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1. Introduction. Let G be a finite group, H an arbitrary subgroup (i.e., not necessarily
normal); we decompose G as a union of left cosets modulo H :

choosing fixed coset representatives xv. In this paper we construct a " coset space complex "
and assign cohomology groups; Hr([G : H], A), to it for all coefficient modules A and all
dimensions, -oo<r<oo. We show that if

is an exact sequence of coefficient modules such that H1^, A') -0 for all subgroups U of H,
then a cohomology group sequence

-*Hr([G : H], A')^Hr([G : H], A)-+Hr{[Q : H], A")^H'^([G : H], A') ->

may be defined and is exact for -oo<r<oo. We also provide a link between the cohomology
groups HT([G : H], A) and the cohomology groups of G and H ; namely, we prove that if
HV(U, A) = 0 for all subgroups U of H and for v =1 , 2, ..., n — 1, then the sequence

0 ->#"([<? : H], A)^Hn(G, A)^H»(H, A)

is exact, where the homomorphisms of the sequence are those induced by injection, inflation
• and restriction respectively.

These results are then applied in defining cohomology groups for the coefficient groups
which are associated in class field theory with an arbitrary field extension (i.e., the groups of
ideles, idele classes and the multiplicative group of non-zero elements of the field). These
groups are defined by introducing an auxiliary normal extension ; but are independent of
the normal extension used. In the case of normal extensions, the groups here defined coincide
with those used by Hochschild and Nakayama (5), and by Artin and Tate (1,2). If A is
either the multiplicative group of non-zero elements of a local field E, or the group of idele
classes of a global field E, we shall show that H1(A) =0, and that H2(A) is cyclic of order
equal to the degree of E over the ground field, and is generated by a canonical cohomology
class. We shall also discuss an attempt to generalise to the non-normal case Tate's theorem
(6) linking the cohomology groups of A with those of the integers.

I wish to thank Professor Artin for his help and encouragement during the preparation
of this paper, Dr. J. T. Tate for a number of fruitful discussions, and Mr. R. J. Semple for
checking the laborious cocycle computations in an earlier proof of Theorem 7.3.

2. G-complexes. Let G be a group, G its group ring with integer coefficients. A
G-complex if is a collection of left G-modules, Cr(K) ( -oo<r<oo), called the chain groups of if,

* This paper is based on a dissertation presented to the Faculty of Princeton University in partial
fulfilment of the requirements for the degree of Doctor of Philosophy, June 1952.

https://doi.org/10.1017/S2040618500033050 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033050


COHOMOLOGY THEORY FOR NON-NORMAL SUBGROUPS 67

and a collection of G-homomorphisms, dr ( -oo<r<oo), called the boundary operators of K,

such that 9r9r+1 is the zero homomorphism.
For -oo<r<oo we define the group of r-cycles, Zr(K), to be the kernel in Cr(K) under

dT ; the group of r-boundaries, BT (K), to be the image of OT+1 {K) under 9 r + 1 ; and the r-dimen-
sional homology group, Hr(K) =Zr{K)jBr{K). A G-complex K is said to be acyclic if all the
homology groups HT{K) =0, ( -bo<r<oo).

Now let A be a left ©-module. Then an r-cochain of K with coefficients in A is a C-homo-
morphism of Cr(K) into A. These cochains form an additive group, Cr{K,A), under the
addition defined by setting

(f + 9)(c)=f(c)+9(c), f,geC-(K,A), ceCr{K).

Coboundary operators, Sr ( -oo<r<oo),

8r:C
r(K,A)->Cr+1(K,A)

are defined by setting
(3r/)(c)=/Or+1c), fcC'{K,A), ceCr+1(K).

