51].

4.3 Spontaneous and stimulated production

So far we have focused on how to define a physically meaningful vacuum state and
the number of particles produced in a changing external field or dynamical space-
time. We learn how to define adiabatic vacuum states in a dynamical setting,
via the adiabatic expansion. The nth order adiabatic number state is well-defined
to the nth adiabatic order. In this section we will show how to derive the energy
density of these particles produced in adiabatic orders. A related problem is
the identification and subtraction of ultraviolet divergences in the stress–energy
tensor of quantum fields in a dynamical background. Here we will explain how
to apply the adiabatic method introduced above in what is called the adiabatic
regularization scheme.

We begin with a formal rendition to the parametric oscillator equation (4.22)
describing the amplitude function of the k th normal mode. We want an expres-
sion of sk ≡ |βk|2 in terms of |fk| and |ḟk|. Here following [ZelSta71, Hu74] we
seek a solution in the form:

fk(t) =
√

�

2ωk

{
αke

−
k + βke

+
k

}
; e±k ≡ exp

{
±i

∫
ωkdt

}
(4.95)

The two functions αk, βk are the positive and negative frequency components
of a formal solution fk, but without a well-defined vacuum they do not convey
the meaning of particles and antiparticles, as we forewarned with regard to the
Bogoliubov coefficients. Since the single equation (4.95) does not determine the
coefficients αk and βk uniquely, we need another condition, which is chosen so
that the Wronskian condition equation (4.17) is satisfied. The auxiliary condition
imposed on ḟk is

ḟk(t) = −i

√
�ωk

2
(
αke

−
k − βke

+
k

)
(4.96)
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Inverting these two equations we can express the complex function βk in terms
of |fk|2, |ḟk|2 as follows:

αk =
√

ωk

2�

(
fk +

i

ωk
ḟk

)
e+
k , βk =

√
ωk

2�

(
fk − i

ωk
ḟk

)
e−k (4.97)

Making use of the Wronskian condition we obtain

sk ≡| βk |2= 1
2�ωk

(∣∣∣ḟk∣∣∣2 + ω2
k |fk|2

)
− 1

2
(4.98)

It is tempting to regard sk = |βk|2 as the amount of particle production. How-
ever, we need to be careful that the vacuum state is well-defined to make sense
of particles. To which adiabatic order one needs to carry out the expansion is
determined by the physical conditions (foremost how rapidly the natural fre-
quency changes) of the system and by the accuracy demanded in its description.
For slowly varying fields if one is interested in problems concerning the adiabatic
particle number or mean current distribution as used in quantum kinetic theory
[GrLeWe80] (low particle creation rate and minimal phase information) the adi-
abatic number state of [KlMoEi98] to be introduced in a later section, which is
in the lowest adiabatic order, will suffice.

4.3.1 Spontaneous production

The energy–momentum tensor of a massive scalar field in flat space is

TMink
μν = ∇μφ∇νφ− 1

2
ημν∇ρφ∇ρφ− 1

2
ημνm

2φ2 (4.99)

The energy density associated with these particles is given by the expectation
value of the 00 component of Tμν with respect to the Minkowski vacuum, i.e.

ρMink
0 ≡ 〈0 | T00 | 0〉 =

∫
d3k

2(2π)3
(| ḟk |2 +ω2

k | fk |2) =
∫

d3k
(2π)3

(2sk + 1)
�ωk

2
(4.100)

In a Hamiltonian description of the dynamics of a finite system of parametric
oscillators, the Hamiltonian is simply

HMink(t) =
1
2

∑
k

(π2
k + ω2

kq
2
k) =

∑
k

(
Nk +

1
2

)
�ωk (4.101)

Comparing this with (4.100) one can identify | fk |2 and | ḟk |2 with the canonical
coordinates q2

k and moment π2
k, the eigenvalue of H0 being the energy Ek =

(Nk + 1
2 )�ωk. The analogy of particle creation with parametric amplification is

formally clear: equation (4.98) defines the number operator

Nk(t) =
1

2�ωk
(π2

k + ω2
kq

2
k) − 1

2
= sk (4.102)
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and equation (4.100) says that the energy density of vacuum particle creation
comes from the amplification of vacuum fluctuations �ωk/2 by the factor Ak =
2sk + 1. Now it is easy to recognize that the Minkowski result in equation (4.21)
corresponds to Ak = 1, no particle creation or zero amplification.

In general there are ultraviolet divergences appearing in the integral (4.100)
which requires a subtraction scheme. The adiabatic method comes in handy for
such a task, because as we have explained before, the lowest few orders of the
WKB solutions encompass particle production from the high-frequency range
downwards in the spectrum. This is just what one needs for the subtraction
of ultraviolet divergences. For renormalization of the energy–momentum tensor
of quantum fields in curved spacetimes the zeroth, second and fourth adiabatic
order expressions give the quartic, quadratic and logarithmic divergences. We
will discuss this method in the context of cosmological particle creation in Sec-
tion 4.6. To facilitate adoption of the formula there for flat space field theory
in a dynamical background field, just replace χ by φ, η by t (thus primes by
overdots) and set a = 1.

A quantity which enters in the expressions for the adiabatic expansion of the
energy–momentum tensor of quantum fields is the nonadiabaticity parameter
defined as (for the kth mode with natural frequency ωk in t time) ω̄k ≡ ω̇k/ω

2
k .

Particle production is more pronounced in modes which evolve nonadiabatically,
i.e. ω̄k(t) � 1 (or ω̄k(η) � 1 in the conformal wave equation of Section 4.6). Thus
particle production is a nonadiabatic process. We will learn soon that it is also
a non-Markovian process (nonlocal in time, memory, or history, dependent).

4.3.2 Stimulated production

Equation (4.98) gives the vacuum energy density of particles produced from an
initial vacuum, a pure state. If the initial state at t0 is a statistical mixture
of pure states, each of which contains a definite number of particles, then an
additional mechanism of particle creation enters. This is known as induced or
stimulated creation. In particular, if the statistical density matrix μ is diagonal in
the representation whose basis consists of the eigenstates of the number operators
a†kak at time t0, then for bosons this process increases the average number of
particles (in mode k in a unit volume) at a later time t over and above the initial
amount present. From (4.28) we have

Ñ ≡ 〈Nk(t)〉t = Tr[μã†k(t)ãk(t)] = 〈Nk(t0)〉+ | βk(t) |2 [1 + 2〈Nk(t0)〉] (4.103)

where angular brackets without a subscript t refers to that taken at the initial
time t0, 〈Nk(t0)〉 = Tr[μa†kak], if the system is in a pure state at t0. For fermions
induced (or stimulated) particle creation decreases the initial number.

The above result can be understood in the parametric oscillator description
as the sum of two parts: First, the amount sk = |βk(t)|2 from spontaneous pro-
duction of particles from the amplification of vacuum fluctuations by the factor
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Ak = 2sk + 1. Second, an amplification by the same factor Ak, of the particles
already present Nk(t0), i.e.

〈Nk(t)〉t =| βk(t) |2 + Ak〈Nk(t0)〉 (4.104)

where sk = |βk(t)|2. The second part is called stimulated production. It yields
an energy density ρn with respect to the n-particle state at t0 given by

ρMink
n = 〈n | T00 | n〉 =

∫
d3k

(2π)3
(| ḟk |2 +ω2

k | fk |2)〈a†kak〉

=
∫

d3k
(2π)3

(2sk + 1)�ωk〈Nk(t0)〉 (4.105)

Combining (4.100) and (4.105), for a density matrix diagonal in the number
state, the total energy density of particles created from the vacuum and from
those already present in the n-particle state is given by

ρMink = ρMink
0 + ρMink

n =
∫

d3k
(2π)3

(| ḟk |2 +ω2
k | fk |2)

(
1
2

+ 〈a†kak〉
)

=
∫

d3k
(2π)3

Ak�ωk

(
1
2

+ 〈Nk(t0)〉
)

(4.106)

This can be understood as the result of parametric amplification by the factor
Ak of the energy density of vacuum fluctuations �ωk/2 plus that of the particles
originally present in the kth mode at t0, i.e. 〈Nk(t0)〉�ωk.

4.4 Quantum Vlasov equation

Having familiarized ourselves with the general scheme of adiabatic vacuum and
number states, we now return to the problem of charged particle production in
an external electromagnetic field. We continue to follow the treatment given by
Kluger, Mottola and Eisenberg [KlMoEi98] for pedagogical advantage.

4.4.1 Adiabatic number state

An adiabatic number state f̃+
k(0)(t) was suggested by [KlMoEi98] for the descrip-

tion of a kinetic theory of charged particles moving in an electromagnetic field.
That corresponds to the n = 0 adiabatic state defined in equation (4.46)

f̃
(0)
k (t)

(
= f+

k(0) equation (4.46)
)
≡
√

�

2ωk(t)
exp
(
−iΘk(n=0)

)
(4.107)

where Θk(n=0) ≡
∫ t

ωk(t′)dt′ is the (n = 0)th-order adiabatic phase. At this level
of accuracy one measures particle numbers at all times with respect to the initial
vacuum state at time t0. This definition of a number state makes use of the fact
that under adiabatic evolution, particle number is an adiabatic invariant. This
restricts its validity from the start to weak or slowing varying background fields.
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The adiabatic particle number is defined to be [KlMoEi98]

Ñk(t) ≡ 〈ã†k(t)ãk(t)〉 + 〈b̃†−k(t)b̃−k(t)〉 = |αk|2〈a†kak〉 + |βk|2〈b−kb
†
−k〉

=
(
1 + |βk|2

)
N+(k) + |βk|2 (1 + N−(−k))

= |βk|2 + (1 + 2|βk|2)Nk = Nk + (1 + 2Nk) |βk(t)|2 (4.108)

where the last line is valid only if the number of positive and negative charges are
equal (cf. (4.72)). To verify that Ñk is an adiabatic invariant we show that it is
proportional to the ratio of the energy to frequency for any mode k, εk(t)/�ωk(t),
which is known as such for a harmonic oscillator with time-dependent frequency.
After the discussions on spontaneous and stimulated production we can actually
read off this expression from (4.106): Viewing

∫
d3k/(2π)3as 1/V , the inverse

volume, the integrand there is the energy in mode k. Dividing by �ω and mul-
tiplying it by 2 for the presence of both ± charges gives the expression we are
looking for:

εk(t)
�ωk(t)

= 1 + 2Ñk(t) (4.109)

The amount of particle production at time t in this basis is given by the
expectation value of the number operator ã†ã at time t with respect to the
vacuum state |〉0 defined at t0 (not the vacuum state |〉t defined at t). As discussed
above this is fine if the vacuum states are well defined at the initial t0 and final
times t, as in an asymptotically-static evolution. Otherwise one needs to specify
the adiabatic order to make the vacuum well-defined: the adiabatic number state
of [KlMoEi98] corresponds to the lowest adiabatic order.