These coboundary operators are clearly homomorphisms and satisfy the conditions 8f8r_x =0.
We define the group of r-cocycles, Zr(K, A), to be the kernel in Cr(K, A) under 8 r ; the group
of r-coboundaries, Br(K, A), to be the image of Cr~l{K, A) under 8 r - 1 ; and the r-dimensional
cohomology group, Hr{K, A) =Zr{K, A)jBr(K, A).

Let A and B be left G-modules, 9 a (?-homomorphism of A into B. Then the homo-
morphisms

6r:Cr(K,A)->Cr(K,B)

defined by

(8rf)(c)=6(f(c)), JeCr{K,A), ceCr(K),

clearly satisfy the condition 8rSr_1 =Sr_18
r~1, and hence induce homomorphisms of the cor-

responding cohomology groups,

3. Coset Space Complexes. Let 0 be a group, H an arbitrary subgroup of finite index in
0. We denote the left cosets xH of G modulo H by Av A2, ... ; if Av is one of these cosets,
x an element of 0, then xAv is also one of the cosets.

We now construct a Cr-complex K=K{[G : H]). For r > 0 the chain groups Cr(K) are
the free abelian groups generated by the (r+ l)-tuples of cosets, (̂ 40, ..., Ar); for r ^ l , the
chain groups C_r (K) are the free abelian groups generated by the r-tuples of cosets, (A 1(.. '., A r)
These chain groups become left G-modules under the natural definition,

x(...,Av, ...)=(...,xAv, . . . ) , xeG.

The boundary operators, 9r, are defined by setting

dr(A0, ...,Ar)=2'v=,0 (-1Y(AO,...,A ,Ar), r>\\

do(Ao)=2A(A);

d_r(Av ..., AT) =2A(A, Av ..., Ar) +EV,X{ - \)'SA(Av - , A,, A, Av+1, ..., Ar),

https://doi.org/10.1017/S2040618500033050 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033050


68 IAIN T. ADAMSON

and extending by linearity. (The circumflex denotes the omission of the argument over which
it stands.) It is easily verified that these are (?-homomorphisms satisfying the condition
drdr+1 =0. If A is a left ^-module the cochains, ..., cohomology groups of K([G : H]), with
coefficients in A are called simply the cochains, ..., cohomology groups of the coset space
[G : H], and are denoted by Cr([G : H],A),..., Hr{[G : H], A).

We remark that, if G is a finite group, then the coset space complex K (\G : 1]) obtained
by taking H = 1 is identical with the group complex Kg of G as defined (for positive dimen-
sions) by Eilenberg (4) and extended to negative dimensions by Tate (2).

Theorem 3.1. The coset space complex K([G : H]) is acyclic.

Proof. We define mappings ipr : Cr{K)-*CT+1{K) by setting

tT(A0, •••> Ar) =(H, A O , ... , Ar),

((H) ifA=H,
^ - l W - \ 0 otherwise;

^ =H' r>2.
otherwise,

Then it is easily verified that for any r-chain cr( -oo<r<oo)
V

9r+l'/'rcr + ^r-l9rcr=Cr-

In particular, if cr is an r- cycle, we have

Cr=9r+l(^rCr).

whence Hr(K) =0, as was to be proved.

Theorem 3.2. Let U be a normal subgroup of G contained in H. Let Av be the submodule
of A consisting of elements left fixed by U. Then the cohomology groups Hr([G : H], A) are
isomorphic to the groups Hr(\GjU : HjU], AJJ), ( -oo<r<oo).

Proof. Let rj denote the canonical projection map of G onto G/U. We choose a fixed
set of coset representatives for G modulo V ; then if yeG/U, rj~l(y) shall denote the corre-
sponding coset representative of y in G.

Now consider the.mappings/-><f, g-*prg (feCr([G : H], A), geCr{[GjlJ : H/U], Av))
defined by

o?f(...,yv{HIU), ...)=f{...,rHyv)H, ...),

Then it is easily verified that <xr and /3r set up an isomorphism between Cr([G : H], A) and
Cr([GjU :HjlJ],Ajj). Further, it is clear that ar and j3r preserve the action of the coboundary
operators, and hence induce an isomorphism between the cohomology groups,

H'([G : H], A)^H'([GIU : H/U], Av).