From earlier discussions, we know that this level of approximation will not give
a good measure for on-going particle creation, as particle creation is basically a
nonadiabatic process. It is however useful for quantum kinetic theory descrip-
tions, where a quasi-particle approximation is usually introduced which amounts
to incorporating only the quantum radiative corrections to the particles but not
fully field theoretical effects such as particle creation. In other words, quantum
kinetic theory is usually treated at the same level of approximation described
by the adiabatic number basis. We will describe quantum kinetic field theory in
Chapter 11.

4.4.2 Number and correlation

We now proceed to derive an equation for the time rate of change of the number
of particles created in each mode with respect to the time-dependent particle
number basis. Differentiating (4.108), we obtain

d

dt
Ñk = 2 (1 + 2Nk) Re (β∗

kβ̇k) (4.110)
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We need an expression for β̇k in terms of α, β and Θk0(t) ≡
∫ t

ωk(t′)dt′ (we will
omit the subscript 0 on Θ0 in this subsection). To do so we use equations (4.97)
and (4.22) to get

α̇k =
ω̇k

2ωk
βk exp(2iΘk), β̇k =

ω̇k

2ωk
αk exp(−2iΘk) (4.111)

thus
d

dt
Ñk =

ω̇k

ωk
(1 + 2Nk) Re {αkβ

∗
k exp(−2iΘk)} =

ω̇k

ωk
Re {Ck exp(−2iΘk)}

(4.112)
where we have defined the time-dependent pair correlation function

Ck(t) ≡ 〈ãk(t)b̃−k(t)〉 = (1 + 2Nk)αkβ
∗
k (4.113)

The pair correlation Ck(t) is a very rapidly varying function, since the time-
dependent phases on the right side of (4.113) add rather than cancel. The phases,
however, nearly cancel in the final combination of (4.112) to render Ñk a slowly
varying function. The time derivative of the pair correlation function is given by

d

dt
Ck =

ω̇k

2ωk
(1 + 2Nk) exp(2iΘk)

(
1 + 2|βk|2

)
=

ω̇k

2ωk

(
1 + 2Ñk

)
exp(2iΘk)

(4.114)

4.4.3 Current and energy density

To obtain the current (4.71) in terms of the particle number and its time deriva-
tive, we need to express |fk(t)|2 in terms of the Bogoliubov coefficients. For this
we use equations (4.98), (4.96) and obtain

j(t) = e�

∫
d3k

(kz − eA(t))
ωk(t)

(1 + 2|βk(t)|2 + 2Re{αkβ
∗
ke

−2iΘk(t)})(1 + 2Nk)

(4.115)

The vacuum term in this expression,
∫
d3k (kz − eA(t)) /ωk(t), vanishes by

charge conjugation symmetry, when proper gauge invariant integration bound-
aries are chosen. Using the mean value of particles in the adiabatic number basis
(4.108), its time derivative and the equations of motion (4.112), we can rewrite
the current as

j(t) = 2e�
∫

d3k
(k − eA(t))

ωk(t)
Ñk(t) +

2�

E

∫
d3k ωk(t)

dÑk

dt
(t) = jcond + jpol

(4.116)

Classically, if the particle distribution Ñk is coupled to a uniform electric field
the energy density and its time derivative are given by

ε =
E2

2
+ 2
∫

d3k �ωkÑk (4.117a)

ε̇ = ĖE + 2
∫

d3k

(
e�E

(k − eA)
ωk

Ñk + ωk�
dÑk

dt

)
= 0 (4.117b)
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Using the Maxwell equation −Ė = j this last relation is precisely the same as the
mean value of the quantum current in (4.116). Hence we may identify the adia-
batic particle number Ñk(t) with the (quasi) classical single-particle distribution.
This is the starting point of a quantum kinetic theory description.

4.4.4 Quantum Vlasov equation

Let us return now to the two equations for the rates of change of the particle
number and the quantum correlations. Solving equation (4.114) formally for Ck,
assuming that Ck vanishes at some t = t0 which could be taken to −∞, and
substituting into (4.112) we obtain

d

dt
Ñk =

ω̇k

2ωk

∫ t

t0

dt′
{
ω̇k

ωk
(t′)
(
1 + 2Ñk(t′)

)
cos [2Θk(t) − 2Θk(t′)]

}
(4.118)

Equation (4.118) may be called a “quantum Vlasov equation,” in the sense that
it gives the rate of particle creation in an arbitrary time-varying mean field. Note
the appearance of the Bose enhancement factor (1 + 2Ñk) in (4.118) indicates
that both spontaneous and induced particle creation are present. One important
feature of equation (4.118) is that it is nonlocal in time, the particle creation rate
depending on the entire previous history of the system. Thus particle creation in
general is a non-Markovian process [BirDav82, Rau94, RauMue96, SRSBTP97].
Note that the nonlocal form of (4.118) results from solving one variable C in
terms of the other Ñ , each obeying a Hamiltonian equation of motion. This is a
general feature of coupled subsystems.

Equation (4.118) becomes exact in the limit in which the electric field can
be treated classically, i.e. the limit in which real and virtual photon emission is
neglected, and there is no scattering. We will learn later that this semiclassical
limit is obtained at the leading order of a large N approximation [CoJaPo74,
Roo74].

Inclusion of scattering processes leads to collision terms on the right side of
(4.118) which are also nonlocal in general. This nonlocality is essential to the
quantum description in which phase information is retained for all times. The
phase oscillations in the cosine term are a result of the quantum coherence
between the created pairs, which must be present in principle in any unitary
evolution. However, precisely because these phase oscillations are so rapid it is
clear that the integral in (4.118) receives most of its contribution from t′ close to
t, which suggests that some local approximation to the integral should be possi-
ble, provided that we are not interested in resolving the short-time structure or
measuring the phase coherence effects. The time-scale for these quantum phase
coherence effects to wash out is the time-scale of several oscillations of the phase
factor Θk(t) − Θk(t′), which is of order τqu = 2π/ωk = 2π�/εk, where εk is the
single-particle energy.
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We will return to this equation in Chapter 9 to construct the density matrix
and discuss entropy generation in these quantum field processes.

4.5 Periodically driven fields

As another example of particle production from parametric amplification, we
give in this section a brief discussion of the solutions of equation (4.22) in the
important case when the natural frequency depends periodically on time, that
is, ω2(t + T ) = ω2(t) for some period T. Again we drop the mode label k, as
only one mode will be considered. This is a case of parametric resonance. In the
mathematical literature, the corresponding problem is the subject of the so-called
Floquet theory [WhiWat40, Inc56]. In physics there are many applications (e.g.
[Shi65, MilWya83, MonPaz01]). One such area in cosmology which has drawn
considerable attention is particle creation by parametric resonance during the
preheating epoch after the universe came out of inflation, see Chapter 15. Our
treatment here is influenced by the work of Kofman, Linde and Starobinsky
[KoLiSt97].

The key insight is that, if f (t) is a solution, then f (T + t) is a solution too.
If f1 and f2 are linearly independent solutions, then we must have

fi (t + T ) = Ai1f1 (t) + Bi2f2 (t) (i = 1, 2) (4.119)

Thus there must exist solutions F1 (t), F2 (t) such that

Fi (t + T ) = eμiTFi (t) (4.120)

or equivalently

Fi (t) = eμitf̃i (t) (4.121)

where the functions f̃i (t) are periodic with period T . The eigenvalues μi are the
so-called Floquet exponents. Sometimes Floquet energies i�μi are introduced. As
we shall see presently, the Floquet exponents may be real, leading to exponential
amplification of the solution (or, in quantum language, exponential squeezing of
the quantum state, see later in this chapter).

The second key insight is that if μ is a Floquet exponent, then −μ and μ∗

must be exponents as well. The first follows from the fact that the Wronskian of
two solutions must be a constant, and the second because the equation is real.
So we only have two possibilities, either the Floquet exponents are imaginary
and complex conjugate to each other, or real and opposite to each other. In the
second case, we say there is parametric resonance.

To be concrete, we shall restrict ourselves to the Mathieu equation, which is
obtained when

ω2 (t) = ω2
0 + ω2

1 [1 + cos γt] (4.122)
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where ω0, ω1 and γ are constants. There are two interesting regimes, namely,
the so-called broad resonance when ω1 � ω0, γ, and the narrow resonance when
the opposite obtains. Of course, we may take γ = 1 with no loss of generality.

4.5.1 Broad resonance

In the broad resonance regime, ω � ω0, 1 unless t ∼ (2j + 1)π, where j is an
integer. The second-order adiabatic frequency correction is given by

ε2 =
(
− 1

4ω2
1

) 1 +
[
1 +
(

ω0
ω1

)2
]

cos t + 1
4 sin2 t[

1 +
(

ω0
ω1

)2

+ cos t
]3 (4.123)

which is much smaller than 1 unless cos t ∼ −1. Therefore we may describe
the evolution as a series of adiabatic periods, separated by nonadiabatic tran-
sitions when t ∼ tj = (2j + 1)π. Between transitions we may use the (n = 0)
adiabatic function f̃0 = f+

0 of (4.107), there being no net amplification. Near tj ,
we may approximate ω2 (t) = ω2

0 + ω2
1 (t− tj)

2
/2. We have already encountered

the resulting equation in our study of pair creation by a constant electric field.
Let tk−1 < t ≤ tk, and consider the exact solution f which behaves as a positive

frequency (+) lowest WKB order (n = 0) solution near t. For t ≥ tk this solution
plays the same role as the in-region positive frequency wave in the calculation
of particle creation. Thus, for t ≥ tk, it assumes the form (cf. equation (4.89))

f = αf+
0 + βf−

0 (4.124)

with α and β given in equations (4.90) and (4.91) respectively. Neglect any
further evolution of the Bogoliubov coefficients, and write

f+
0 (t + 2π) = e−iΘ0f+

0 (t) (4.125)

Therefore

f (t + 2π) = αe−iΘ0f (t) + βeiΘ0f∗ (t) (4.126)

The general solution is F = Af + Bf∗, and the eigenvalue condition (4.120)
becomes a set of linear equations for the coefficients(

αe−iΘ0 β∗e−iΘ0

βeiΘ0 α∗eiΘ0

)(
A

B

)
= λ

(
A

B

)
(4.127)

where λ = exp (2πμ). We see that the Floquet exponents must satisfy(
α∗ − λe−iΘ0

) (
α− λeiΘ0

)
− |β|2 = 0 (4.128)

The condition for μ to be real is

Re
[
αe−iΘ0

]
> 1 (4.129)

We see that it is not sufficient to have β �= 0.
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4.5.2 Narrow resonance

Let us now consider the case of narrow resonance. Consider the case when at the
boundary of a resonant region the Floquet exponents vanish, meaning that there
are purely periodic solutions; a second family of unstable regions corresponds
to antiperiodic solutions at the boundary, and can be treated in a similar way.
When ω1 → 0, we obtain periodic solutions if ω0 = �, where � is an integer. So we
expect to find an infinite sequence of resonant regions in the (ω1, ω0) plane, the
�th region reducing to ω0 = � when ω1 = 0. Our goal is to describe these regions
and the corresponding Floquet exponents when ω1 � 1, ω0.