Corollary. If H is a normal subgroup of G, then the cohomology groups Hr([G : H],A) are

isomorphic to the groups HT(GjH, AE), ( -oo<r<oo).

4. Examples. In this section we describe the cohomology groups of the coset space
complex K([G : H]) in the dimensions - 1 , 0, 1.

First we remark that a 0- or (-l)-cochain / , being a C?-homomorphism, is completely

https://doi.org/10.1017/S2040618500033050 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033050


COHOMOLOGY THEORY FOR NON-NORMAL SUBGROUPS 69

determined by its action on the coset consisting of H itself; for iif(H) =a, then f{xH) =xa
for all x e G. Clearly also, a lies in the subgroup AH of A consisting of elements left fixed by
H. Conversely, every element a in AB defines a 0- and a ( - l)-cochain,/o, given by fa(xH) =xa.
Consequently, we have *

Lemma 4.1. G~l([G : H], A) and C°([G : H], A) are isomorphic to AB.
Now let / = / „ be a ( - l)-cochain ; /„ is a ( - l)-cocycle if and only if 8/a =0, i.e., if and

only if
Bfa(H) =ZJa(xvH)=Zvxva =S(a) =0,

where S(a) denotes the trace of a from AB to Ag (the submodule consisting of elements left
fixed by G). Hence we have

Lemma 4.2. Z~1([G!: H], A) is isomorphic to the subgroup of AB consisting of elements
ivith trace zero.

We must now describe the ( - l)-coboundaries. To this end we decompose G as a union of
double cosets modulo H and H :

G=UvHy,H,

with fixed double coset representatives yv. Now hyvH = h'yjl if and only if h e h' (H fl y^Hy,,'1);
thus the single cosets contained in the double coset HyrII are in (1, 1) correspondence with
the cosets of H modulo Hv =H D yJELyv~

x. Hence, if we write

with fixed coset representatives hvll, we have

HyJI^

Further, let yv- be the fixed representative of the double coset containing y,*1. Then
y,'1!! =h'y,-H, where h' is a coset representative for H modulo Hv>.

Now/a is a ( - l)-coboundary if and only if there exists a ( - 2)-cochain g such that / o = 8g,
i.e., such that

a =fa(H) =Sg(H) =2'^(irff, H) -Evg(H, xvH).

We set g(y,H, H) -a,; then «„ lies in the subgroup A, of A consisting of elements left fixed
by Hv. I t is easily verified that

= (hvliyph') <y.

Thus/n is a ( - l)-coboundary if and only if

where Sv denotes the trace from A, to Au. Hence^we have
Theorem 4.3. H~l{\G : H], A) is isomorphic to the factor group (elements of An with trace

zero) modulo (elements of AB which can be put in the form (*)).
The meaning of this result becomes clearer if we examine the special case obtained by

taking H =1. Here the double cosets consist simply of single elements of G ; the ( -1) -
cocycles are determined by the elements of A with zero trace ; the ( - l)-coboundaries are
determined by the elements which can be put in the form
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Let now K\ k be a normal field extension with Galois group G, and let K* be the multiplicative
group of K. Then we have :

Corollary. H~1(G, K*) is isomorphic, to the factor group of (elements with norm 1) modulo
(symbolic (1 -x)-th powers).

Tate has shown, (2), that if G is cyclic, then H'1 (G, K*) =0. Hence Theorem 4.3 includes
Hubert's Theorem 90 as a very special case.

We turn now to the 0-dimensional groups. A 0-cochain / = / „ is a O-cocycle if and only
if 8/a =0, i.e., if and only if

Sfa(x0H, XjH) =fa(xlH) -fa(x0H) =Xla-xoa =0,

for all x0, x1 e G, i.e., if and only if a lies in Aa. Thus we have

Lemma 4.4. Z°([G : H], A) is isomorphic to the submodule Ag of A consisting of elements
left fixed by G.