To this end, observe that if we write a solution as a linear combination of ±
frequency solutions in the WKB form, as in equations (4.95) and (4.96) (exact),
then the evolution of the α and β coefficients to a sufficiently high adiabatic
order (presently r = 0) is dictated by equations (4.111) and (4.107), where

ω̇

2ω
∼
(−ω2

1

4ω2
0

)
sin t (4.130)

Θ0(t) ∼
[
1 +

ω2
1

2ω2
0

]
ω0t +

ω2
1

2ω0
sin t (4.131)

leading to

exp {2iΘ0} = exp
{

2i
[
1 +

ω2
1

2ω2
0

]
ω0t

} ∞∑
n=−∞

Jn

[
ω2

1

ω0

]
eint (4.132)

where the Jn are Bessel functions (recall that for integer n, J−n = (−1)n Jn).
Now consider the �-th resonant region where ω0 = � + δ�. Keeping only the

slowly varying terms in equation (4.111), we get

α̇� = iβ�κ� exp (2iσ�t) (4.133)

β̇� = −iα�κ� exp (−2iσ�t) (4.134)

where

κ� ≡
ω2

1K�

8ω2
0

, σ� ≡
ω2

1

2ω0
+ δ� (4.135)

and

K� = J2�−1

[
ω2

1

ω0

]
− J2�+1

[
ω2

1

ω0

]
∼ 1

(2�− 1)!

(
ω2

1

2ω0

)2�−1

(4.136)

We seek a solution of the form

α� (t) = α�0e
μ�t exp (iσ�t) (4.137)

β� (t) = β�0e
μ�t exp (−iσ�t) (4.138)
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where μ� is the Floquet exponent of the �th resonance band. We get

(μ� + iσ�)α�0 = iβ�0κ� (4.139)

(μ� − iσ�)β�0 = −iα�0κ� (4.140)

Therefore

μ2
� = κ2

� − σ2
� (4.141)

The boundaries of the resonant region are given by

δ� ∼ −ω2
1

2�
± ω2

1K�

8�2
(4.142)

We see that the regions become narrower, and the Floquet indices become
weaker, as we go to higher resonance bands. Particle production by parametric
resonance is the principal mechanism in the pre-heating stage when the universe
is warmed up after an inflationary expansion.

4.6 Particle creation in a dynamical spacetime

Another important class of problems similar to the external field model above is
cosmological particle creation. There, a classical dynamical background space-
time governs the quantum field and imparts a time-dependence in the natural
frequencies of its normal modes. Historically this is a major arena where nonequi-
librium field theory was inculcated and constructed. It has wide ranging implica-
tions in modern cosmology since many late era phenomena have originated from
quantum effects in the very early universe including inflationary cosmology. The
era from the Planck to the GUT era is depicted by quantum field theory in
curved spacetime (the test field description) and semiclassical gravity (including
the back-reaction).

Cosmological particle creation is a physical process of basic theoretical interest
in quantum field theory in curved spacetime [Park66, Park68, Park69, Park71,
ZelSta71, SexUrb69, Zel70, Hu72, Hu74, FuPaHu74, Gri74, Berger74, Berger75a,
Berger75b, HuPar77, HuPar78, HarHu79, DeW67, DeW75, BirDav82], and
important practical interest in the quantum dynamics of the early universe.
Our summary here is based on earlier work of [Hu74, ZelSta71]. We begin with
the underlying physics, which is rooted in parametric amplification of clas-
sical waves [Zel70]. This effect in second quantized language manifests itself
as particle creation. A modern representation of such processes is by means
of the squeezed state language developed in quantum optics. It is useful for
the discussion of entropy and coherence issues. We defer such a discussion to
Section 4.7.
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4.6.1 Wave equations in curved spacetimes

Consider a massive (m) neutral scalar field φ coupled arbitrarily (ξ) to a back-
ground spacetime with metric gμν and scalar curvature R. Its dynamics is
described by the action

S =
∫

d4xL(φ,∇φ, gμν) (4.143)

where the Lagrangian density is given by

L(φ,∇φ, gμν) = −1
2
√−g

[
gμν(x)∇μφ∇νφ + (m2 + ξR)φ2(x)

]
(4.144)

where g ≡ det gμν and ∇ denotes taking the covariant derivative defined on the
background spacetime. Here ξ = 1/6 and 0 denote, respectively, conformal and
minimal coupling. The indices μ = (0, 1, 2, 3) denote time and spatial compo-
nents. The scalar field satisfies the wave equation

[−∇2 + m2 + ξR]φ(x, t) = 0 (4.145)

where

∇2 ≡ gμν∇μ∇ν =
1√−g

∂

∂xμ

(
gμν

√−g
∂

∂xν

)
(4.146)

is the Laplace–Beltrami operator defined on the background spacetime.
In the canonical quantization approach, one assumes a foliation of spacetime

into dynamically evolving, time-ordered, spacelike hypersurfaces Σ. If the three-
dimensional space Σ possesses some symmetry, such as a homogeneous space
with a group of motion, a separation of variables is usually possible which per-
mits a normal mode decomposition of the field. (The spacetimes considered in
this book, e.g. Friedmann–Lemaitre–Robertson–Walker (FLRW) and De Sitter
(DS) all possess these properties.) One can then impose canonical commutation
relations on the creation and annihilation operators corresponding to the (time-
dependent) amplitude functions of each normal mode, define the vacuum and
number states, and then construct the Fock space. In flat space, Poincaré invari-
ance guarantees the existence of a unique global Killing vector ∂t orthogonal
to all constant-time spacelike hypersurfaces, an unambiguous separation of the
positive- and negative-frequency modes, and a unique and well-defined vacuum.
In curved spacetime, general covariance precludes any such privileged choice of
time and slicing. There is no natural mode decomposition and no unique vac-
uum [Ful72, Ful89]. We assume the background spacetime under consideration
has at least enough symmetry to allow for a normal mode decomposition of the
invariant operator at any constant-time slice.

The classical field theory is quantized by replacing the field variable φ by
the operator-valued distribution Φ. In the Heisenberg picture, Φ and its con-
jugate momentum Π = δL/δ(∂0Φ) obey the equal time commutation relation
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4.6 Particle creation in a dynamical spacetime 123

(4.7). Note that the scalar delta function δ(x,x′) in curved spacetime is defined
by
∫ √−gδ(x,x′)h(x) = h(x′), where h is any test function.

Consider the field Φ in a coordinate volume V = L3 with coordinate length
L. We can expand the field Φ in terms of a complete set of (spatial) orthonor-
mal modes uk(x) as in equation (4.13). We use x as a generic notation for the
spatial coordinates. (This is also applicable for spatially nonflat spacetimes, e.g.
in S3 with radius a, V = 2π2a3, one can use the hyperspherical coordinates,
x = (χ, θ, φ), and the wavenumbers are then labeled by the corresponding prin-
cipal quantum numbers k = (n, l,m). See, e.g. [Wig68].) As before, we write the
operator-valued amplitude function ϕk(t) in terms of the time-independent anni-
hilation operators ak and the (c-number) amplitude functions fk(t) as in (4.16).
The canonical commutation rules on Φ then imply the conditions on ak and a†k′

as in (4.18).
For the spatially-flat Friedmann–Lemaitre–Robertson–Walker (FLRW) space-

time [Park69], the spatial mode functions are simply uk = eik·x and the wave
equation for the amplitude function of the kth mode in cosmic time t becomes
(because of spatial isotropy, f depends only on k ≡ |k|)

f̈k(t) + 3H ḟk(t) + [ω2
k(t) + q(t)]fk(t) = 0 (4.147)

where an overdot denotes taking the derivative with respect to cosmic time,
· = d/dt. Here

ω2
k(t) =

k2

a2
+ m2; q = ξR (4.148)

R = 6
[
Ḣ(t) + 2H2(t)

]
(4.149)

H(t) ≡ ȧ
a being the expansion (Hubble) rate of the background space. We have

grouped terms containing two time derivatives of a (second derivative or first
derivative squared) and call them q. As we will define below, they are of second
adiabatic order while ωk is of zero adiabatic order.

In curved space the inequivalence of Fock representation due to the lack of
a global time-like Killing vector makes the constant separation of positive and
negative-frequency components in general impossible. The mixing of positive-
and negative-frequency components is the source of particle creation (in the
second quantization description). Particle creation may arise from topological,
geometrical, or dynamical causes. In cosmological spacetimes the inequivalence
of vacua appears at different times of evolution, and thus cosmological particle
creation is by nature a dynamically induced effect. Note that we are dealing here
with a free field: particles are not produced from interactions, but rather from the
excitation (parametric amplification [Zel70]) of vacuum fluctuations (or quantum
noise) by the changing background gravitational field. The basic mechanism is
also different from thermal particle creation in black holes [Haw75], accelerated
detectors [Unr76] or moving mirrors [FulDav76, DavFul77], which involves the
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presence of an event horizon or the exponential red-shifting of outgoing modes
[HuRav96, RaHuAn96, RaHuKo97].

4.6.2 Conformal vacuum in conformally-static spacetimes

In the class of conformally-static spacetimes where the metric is conformally
related to a static spacetime by a conformal factor a there exists a global confor-
mal Killing vector ∂η, where η =

∫
dt/a(t) is the conformal time. For example,

the spatially-flat FRW spacetime with metric

gμν(x) = a2(η)ημν (4.150)

is conformally related to the Minkowski metric ημν :

ds2 = a2(η)(−dη2 + dx2) (4.151)

In this case the vacuum defined by the mode decomposition with respect to
∂η is globally well-defined, known as the conformal vacuum. For conformally-
invariant fields (e.g. a massless scalar field with ξ = 1/6 in equation (4.145)) in
conformally-static spacetimes, it is easy to see that there is no particle creation
[Park69]. Thus any small deviation from these conditions, e.g. small m, ξ − (1/6),
can be treated perturbatively from these states.

Consider a neutral massive scalar field coupled to a spatially-flat FRW met-
ric with constant ξ. It is convenient to define a conformal amplitude function
χk(η) ≡ a(η)fk(η) related to the c-number amplitude function fk for the kth
normal mode. It satisfies the following wave equation (cf. equation (4.147))

χ′′
k(η) + [ω2

k(η) + Q]χk(η) = 0 (4.152)

where a prime denotes differentiation: ′ ≡ d/dη and

ω2
k(η) ≡ ω2

k(t)a
2 = k2 + m2a2 (4.153)

is the time-dependent natural frequency. For spatially flat FRW spacetime Q =
Qξ = (ξ − 1

6 )Ra2. For anisotropic spatially homogeneous universe (Bianchi type-
I) where the expansion rates Hi(t) ≡ ȧi

ai
are different in the three directions

i = 1, 2, 3 (a3 = a1a2a3), the wave equation in conformal time has in addition
to Qξ another term Qβ≡− 1

2

∑
i>j(Hi −Hj)2, which, like Qξ, is also of second

adiabatic order.
One sees that, for massless (m = 0) conformally coupled (ξ = 1

6 ) fields in
a spatially flat FLRW universe (Q = 0), the conformal wave equation admits
solutions

χk(η) = Aeiωkη + Be−iωkη (4.154)

which are of the same form as traveling waves in flat space. Since ωk(m = 0, ξ =
1
6 ) = k =const., the positive- and negative-frequency components remain sepa-
rated and there is no particle production.

In this connection, Grishchuk [Gri74] showed that there is no production of
gravitons in a radiation-dominated FLRW universe. This is easily seen as follows:
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The gravitons are quantized linear perturbations. In a FLRW universe, just as
in Minkowski spacetime, there are two polarizations, each obeying an equation
(the Lifshitz equation [Lif46]) which has the same form as a massless (m = 0)
minimally coupled (ξ = 0) scalar field [ForPar77]. For a FLRW universe R =
6a′′/a3, the wave equation (4.152) reads, in conformal time,

χ′′
k(η) + (k2 − a′′/a)χk(η) = 0 (4.155)

For a radiation-dominated FLRW universe, a ∼
√
t ∼ η, and thus R = 0. The

natural frequency is a constant and there is no production of massless minimally
coupled scalar particles or gravitons in the conformal vacuum.

More generally, the wave equation for each mode has a time-dependent
natural frequency. The negative-frequency modes can thus be excited by the
dynamics of the background through a(η) and R(η). In analogy with the time-
dependent Schrödinger equation, one can view the ω2

k + Q term in (4.152) as
a time-dependent potential V (η) which can induce back-scattering of waves
[Zel70, Hu74], thus mixing the positive and negative frequency components in
each mode. This, as we have learned, signifies particle creation.

4.6.3 Thermal radiance

It is rather commonly known that black holes emit thermal radiation, known as
the Hawking effect [Haw75]. Hawking radiation has a deep meaning and many
ways to derive and understand it. One way is to view it as arising from the
exponential red-shifting of outgoing modes from the black hole. This condition
is responsible for thermal radiance observed in uniformly accelerated detectors,
known as the Unruh effect [Unr76], and in an exponential expansion of the early
universe [Park76]. We can see this from the simple theory we have presented
above.

Consider a conformally coupled massive field in a spatially-flat FRW universe.
One can define the conformal vacua at η± with χin,out in terms of the positive
frequency components. The probability Pn(k) of observing n particles in mode
k at late time is given by the modulus of the ratio of the Bogoliubov coefficients
[Park76]: Pn(k) = |βk/αk|2n |αk|−2

. One can find the average number of particles
〈Nk〉 created in mode k (in a comoving volume) at late times to be nk ≡ 〈Nk〉 =∑∞

n=0 nPn(k) = |βk|2.
The model studied by Bernard and Duncan [BerDun77, BirDav82] has the

scale factor a(η) evolving like a2(η) = A + B tanh ρη which tends to constant
values a2

± ≡ A±B at asymptotic times η → ±∞. Here ρ measures how fast the
scale factor rises, and is the relevant parameter which enters in the temperature of
thermal radiance. With this form for the scale function, αk and βk have analytic
forms in terms of products of gamma functions. One obtains

|βk/αk|2 = sinh2(πω−/ρ)/ sinh2(πω+/ρ) (4.156)
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where

ω± = (1/2)(ωout ± ωin) (4.157)

ωout
in =

√
k2 + m2a2

± (4.158)

For cosmological models in which a(+∞) � a(−∞), the argument of sinh is very
large (i.e. (π/ρ)ω± � 1). To a good approximation this has the form |βk/αk|2 =
exp(−2πωin/ρ). For high momentum modes, one can recognize the Planckian
distribution with temperature given by kBTη = �ρ/(2πa+) as detected by an
observer (here in the conformal vacuum) at late times.

4.6.4 Conformal stress–energy tensor

The conformal vacuum in the above section is well defined at all times and is
useful to describe particle creation for fields which are nearly conformal and in
spacetimes which are nearly conformally flat. We shall use the conformal wave
equation (4.152) for the amplitude function χ for the k mode in conformal time
to derive the corresponding number density and energy density of conformally
invariant fields from spontaneous and stimulated particle production studied
before for Minkowski space in Section 4.3. and also to illustrate the adiabatic
regularization method.

The appropriate energy–momentum tensor which is conformally related to
the flat space counterpart is the so-called “new, improved” one, or simply the
conformal energy–momentum tensor [CaCoJa70]

Λμν = ∇μφ∇νφ− 1
2
gμν∇ρφ∇ρφ− 1

2
gμνm

2φ2

+ ξ

(
Rμν − 1

2
gμνR

)
φ2 + ξ[gμν∇2(φ2) −∇μ∇ν(φ2)] (4.159)

The conformal wave equation (4.152) has the same form as the generic wave
equation for Minkowski space in t time because they are conformally related. So
all the results for external field problems in flat space given before are identical
for conformal fields in curved spacetime upon the substitution of f by χ, t by
η, and Tμν by Λμν plus a suitable power of the scale factor a to give the correct
dimensionality.

The vacuum energy density associated with these particles is given by the
expectation value of the t− t component of Λμν with respect to the conformal
vacuum, i.e.

ρconf
0 ≡ 〈0 | Λ00 | 0〉 =

1
a4

∫
d3k

2(2π)3
(| χ′

k |2 +ω2
k | χk |2) (4.160)

=
1
a4

∫
d3k

(2π)3
(2sk + 1)

�ωk

2
(4.161)
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The energy density of particles produced from an initial n particle state by
stimulated production is

ρconf
n ≡ 〈n | Λ00 | n〉 =

1
a4

∫
d3k

(2π)3
(| χ′

k |2 +ω2
k | χk |2)〈a†kak〉 (4.162)

=
1
a4

∫
d3k

(2π)3
(2sk + 1)�ωk〈Nk(t0)〉 (4.163)

Combining (4.160) and (4.162), for a density matrix diagonal in the number
state, the total energy density of particles created from the vacuum and from
those already present in the n-particle state is given by

ρconf = ρconf
0 + ρconf

n =
1
a4

∫
d3k

(2π)3
Ak�ωk(

1
2

+ 〈Nk(t0)〉).

For a thermal density matrix μ at temperature T = β−1 the magnification of
the n-particle thermal state gives the finite-temperature contribution to particle
creation, with energy density

ρconf
T =

1
a4

∫
d3k

(2π)3
(2sk + 1)�ωk/(eβ�ωk − 1) (4.164)

If sk = 0 the Stefan–Boltzmann relation holds for a massless conformal field in
a FLRW universe

ρconf
T =

π2

30�3
T 4 (4.165)

Thus Ta is a constant throughout the evolution of the radiation-dominated
FLRW universe. Nγ ∼ (Ta)3 is proportional to the number of relativistic parti-
cles present or the entropy content of the universe [HarHu79, DeW67, Hu81]. Fur-
ther discussions of finite-temperature particle creation and the related entropy
generation problem can be found in [Hu82, Hu84].

4.6.5 Adiabatic regularization

To apply the adiabatic method to the regularization of the stress energy tensor
in an external field or dynamical spacetime, we need to carry out a fourth-order
adiabatic expansion. We study a slightly more general wave equation (4.152) for
χk(ηk) with natural frequency

√
ω2

k(η) + Q where Q is a term of second adiabatic
order. In the cosmological context Q stands for either Qξ for a nonconformally
coupled scalar field in a FLRW universe or for Qβ for a conformally coupled
scalar field in an anisotropic Bianchi I universe.

Taking n = 6 in (4.46), we have the fourth adiabatic order positive frequency
solution (we will suppress the mode index k in χ,W, ω, ε below)

χ(6) = �
1/2 e

−i
∫
W2dt

√
2W3

(4.166)
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where

W3 = ω(1 + ε2 + ε4)1/2 (4.167)

Assuming that the solution χ is well-approximated by χ(6) we have

|χ|2 = �(2W3)−1, |χ′|2 = �(2W3)−1

[
W 2

3 +
1
4

(
d

dη
lnW3

)2
]

(4.168)

The adiabatic frequency corrections are given by

ε2(2) =
Q

ω2
− ω̄2

4
− ω̄′

2ω
, ε′2(2) =

Q′

ω2
− 2Q

ω̄

ω
− ω̄′′

2ω
(4.169)

where the subscripts in parentheses denote the adiabatic order and we have
defined the nonadiabaticity parameter (here, for frequency ω in conformal time η)
as ω̄k ≡ ω′

k/ω
2
k. Substituting these into (4.102) and keeping terms of the same

adiabatic order (as measured by the time derivatives) we get

sk(2) =
1
16

ω̄2

sk(4) =
1
16

(
−(1/2)

ω̄ω̄′′

ω2
+

1
4
ω̄′2

ω2
+ (1/2)

ω̄′ω̄2

ω
+

3
16

ω̄4

+
Q2

ω4
+ Q′ ω̄

ω3
−Q

ω̄′

ω3
− 3Q

ω̄2

ω2

)
(4.170)

The adiabatic expansion for particle production in the high-frequency range
at the zeroth, second and fourth adiabatic order above matches the quartic,
quadratic and logarithmic divergences in the vacuum energy density respectively.
Substituting these expressions for sk(div) = sk(2) + sk(4) for each k mode into
the vacuum energy density (4.160) we can identify the divergent vacuum energy
density contributions as

ρ0(div) =
1
a4

∫
d3k

(2π)3
(2sk(div) + 1)

�ωk

2
(4.171)

Subtracting these we get the regularized vacuum energy density given
by ρ0(reg) = ρ0 − ρ0(div). These results were obtained by [ZelSta71, Hu74,
FuPaHu74].