Next, /„ is a O-coboundary if and only if there exists a ( - 1 )-cochain g=gb(be AE) such
that /„ =8<76, i:e., such that

a =fa(H) =hgb(H) =Zy9b(xvH) =2-JcJ> =S(b).

Hence /„ is a 0-coboundary if and only if a is the trace of an element b in AB. Thus we have

Theorem 4.5. H°([G : H], A) is isomorphic to the factor group (elements left fixed by (?)
modulo (traces of elements left fixed by H).

Finally, we shall describe the 1-dimensional cohomology group in the case where G
operates simply on A,i.e.,xa —a{ora\lxeG,aeA. Let Horn (G, A) denote the group of homo-
morphisms of G into A. Then we shall prove

Theorem 4.6. jff1([(? : H], A) is isomorphic to the subgroup of Horn (G, A) consisting of
homomorphisms which vanish on H.

Proof. First we remark that BX([G : H], A) =0. For if/ = 8gr is a 1-ooboundary, we have

/(*«,#, XlH) =g(xxH) -g(x0H) =Xjg(H) -xa(H) =0.

Hence W([G : H], A) =Z1([G : H], A).
Let x be an element of Horn (G, A) which vanishes on H. We define a 1-cochain fx by

writing

(this does not depend upon the coset representatives x0, xj. Clearly fx is a 1-cocyole.
Conversely, l e t / be a 1-cocycle. We define xt by setting

Xt(x)=f(H,xH).

Then x/ is a homomorphism of G into A which vanishes on H. This completes the proof.

5. An Exact Sequence. Consider the exact sequence of left (^-modules

0-+A'->A-+A" ^ 0 ; (5.1).

this is, of course, just a sophisticated way of saying that A' is a submodule of A and that A"
is the factor module.
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Lemma 5.2. If U is a subgroup of G with the property that H1 (U, A') =0, then the sequence

is exact (where these are the subgroups left fixed by V).
Proof. All we have to show is that the mapping of Av into A'p is onto. So let

a" eA'g. Let b be any element of A lying in the coset a". Then for any elements u, veU,
we have u(b +A') =v(b + A'), whence ub -vb lies in A'.

We now define fe C1(f7, A') by setting /(«, v) =ub-vb ; clearly / is a 1-cocycle. Since
H1^, A'} =0, there exists an element j3c4' defining a 0-cochain, g(u) =u/3, such t h a t / = S<7,
i.e., such that ub -vb=vfi -ufl. Then clearly a =b+peAu, and lies in the coset a". This
completes the proof.

Lemma 5.3. If Hl(U, A') =0 for all subgroups U of H, then for every cochain

feCr{[G:H],A").
there exists a cochain g e Cr([G : H], A) such that j(g(c)) =f(c)for allceCr{[G : H]) {j denotes the
canonical projection of A onto A").

Proof. Let feCT([G:H], A") (r^O) and let a1 =(H,x1H,... ,xnH). Then a1 is left fixed
by U =H fl xyHx~i fl ... fi a^fla;"1, which is a subgroup of H. Hence /(a1) is left fixed by
U also, since / is a G-homomorphism. According to Lemma 5.2 and the hypothesis that
Hl(U, A') =0, there exists an element a1eAu such that ja1=f (a1). We define g(a1)=a1;
then for every x e G we define gixa1) =xav

If the collection {xa1} does not exhaust the generators of Cr, let a2 be another generator,
not in this collection, with first " vertex " H. We proceed in the same way with a2 and
continue until g has been defined on all the generators of Cr.

Since C_r([G : H]) is (?-isomorphic to Cr_1([(? : //]), the required result follows at once
for the negative-dimensional groups also. This completes the proof.