We note again that the above adiabatic expressions give the amount of par-
ticle creation only in the high-frequency modes when ω̄k ≤ 1. That is why they
are suitable for the identification and removal of ultraviolet divergences in the
energy–momentum tensor. Adiabatic regularization has been applied to cosmo-
logical particle creation with back-reaction [ParFul73, HuPar77, HuPar78].
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4.6.6 A simple model of a cosmological phase transition

As a final example of quantum field dynamics in conformally flat universes, we
shall show a simple model of the development of a cosmological phase transition
through spinodal decomposition. Our discussion follows [SCHR99].

Let us consider a λΦ4 theory on a spatially flat, expanding Friedmann–
Lemaitre–Robertson–Walker universe. We assume the field is conformally cou-
pled (ξ = 1/6) but has a bare mass m2

b , thus breaking conformal invariance.
The field equation now has an extra term a2 (η)λBΦ3/6 describing the self-
interaction. However, at early times we may adopt the Hartree approximation

Φ3 ∼ 3
〈
Φ2
〉
(η) Φ (4.172)

and the wave equation becomes formally the equation for a free field with a
self-consistent mass

m2
eff (η) = m2

b +
λB

2
〈
Φ2

HF

〉
(η) (4.173)

We are assuming of course that the initial condition is also spatially homoge-
neous, so that

〈
Φ2
〉

depends only on η. The “free” field ΦHF admits a mode
expansion in terms of conformal amplitudes χk which obey equation (4.152)
with Q = 0 and m2 = m2

eff (η) , and boundary conditions

χk (0) =

√
�

2ωk (0)
(4.174)

χ′
k (0) = −i

√
�ωk (0)

2
(4.175)

We assume the expectation values〈
a†kak′

〉
= nkδ (k − k′) ;

〈
a†2k

〉
=
〈
a2
k

〉
= 0 (4.176)

whereby 〈
Φ2

HF

〉
(η) =

1
a2 (η)

∫
d3k

(2π)3
|χk (η)|2 (1 + 2nk) (4.177)

As in flat spacetime,
〈
Φ2

HF

〉
(η) diverges. The theory may be rendered finite

by imposing a cut-off at some physical scale Λphys = Λ (η) /a (η) . However the
resulting renormalized parameters are strongly cut-off dependent. To eliminate
this dependence, let κphys be a second physical scale, large enough that for modes
higher than κ (η) = a (η)κphys the mode functions χk are well approximated by
adiabatic modes, but still much lower than Λ. Then we write〈

Φ2
HF

〉
(η) = �

{
Λ2

8π2
− m2

eff (η)
8π2

ln
[
Λ
κ

]
+ μ2 (η)

}
(4.178)

μ2 (η)=
1

a2 (η)

∫ aΛ d3k

(2π)3

{
|χk (η)|2

�
(1 + 2nk) −

1
2k

+
a2 (η)m2

eff (η)
4k3

θ (k − aκ)

}

(4.179)
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The point is that μ2 (η) is essentially cut-off independent. The gap equation now
reads

m2
eff (η) = m2

b +
�λB

2

{
Λ2

8π2
− m2

eff (η)
8π2

ln
[
Λ
κ

]
+ μ2 (η)

}
(4.180)

The bare mass m2
b is defined by the condition that in flat space time (a = 1)

and at the critical temperature TC, m2
eff = 0. Thus

0 = m2
b +

�λB

2

{
Λ2

8π2
+

T 2
C

6

}
(4.181)

where we set the Boltzmann constant kB = 1, for simplicity. We now have the
finite gap equation

m2
eff (η) =

�λ

2

{
μ2 (η) − T 2

C

6

}
(4.182)

where

1
λ

=
1
λB

+
�

16π2
ln
[
Λ
κ

]
(4.183)

We may now start discussing the early time evolution of the field. The central
aspect of this behavior is the suppression factor a−2 (η) in μ2 (η) (cf. equation
(4.179)). Because of this factor, m2

eff (η) decreases and eventually becomes nega-
tive. Indeed, assume the initial spectrum nk corresponds to a Planck distribution
with temperature T 2

0 � m2
eff (0) , T 2

C. Then, when m2
eff (η) is small we get

m2
eff (η) ∼ �λ

12

{
T 2

0

a2 (η)
− T 2

C

}
(4.184)

and so

ω2
k (η) = k2 +

�λ

12
[
T 2

0 − a2 (η)T 2
C

]
(4.185)

If the expansion is slow enough, we may approximate this by

ω2
k (η) = k2 − 1

τ

�λT 2
0

12
(η − ηC) (4.186)

where ηC is the conformal time at which m2
eff vanishes for the first time, and

τ−1 = (2aH) (ηC) is the quench rate. H = a′/a2 is the Hubble constant.
At η = ηC the homogeneous mode becomes unstable. If m2

eff actually becomes
negative, then other infrared modes become unstable as well, and the correspond-
ing mode functions start to grow exponentially. The result is the formation of an
infrared peak. Eventually, though, the approximation (4.186) becomes invalid.

To obtain an improved estimate, observe that once
∣∣∣(ω2

k

)′∣∣∣ ≤ ∣∣ω3
k

∣∣ we may
approximate the mode functions by WKB wave forms. This inequality translates
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into

1
τ

�λT 2
0

12
≤
[

1
τ

�λT 2
0

12
(η − ηC) − k2

]3/2
(4.187)

When this inequality holds, we may write

χk (η) ∼
√

�√
2 |ωk (η)|

eSk(η) (4.188)

where

Sk (η) =
∫ η

ηk

|ωk (η′)| dη′ =
2
3

(
12τ

�λT 2
0

)[
�λT 2

0

12τ
(η − ηC) − k2

]3/2
(4.189)

ηk = ηC + τ

(
12k2

�λT 2
0

)
< η (4.190)

In the infrared, we may approximate

Sk (η) = S0 (η) − 1
2
σ2 (η) k2 (4.191)

σ2 (η) =
(

48τ
�λT 2

0

(η − ηC)
)1/2

(4.192)

Provided ησ−1 < η, we get

μ2 (η) =
1

a2 (η)

[
T 2

0

6
+

e2S0(η)T0

(2π)2 |ω0 (η)|σ2 (η)

]
(4.193)

The infrared peak in mode space is correlated with the appearance of correlated
domains in physical space, whose comoving size is σ (η) and increases with time
(coarse graining). We see that the exponential growth of the infrared peak coun-
terbalances the red-shift due to the Hubble expansion. If we simply extrapolate
this model, we conclude that eventually the infrared peak becomes dominant,
and the effective mass is driven again to zero from below.

The actual picture is more involved. Within these domains, there is nondiag-
onal long-range order, and we may describe the field as a quantum field (repre-
sented by the stable modes) evolving on a nontrivial background field (which is
the “square root” of the infrared peak). When the background field gets large
enough, it starts to oscillate around the true equilibrium position. The quantum
field then becomes a periodically driven field and, as we have seen, parametric
amplification results in copious particle production from the background field.

4.7 Particle creation as squeezing

In this section we will use the language of squeezed states [CavSch85, Sch86]
to treat a neutral scalar field in a dynamic background field or spacetime. This
approach will shed a clearer light on two interrelated issues:
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(a) Dependence of particle creation on the initial state. We consider in particular
the number state, the coherent and the squeezed state.

(b) The relation of spontaneous and stimulated particle creation and their depen-
dence on the initial state.

We also derive the result for the fluctuations in particle number in anticipation
of its relevance to defining noise in quantum fields. Our presentation here follows
[HuKaMa94].

Since the concept of squeezed state was introduced to quantum optics in the
1970s [CavSch85, Sch86, Gla05], there has been much progress in seeking its
experimental realizations and theoretical implications. The language of squeezed
states as a way to describe cosmological particle creation was introduced by
Grishchuk and Sidorov [GriSid90]. Although the physics is not new (this was
also pointed out by Albrecht et al. [AFJP94] in the inflationary cosmology con-
text) and the results are largely known, the use of rotation and squeeze oper-
ators gives an alternative description which allows one to explore new avenues
based on interesting ideas developed in quantum optics. Work on entropy genera-
tion in cosmological perturbations by Brandenberger and coworkers [BrMuPr92,
BrMuPr93] and Gasperini and Giovannini [GasGio93, GasGioVen93] make use of
coarse graining via a random phase approximation. Matacz [Mat94, LafMat93]
has used the squeezed state formalism as a starting point for the study of deco-
herence of cosmological inhomogeneities in the coherent-state representation.

The issues of initial states and entropy generation have been discussed in
restricted conditions, and the issue of spontaneous and stimulated production
has only been touched upon before. For the sake of completeness, we will address
these issues under a common framework, using the language of squeezed states,
and present the results for different initial states (the number state, the coherent
state and the squeezed state).

4.7.1 Evolutionary operator, squeezing and rotation

We now present a description of particle creation by means of the evolutionary
operator U defined by

ã±k(t) = U(t)a±kU
†(t) (4.194)

where UU† = 1. The form of U was deduced by Parker [Park69] following Kame-
fuchi and Umezawa [KamUme64]. In the modern language of squeezed states
[CavSch85, Sch86], one can write U = RS as a product of two unitary operators,
the rotation operator

R(θ) = exp[−iθ(a†+a+ + a†a )] (4.195)

and the two-mode squeeze operator

S2(r, φ) = exp[r(a+a e−2iφ − a†+a
†
−e

2iφ)] (4.196)
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where r is the squeeze parameter with range 0 ≤ r < ∞ and φ, θ are the rotation
parameters with ranges −π/2 < φ ≤ π/2, 0 ≤ θ < 4π. (These parameters and U,

R and S should all carry the label k. The ± on a refer to the ±k modes.) Note
that

S†
2(r, φ) = S−1

2 (r, φ) = S2(r, φ + π/2) (4.197)

The three real functions (θk, φk, rk) are related to the two complex functions
(αk, βk) by

αk = eiθk cosh rk, βk = ei(θk−2φk) sinh rk (4.198)

For mode decompositions in spatially homogeneous spacetimes leading to no
mode couplings, the Bogoliubov transformation connecting the ak and the ãk

operators is given by equation (4.28) (for more general situations, see [Hu72]). We
see that because of the linear dependence of ã+k on a+k and a†−k (but not a†+k)
a two-mode squeeze operator is needed to describe particle pairs in states ±k.

The physical meaning of rotation and squeezing can be seen from the result
of applying these operators for a single-mode harmonic oscillator as follows: (the
kth mode label is omitted below unless needed explicitly).

The Hamiltonian is

H0 = �Ω
(
a†a +

1
2

)
(4.199)

Under rotation,

R|0〉 = |0〉, RaR† = eiθa (4.200)

Also,

R(θ)R(θ′) = R(θ + θ′) (4.201)

This implies that

Rx̂R† = (cos θ) x̂− (sin θ) p̂ (4.202)

Rp̂R† = (sin θ) x̂ + (cos θ) p̂ (4.203)

where

a =
1√
2�

(√
MΩx̂ + i

p̂√
MΩ

)
(4.204)

Thus the name rotation. Let δa = a− 〈a〉 (where 〈 〉 denotes the expectation
value with respect to any state); then the second-order noise moments of a are
defined as [CavSch85, Sch86]:

〈(δa)2〉 = 〈a2〉 − 〈a〉2 = 〈(δa†)2〉∗

=
1
2�

[MΩ〈(δx)2〉 − (MΩ)−1〈(δp)2〉] + i〈(δxδp)sym〉 (4.205)

〈|δa|2〉 =
1
2
〈δaδa† + δa†δa〉 =

1
2�

[MΩ〈(δx)2〉 + (MΩ)−1〈(δp)2〉] (4.206)
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The first quantity is the variance of a, a complex second moment, while the
second is the correlation, a real second moment, which, as seen in the more
familiar x, p representation, measures the mean-square uncertainty (called total
noise in [CavSch85, Sch86]). Rotation preserves the number operator

Ra†aR† = a†a (4.207)

It rotates the moment

〈R(δa)2R†〉 = e2iθ〈(δa)2〉 (4.208)

corresponding to a redistribution between x̂, p̂, but preserves the uncertainty

〈R|δa|2R†〉 = 〈|δa|2〉 (4.209)

One can define a displacement operator as

D(μ) = exp[μa† − μ∗a] (4.210)

Note that D−1(μ) = D†(μ) = D(−μ). The coherent state can be defined as

|μ〉 = D(μ)|0〉 (4.211)

Thus

a|μ〉 = μ|μ〉 (4.212)

and

Da†aD† = a†a− (μa† + μ∗a) + |μ|2 (4.213)

Under displacement,

D(μ)aD†(μ) = a− μ (4.214)

The displacement operation also preserves the uncertainty

〈D|δa|2D†〉 = 〈|δa|2〉 (4.215)

The single-mode squeeze operator is defined as

S1(r, φ) = exp
[r
2
(a2e−2iφ − a†2e2iφ)

]
(4.216)

If we construct a Gaussian state in the position basis, with initially the same
width σ0 as that of the ground state of such an ordinary harmonic oscillator,
displaced by some arbitrary amount and with a phase proportional to x, we
find this to be an eigenstate of the lowering operator, and is called a coherent
state. Suppose we locate the point (x, p) in phase space and draw an ellipse
about this point, the lengths of whose axes are the uncertainties Δx2,Δp2. Then
as the oscillator evolves this uncertainty ellipse revolves about the origin with
angular speed Ω. A squeezed state is again such a state, but with an arbitrary
initial width σ. We find that as the oscillator evolves the uncertainty ellipse again
revolves about the origin, but its axes change length and it can also rotate about

https://doi.org/10.1017/9781009290036.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.007


4.7 Particle creation as squeezing 135

its own center. It turns out that the squeeze parameter r is related to the width
of such a state:

r = ln
σ0

σ
, σ0 ≡

√
�

2MΩ
(4.217)

Hence a coherent state has r = 0, or zero squeezing. A Gaussian that initially
has a width smaller than σ0 will evolve to a squeezed state with some r > 0. A
squeezed state is formed by squeezing a coherent state,

|σ〉μ = S1(r, φ)|μ〉 (4.218)

or,

|σ〉μ = |r, φ, μ〉 = S1(r, φ)D(μ)|0〉 (4.219)

Call aS1 = S1aS
†
1. Then

aS1|σ〉 = μ|σ〉 (4.220)

and

aS1 = S1aS
†
1 = a cosh r + e2iφa† sinh r (4.221)

Thus a squeezed state in the Fock space of a becomes a coherent state in the
Fock space of aS1with the same eigenvalue. From this we see the result of S1

acting on x̂ and p̂:

S1x̂S
†
1 = (cosh r + cos 2φ sinh r)x̂ + (sin 2φ sinh r) (p̂/(MΩ)) (4.222)

S1p̂S
†
1 = (cosh r − cos 2φ sinh r)p̂ + (sin 2φ sinh r)(MΩ)x̂ (4.223)

For φ = π/2, these give

S1x̂S
†
1 = e−rx̂, S1p̂S

†
1 = erp̂ (4.224)

Hence the name squeezing. Two successive squeezes with the same rotation
parameter result in one squeeze with the squeeze parameter as the sum of the
two parameters:

S1(r, φ)S1(r′, φ) = S1(r + r′, φ) (4.225)

The expectation value of squeezing the number operator is

〈S†
1a

†aS1〉 = sinh2 r + (1 + 2 sinh2 r)〈a†a〉 + sinh 2rRe[e−2iφ〈a2〉] (4.226)

and that of the correlation is

〈S†
1|δa|2S1〉 = cosh 2r〈|δa|2〉 + sinh 2rRe[e−2iφ〈(δa)2〉] (4.227)

which for the vacuum and coherent states is always greater than or equal to the
original value.
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The two-mode squeeze operator S2 defined in (4.196) is more suitable for the
description of cosmological particle creation. One can show that the out state is
generated from the in state by including contributions from all k modes,

|out〉 = RS|in〉 (4.228)

where

S = Π∞
k=0S2(rk, φk) (4.229)

In general

〈out|F (ã±, ã
†
±)|out〉 = 〈in|F (a±, a

†
±)|in〉 (4.230)

where F is an arbitrary analytic function. The |in〉 state can be a number state,
a coherent state or a squeezed state. If the initial state is a vacuum state, |in〉 =
|0in〉, then

|0out〉 = S(r, φ− θ

2
)|0in〉 (4.231)

where

S(r, φ− θ) = exp{Σkrk[e−2i(φk−θk)aka−k − e2i(φk−θk)a†ka
†
−k]} (4.232)

The squeeze parameter sinh2 rk = |βk|2 measures the number of particles cre-
ated. Rotation does not play a role. Thus, as observed by Grishchuk and Sidorov
[GriSid90], cosmological particle creation amounts to squeezing the vacuum. The
same can be said about Hawking radiation [Haw75]. See [HuKaMa94].

4.7.2 Dynamics of the squeezing parameters

So far we have used the language of squeezed states to describe the integrated
effect of the dynamics, as in equation (4.194). We will show now that for a linear
system the dynamics itself may be described in terms of the evolution of the
squeezing parameters r, φ and θ as functions of time.

Let us begin with a general quadratic Lagrangian. This Lagrangian has time-
dependent mass and frequency, and we will also allow it to have a time-dependent
cross-term, denoted 2E(t):

L =
M(t)

2
[
ẋ2 + 2E(t)ẋx− Ω2(t)x2

]
(4.233)

We perform a Legendre transformation to obtain the Hamiltonian, and switch
to creation–destruction operators

a =
1√
2�

(√
κx̂ + i

p̂√
κ

)
(4.234)
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where κ is an arbitrary positive constant related to the frequency. The result is
[HuMat94]

�
−1H(t) = g(t)

a2

2
+ g∗(t)

a†2

2
+ h(t)(a†a + 1/2) (4.235)

g =
1
2

[
M

κ
(Ω2 + E2) − κ

M
+ 2iE

]

h =
1
2

[
M

κ
(Ω2 + E2) +

κ

M

]
(4.236)

The value of κ can be chosen so that at the initial time g(ti) = 0. Thus if E = 0
we will usually have κ = M(ti)Ω(ti).

The evolution operator U = SR may be written as the product of a single-
mode squeeze operator S and a rotation operator R, which in turn are param-
eterized in terms of a squeeze parameter r and angles θ and φ as in equations
(4.195) and (4.216). Acting on the destruction operator, U induces a Bogoli-
ubov transformation as in equation (4.194), with Bogoliubov coefficients given
in equation (4.198). Their equations of motion are

α̇ = −ihα− ig∗β

β̇ = igα + ihβ

α(ti) = 1, β(ti) = 0 (4.237)

with g, h as defined in equation (4.236).
A quantity of much importance turns out to be the sum of the Bogoliubov

coefficients, χ ≡ α + β. It follows from equations (4.237) that χ satisfies the
classical equation of motion for the system:

χ̈ +
Ṁ

M
χ̇ +

(
Ω2 + Ė +

ṀE
M

)
χ = 0 (4.238)

with initial conditions

χ(ti) = 1; χ̇(ti) =
−iκ

M(ti)
− E(ti) (4.239)

With this result, the usual task of finding the Bogoliubov coefficients α, β from
two coupled first-order differential equations is reduced to that of solving one
second-order equation for χ. We have two equations

χ = α + β

χ̇ = i(g − h)α + i(h− g∗)β (4.240)

so, solving for α, β using equation (4.236):{
α

β

}
=

1
2

(
1 ± iEM

κ

)
χ± iM

2κ
χ̇ (4.241)
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Equivalently, we can follow the behavior of r, φ, θ by writing equation (4.237) in
terms of the squeeze parameter, with g ≡ |g|eiδ:

ṙ = |g| sin(2φ + δ)

φ̇ = −h + |g| coth 2r cos(2φ + δ)

θ̇ = h− |g| tanh r cos(2φ + δ) (4.242)

As an example, consider an inverted oscillator, where the coefficients in the
Lagrangean are time-independent and Ω2 < 0. The variable χ blows up, and so
does the squeeze parameter r → ln(2|α|). If we set r → ∞ then the equations for
φ, θ become

θ̇ = −φ̇ = h− |g| cos(2φ + δ) (4.243)

or

t =
∫ φ

φ0

dϕ

|g| cos(2ϕ + δ) − h
(4.244)

The integral may be solved analytically but we do not need the result in
what follows. Simply observe that Ω2 < 0 implies |g| > h, and so as t → ∞, φ
must approach a zero of |g| cos(2ϕ + δ) − h, so that the integral increases without
bound. This makes θ̇ → 0 too. Therefore for late times φ and θ approach constant
values, while r increases.

4.7.3 Number, coherence and initial states

We will show in this section that the number of particles produced depends very
much on the initial state chosen. The number operator for a particle pair in mode
k is given by

N = a†+a+ + a†a (4.245)

Note that the subscripts ± here denote a particle pair in states ±k whereas in
the charged particle case +,− denote particle and antiparticle states respectively.
For the charged particle case since at the end we assume the number of positive
and negative charged particles is the same, it gives the same expression as a
neutral particle there. However, here since we count the two states as distinct,
we should have twice the amount for vacuum particle production.

The expectation value of the number operator with respect to the |out〉 vacuum
for a general initial state is

Ñ = 〈N〉t = 〈S†
2R

†NRS2〉 = 2|β|2 + (1 + 2|β|2)〈N〉
−2|α||β|(e2iφ〈a†+a†〉 + e−2iφ〈a+a 〉) (4.246)

Comparing this expression with (4.103) or (4.108), the only difference of a factor
of 2 for the first |β|2 term comes from the spontaneous creation of particles in
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the ±k modes. The net change in the particle number from the initial to the
final state is

δN ≡ 〈N〉t − 〈N〉 = 2|β|2[1 + 〈N〉] − 2|β||α|{e2iφ〈a†+a†〉 + e−2iφ〈a+a 〉}
(4.247)

Here, the first two terms in the square brackets are respectively the sponta-
neous and stimulated emissions and the last term in the curly brackets is the
interference term. The difference between spontaneous and stimulated creation
of particles in cosmology was explained first by Parker [Park69] and explored in
more detail by Hu and Kandrup [HuKan87]. Note that since there is no θ depen-
dence, rotation has no effect. If rk �= 0 for some k both spontaneous and stimu-
lated contributions are positive. The interference term can be negative for states
which give nonzero 〈a+a−〉. Only when this term is non-zero can δN be negative.

We will calculate the change in particle number for some specific initial
states.

(a) Number state
For an initial number state |n〉 = |n+, n 〉

δN = 2|β|2(1 + n+ + n ) (4.248)

We see that the number of particles will always increase.
(b) Coherent state

For an initial coherent state

|μ〉 = D(μ+)D(μ )|0, 0〉 (4.249)

we find that

δN = 2|β|2[1 + 〈N+〉 + 〈N 〉] − 4|β||α|
√
〈N+〉〈N 〉 cos(2φ− ζ+ − ζ )

(4.250)

where

μ+ =
√
〈N+〉eiζ+ , μ =

√
〈N 〉eiζ (4.251)

Note the existence of the interference term which can give a negative con-
tribution. It depends not only on the squeeze parameters |β| and φ, but
also on the particles present and the phase of the initial coherent state.
Conditions favorable to a decrease in δN are cos(2φ− ζ+ − ζ ) = 1 and
〈N+〉 = 〈N 〉 = 〈N〉/2. In this case we find δN is negative if

〈N〉 > |β|
|α| − |β| (4.252)

(c) Single-mode squeezed vacuum state
For an initial one-mode squeezed state

|σ〉1 = S1+(r+, φ+)S1−(r−, φ−)|0, 0〉 (4.253)
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generated by squeezing the vacuum with S1± for the ±k modes, we get

δN = 2|β|2(1 + 〈N+〉 + 〈N 〉) (4.254)

Once again particle number will always increase.
(d) Two-mode squeezed vacuum state

For an initial two-mode squeezed vacuum

|σ〉2 = S2(r0, φ0)|0, 0〉 (4.255)

where S2 is defined earlier,

δN = 2|β|2[1 + 〈N〉] + 2|β||α|
√
〈N〉(2 + 〈N〉) cos 2(φ− φ0) (4.256)

The cosine factor shows that particle number can decrease given the right
phase relations. It can be shown that for cos 2(φ− φ0) = −1 particle number
would decrease (δN ≤ 0) if r0 ≥ r/2. If the phase information is randomized
the cosine factor averages to zero and there is a net increase in particle
number. Since a squeezed state is the end result of squeezing a vacuum via
particle creation, one might naively expect to see a monotonic increase in
number. Our result shows that this is true only if the phase information is
lost in the squeezed state to begin with.

In summary we can make the following observations:

(a) Rotation R in the evolution operator U = RS does not influence particle
creation.

(b) For an initial number state or single-mode squeezed vacuum we find a net
increase in the number of particles.

(c) For an initial coherent state and two-mode squeezed vacuum, particle number
can increase or decrease. A net increase can nevertheless be obtained by
suitable choices of S2(r, φ) and S2(r0, φ0).

(d) If random phase is assumed for the initial state the interference term can be
averaged out to zero and there will be a net increase in number of particles.

Coherence can persist

A measure of the coherence of the system is given by the uncertainty (called
variance in [Hu72, Mol67, BroCar79, HuPav86])

|δa|2 =
1
2
(δaδa† + δa†δa) (4.257)

where δa = a− 〈a〉. The expectation value of the uncertainty with respect to a
state |ψ〉 is thus,

〈ψ||δa|2|ψ〉 = 〈ψ|a†a|ψ〉 − |〈ψ|a|ψ〉|2 +
1
2

(4.258)
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The expectation value of the uncertainty with respect to a transformed state
|ψ〉t ≡ RS|ψ〉 is given by

〈ψ||δa|2|ψ〉t = cosh 2r〈ψ||δa|2|ψ〉 − 2 sinh 2rRe[e−2iφ〈ψ|δa+δa−|ψ〉] (4.259)

where |δa|2 ≡ |δa+|2 + |δa−|2. For an initial number state, |ψ〉 = |n〉,

〈n||δa|2|n〉t = 2
(

1
2

+ |β|2
)
〈n||δa|2|n〉 ≥ 〈n||δa|2|n〉 (4.260)

For a coherent state, |ψ〉 = |μ〉

〈μ||δa|2|μ〉t = 2
(

1
2

+ |β|2
)
〈μ||δa|2|μ〉 ≥ 〈μ||δa|2|μ〉 (4.261)

where the first term corresponds to the vacuum fluctuation and the second term
(whose sum over all modes is equivalent to Tr(v†kvk) in [Hu72, HuPav86]) mea-
sures the mixing of the positive and negative frequency components of differ-
ent modes. This result was first derived in [Hu72], and discussed further in
[HuPav86]. Notice that it is always greater than the original value 〈|δa|2〉μ.

For a squeezed state, |ψ〉 = |σ〉 = S2(r0, φ0)|μ〉

〈σ||δa|2|σ〉t = cosh 2r〈σ||δa|2|σ〉 − 2 sinh 2rRe[e−2iφ〈σ|δa+δa−|σ〉] (4.262)

which can be smaller than the initial value.
Notice that of the three states we discussed, only the squeezed state can allow

for a decrease in the uncertainty, i.e. an increase in the coherence as the system
evolves. In addition, even though the total number and the total uncertainty of
the initial state of the two modes change with particle creation, their difference
remains a constant. This is because cosmological particle creation is described
by the two-mode squeezed operator which satisfies the relations: 〈ψ|S†(a†+a+ −
a†−a−)S|ψ〉 = 〈ψ|a†+a+ − a†−a−|ψ〉,

〈ψ|S†(|δa+|2 − |δa−|2)S|ψ〉 = 〈ψ|(|δa+|2 − |δa−|2)|ψ〉 (4.263)

4.7.4 Fluctuations in number

Spontaneous particle creation can be viewed as the parametric amplification of
vacuum fluctuations (or squeezing the vacuum). Particle number is an inter-
esting quantity as it measures the degree to which the vacuum is excited. The
fluctuation in particle number is another interesting quantity, as it can be related
to the noise of the quantum field and the susceptibility of the vacuum. This is
similar in nature to the energy fluctuation (measured by the heat capacity at
constant volume) of a system being related to the thermodynamic stability of a
canonical system, or the number fluctuation (measured by the compressibility at
constant pressure) of a system being related to the thermodynamic stability of
a grand canonical system. In gravity, we know that the number fluctuation of a
self-gravitating system can be used as a measure of its heat capacity (negative)
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[LynBel77]; and those associated with particle creation from a black hole can be
used in a linear-response theory description as a measure of the susceptibility
of spacetime [CanSci77, Mot86]. We expect that this quantity associated with
cosmological particle creation may provide some important information about
quantum noise and vacuum instability.

Define δiO ≡ [〈O2〉 − 〈O〉2] as the variance or mean-square fluctuations of the
variable O with respect to the initial state | 〉, and the corresponding quantity
δfO as that with respect to the final state | ). Consider the difference between
the final and the initial number fluctuation of both the ± kinds,

δN = (δfN+ + δfN−) − (δiN+ + δiN−) (4.264)

Using the expressions given above, we obtain

δN = 2|α|2|β|2[δN+ + δN− + δL + ∂(N+N−)]i
−(|α|3|β| + |α||β|3)[∂(N+L) + ∂(N−L)]i (4.265)

where the subscript i refers to expectation values with respect to the initial states
| 〉, the symbol ∂ denotes

∂(PQ) ≡ [〈PQ〉 + 〈QP 〉 − 2〈P 〉〈Q〉] (4.266)

and

L = e2iφa†+a
†
− + e−2iφa−a+ (4.267)

Now for an initial number state |n〉 = |n+, n−〉,

δN = 2|α|2|β|2(1 + n+ + n + 2n+n ) (4.268)

we see that the number fluctuations will always increase. For an initial coherent
state |μ〉 = D(μ+)D(μ )|0, 0〉, where μ± =

√
〈N±〉eiζ± ,

δN = 2|α|2|β|2[1 + 2(〈N+〉 + 〈N 〉)]
− 4
√
〈N+〉〈N 〉(|α|3|β| + |α||β|3) cos(2φ− ζ+ − ζ ) (4.269)

We find that under the conditions cos(2φ− ζ+ − ζ ) = 1 and 〈N+〉 = 〈N−〉 =
〈N〉/2

〈N〉 > |β||α|
|α|2 + |β|2 − |β||α| (4.270)

δN can be negative. In the weak particle creation limit |β| → 0, |α| → 1 we find
that this expression is equivalent to (4.252). In the strong particle creation limit
we see that (4.252) diverges but in (4.270) 〈N〉 → 1. Clearly conditions for a
decrease in number fluctuations are not the same as those for a decrease in the
number.

For a single-mode squeezed state |σ〉1 = S1+(r+, φ+)S1−(r−, φ−)|0, 0〉

δN = 2|α|2|β|2[(1 + 〈N+〉 + 〈N−〉)2 + 〈N+〉(1 + 〈N+〉) + 〈N−〉(1 + 〈N−〉)
− 2
√
〈N+〉(1 + 〈N+〉)〈N−〉(1 + 〈N−〉) cos 2(2φ− φ+ − φ−)] (4.271)
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From this it can be shown that, like the change in number, the change in the
number fluctuations will always be positive for an initial single-mode squeezed
vacuum.

For a two-mode squeezed state |σ〉2 = S2(r0, φ0)|0, 0〉

δN = |α|2|β|2{2(1 + 〈N〉)2 + 〈N〉(2 + 〈N〉)[1 + cos 4(φ− φ0)]} (4.272)

+ 2(|α|3|β| + |β|3|α|)(1 + 〈N〉)
√
〈N〉(2 + 〈N〉) cos 2(φ− φ0) (4.273)

Note that there is no definite relation between N and δN . For large N � 1 or
small |β| � 1, δN ≤ 0. The result obtained here for particle number fluctuations
is relevant to issues of noise and fluctuation of quantum fields, and in turn,
the dissipation and instability of condensates, background fields and spacetimes
[HuSin95, HuMat96, HuMat95].

4.8 Squeezed quantum open systems

In this last section we discuss a squeezed quantum system interacting with an
environment. From the examples given in this chapter we see that this encom-
passes a rather broad spectrum of systems with time-dependent background
fields or spacetimes.

This theory was developed in the influence functional formalism by Hu and
Matacz [HuMat94] extending the work on quantum Brownian motion by Hu,
Paz and Zhang [HuPaZh92, HuPaZh93a], and Caldeira and Leggett [CalLeg83a]
to oscillators with time-dependent frequencies. From this oscillator model it is
an easy step to extend to quantum fields, which was done in [Zha90, Hu94b]. We
shall treat open systems of quantum fields in the next chapter.

Our discussion here follows Koks et al. [KoMaHu97] based on the work of
[HuMat94] which considers a squeezed (time-dependent, parametric) quantum
open system coupled to a bath at temperature T with a time-dependent coupling
constant. The results here are useful for calculating the entropy and uncertainty
functions as well as for fluctuations and coherence, a topic to be discussed in
Chapter 9.

4.8.1 Dissipation and noise kernels

For a parametric oscillator system interacting with a bath of many paramet-
ric oscillators at temperature T described by the Lagrangian given by equation
(3.133) in Chapter 3 one can calculate the dissipation and noise kernels in closed
forms ((equation (2.19) of [HuMat94]) in terms of the squeezed state parameteri-
zation (r, θ, φ) introduced in the previous section and the Bogoliubov coefficients
(α, β) representation of the mode functions. In the case of a squeezed bath when
the cross-term (εn = 0) is absent and the mass of the bath oscillator is a constant
(mn = 1) these expressions are in a manageable form. Note that the functions
χn(t) = αn(t) + βn(t) obey the equations (cf. equation (4.238)):

χ̈n(t) + ω2
n(t)χn(t) = 0 (4.274)
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with initial conditions (compare to (4.239))

χn(ti) = 1; χ̇n(ti) = −iκn (4.275)

The bath canonical variables then admit a simple representation

qn(s) =
1
2

{
[χn(s) + χ∗

n(s)] qn(ti) +
i

κn
[χn(s) − χ∗

n(s)] q̇n(ti)
}

(4.276)

The initial state of the bath is a squeezed thermal state. It has the form

ρ̂b(ti) =
∏
n

Ŝn(r(n), φ(n))ρ̂thŜ
†
n(r(n), φ(n)) (4.277)

where ρ̂th is a thermal density matrix of temperature T and Ŝ(r, φ) is a squeeze
operator defined in equation (4.216).

In this still rather general class of problems, the noise and dissipation kernels
can be found from equations (3.62), where the relevant expectation values are
computed with the help of (4.223)

D(s, s′) = 2
∫ ∞

0

dω I(ω, s, s′)Im[χω(s)χ∗
ω(s′)] (4.278)

N(s, s′) =
∫ ∞

0

dω I(ω, s, s′) coth
(

�ω(ti)
2kBT

){
cosh 2r(ω)Re[χω(s)χ∗

ω(s′)]

−1
2

sinh 2r(ω)
[
e−2iφ(ω)χ∗

ω(s)χ∗
ω(s′) + e2iφ(ω)χω(s)χω(s′)

]}
(4.279)

We have adopted the convention that if fn is a quantity defined for each mode
of the bath, then we call f(ω) = fω ≡ fn evaluated at the mode that satisfies
ω = ωn(ti). I(ω, s, s′) is the spectral density defined by

I(ω, s, s′) =
∑
n

δ(ω − ωn(ti))
cn(s)cn(s′)

2κn
(4.280)

It contains information about the environmental mode density and coupling
strength as a function of frequency. Different environments are classified accord-
ing to the functional form of the spectral density I(ω). On physical grounds,
one expects the spectral density to go to zero for very high frequencies. Let us
introduce a certain cut-off frequency Λ (a property of the environment) such
that I(ω) → 0 for ω > Λ. The environment is classified as ohmic if in the phys-
ical range of frequencies (ω < Λ) the spectral density is such that I(ω) ∼ ω,
as supra-ohmic if I(ω) ∼ ωn, n > 1 or as sub-ohmic if n < 1. The most studied
ohmic case corresponds to an environment which induces a dissipative force lin-
ear in the velocity of the system. Also, by considering the continuum limit of the
coupling constant, it can be shown that this constant’s independence of n also
leads to an ohmic environment.

Note that the dissipation kernel is independent of the bath’s initial state.
More generally, the noise and dissipation kernels are built out of symmetric and
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antisymmetric combinations of identical Bogoliubov factors. Thus the two kernels
are intimately linked. For the case when the bath is a standard harmonic oscilla-
tor this inter-relationship can be written as a generalized fluctuation–dissipation
relation [HuPaZh93a].

4.8.2 u1 → v2 functions

In these last two subsections we present the explicit forms of the u, v and a, b func-
tions for this squeezed quantum system. Recall that these are the functions first
appearing in Chapter 3 in the derivation of the propagator for the reduced density
matrix which determine the coefficients of the master equation. First consider
equation (3.138). We treat the integral of a delta function and its derivative in the
following way: use a smooth step function (i.e. θ(0) ≡ 1/2) to write (x1 > x0)1∫ x1

x0

f(x)δ(x− a) dx ≡ f(a) θ(x1 − a) θ(a− x0) (4.281)∫ x1

x0

f(x)δ′(x− a) dx ≡ −f ′(a) θ(x1 − a) θ(a− x0) (4.282)

Hence equation (3.138) together with equation (3.142) becomes (with u being
either u1 or u2)

ü(s) +

(
Ṁ

M
+

2γ0c
2

M

)
u̇ +

(
Ω2 +

ṀE
M

+ Ė +
2γ0cċ

M

)
u = 0 (4.283)

Now define ũ by

ũ ≡ u exp
[
γ0

∫ s

ti

c2(s′)
M(s′)

ds′
]

(4.284)

in which case it follows that

¨̃u +
Ṁ

M
˙̃u +

(
Ω2 +

ṀE
M

+ Ė − γ2
0c

4

M2

)
ũ = 0 (4.285)

Comparing with (4.238), we recognize this as just the equation of motion of an
oscillator with mass M , cross-term E and an effective frequency

Ω2
eff ≡ Ω2 − γ2

0c
4

M2
(4.286)

Hence we know a solution for ũ(s) – it is the sum χ of the Bogoliubov coefficients
for this new system. So we write (with g1, g2 constants to be determined)

u(s) = exp
[
−γ0

∫ s

ti

c2

M
ds′
]

[g1χ(s) + g2χ
∗(s)] (4.287)

1 These relations can easily be proved by checking the five cases individually, of a < x0,
a = x0, x0 < a < x1, etc. Note that treating the delta function in this “smoothed” way
eliminates the need for the frequency renormalization in [PaHaZu93]. This smoothing

essentially just defines
∫∞
0

δ(x)dx = 1/2 (see, e.g. [NeuHil27] for a discussion of this).
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By including the boundary conditions for u1 and u2 we obtain

u1(s) = exp
[
−γ0

∫ s

ti

c2

M
ds′
]

Im[χ(t)χ∗(s)]
Imχ(t)

u2(s) = exp
[
γ0

∫ t

s

c2

M
ds′
]

Imχ(s)
Imχ(t)

(4.288)

Using the propagator formalism in the language of squeezed states with the
Bogoliubov coefficients will be very useful for relating the entropy of a field
mode to its squeeze parameter r.

Proceeding in the same way, equation (3.139) and (3.39) becomes

v̈(s) +

(
Ṁ

M
− 2γ0c

2

M

)
v̇ +

(
Ω2 +

ṀE
M

+ Ė − 2γ0cċ

M

)
v = 0 (4.289)

Now write

ṽ ≡ v exp
[
−γ0

∫ s

ti

c2

M
ds′
]

(4.290)

and just as for the case of u we have

¨̃v +
Ṁ

M
˙̃v +

(
Ω2 +

ṀE
M

+ Ė − γ2
0c

4

M2

)
ṽ = 0 (4.291)

So now v1 and v2 can also be written as combinations of χ and χ∗. Including the
boundary conditions we eventually obtain

v1(s) = exp
[
γ0

∫ s

ti

c2

M
ds′
]

Im[χ(t)χ∗(s)]
Imχ(t)

v2(s) = exp
[
−γ0

∫ t

s

c2

M
ds′
]

Imχ(s)
Imχ(t)

(4.292)

4.8.3 a11 → b4 functions

To facilitate our calculations we introduce dimensionless parameters for time

z ≡ κt, σ ≡ κs

χ(τ) ≡ χ(t), etc. (4.293)

and a carat will denote division by κ, e.g. γ̂0 = γ0/κ. Note that t is the Lagrangian
time.
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Now we have all the necessary ingredients to calculate the propagator. Making
use of equation (3.136) and equation (3.137) we obtain

a11(z, zi) =
1

2κ2

∫ z

zi

dσ

∫ z

zi

dσ′ exp
(
γ̂0

∫ σ

zi

c2

M
dσ′′
)

Im[χ(z)χ∗(σ)]
Imχ(z)

N(σ, σ′)

× exp

(
γ̂0

∫ σ′

zi

c2

M
dσ′′
)

Im[χ(z)χ∗(σ′)]
Imχ(z)

a12 =
1
κ2

∫ z

zi

dσ

∫ z

zi

dσ′ exp
(
γ̂0

∫ σ

zi

c2

M
dσ′′
)

Im[χ(z)χ∗(σ)]
Imχ(z)

N(σ, σ′)

× exp
(
−γ̂0

∫ z

σ′

c2

M
dσ′′
)

Imχ(σ′)
Imχ(z)

a22 =
1

2κ2

∫ z

zi

dσ

∫ z

zi

dσ′ exp
(
−γ̂0

∫ z

σ

c2

M
dσ′′
)

Imχ(σ)
Imχ(z)

N(σ, σ′)

× exp
(
−γ̂0

∫ z

σ′

c2

M
dσ′′
)

Imχ(σ′)
Imχ(z)

b1(z, zi) = −γ̂0 κc
2(z) + κM(z)

Imχ′(z)
Imχ(z)

+ M(z)E(z)

b{2
3} =

∓κ

Imχ(z)
exp
(
±γ̂0

∫ z

zi

c2

M
dσ

)

b4 = −γ̂0 κc
2(zi) + κ

Reχ(z)
Imχ(z)

+ M(zi)E(zi) (4.294)

These coefficients will be useful for calculating the entropy generation in a
squeezed open quantum system in Chapter 9.
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