The injection map, i: A'^-A, and the projection map, j : A-+A", induce cohomology
group homomorphisms

i*:H<([G:H],A')^H'{[G:H],A),

3\ : H'([G : H], A) -+H'([G : H] A").
I t is well known that, by virtue of Lemma 5.3, we can construct a third homomorphism

a\ :Hr([G : H], A")->Hr+l{[G : H], A').

Namely, if feZr([G : H], A"), and g is a cochain in Gr([G : H], A) such that j{g(c))=f(c),
then Sgr lies in Zr+1([G : H], A'), and the correspondence

f-+8g
induces the homomorphism d% of the cohomology groups. I t is then easy to establish

Theorem 5.4. / / the exact sequence (5.1) is such that Hl{U, A') =0 for all subgroups U of
H, then the sequence

... -+&{[& : H], A')->H<-([G:H], A) -^Hr([G : H], A") ->Hr+l{[G : H], A') -+...

may be defined and is exact, -oo<r<oo.

Corollary. For any exact sequence (5.1), the sequence

... -+H'(Q, A')-+Hr{G, A)->Hr(G, A")^-H'+HG, A') ->. . .

may be defined and is exact, -oo<r<oo.
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6. Some Special Coefficient Modules. We recall that in the proof of Theorem 3.1 we
introduced mappings ij)r:Cr([G: H]) -s- Cr + 1 ([G : H]) with the property that c = dr+1i/>rc + ^ . . . ^ c
for all c e Cr. We remark that these mappings are //-homomorphisms.

Lemma 6.1. Let A and B be left G-modules, <f> a G-homomorphism of A into B such that
for every aeA, (j>(a) =Zl,xv8(x~1a), where 8 is an H-homomorphism of A into B. Then the
induced cohomology group homomorphisms </>^ : Hr{[G : H], A) -> Hr ([G : H], B) are zero,
-oo<r<oo.

Proof. Let ij>r be the cocycle group homomorphism induced by </>. If feZr([G : H], A),
then </>TfeZr([G : H], B) is given by (<j>rf)(c) =4>(f{c)), c <= Cr([G : H]). By hypothesis, this may
be written

Next, since x~xc =dr+iifir(x~1c) +<J>r-idr(%7lc)> a n d / i s a cocycle, we obtain

0 ' / ) (C) =

where g =Ejxfif>l>r—i?K^' ^s a G'-homomorphism (and hence an (r — l)-cochain) since 0 and ^r_x

are if-homomorphisms. Hence $|. =0.

A left G-module A is said to be semi-regular if it contains an //-module B such that
A =SjxvB, i.e., if every element aeA can be written uniquely in the form a=Ejcvbv, with
6, e B. The mapping e ' : A ->• A given by

(where x1 = 1 is the coset representative of H itself) is clearly an //-homomorphism. Further,
if e is the identity map of A onto itself, we have

e(a) =a =Sjcve'(x^a).

Thus the identity map of a semi-regular (?-module satisfies the condition of Lemma 6.1.
Since the identity map of A onto A induces the identity map of the cohomology groups, we
have

Theorem 6.2. If A is a semi-regular G-module, then Hr([G : H], A) =0, -oo<r<oo.

A left G-module A is said to be regular if it contains a subgroup B such that A =SxegxB.

Clearly such a module can be written A =ElpcrB', where B' =She HhB. Since B' is an //-module
it follows that every regular G-module is also semi-regular, and we have

Theorem 6.3. / / A is a regular G-module, then Hr([G : H], A) =0, - oo < r<oo . In par-
ticular, Hr([G : H],~G) =0, - oo<r<oo.

Let now A be a left (?-module satisfying the conditions

(6.4) G acts simply on A, i.e., xa =a for all x e G, a eA ;
(6.5) the mapping a ->• ma is an automorphism of A, where m is the index of H in G.

Under these conditions, the mapping e' :A^>A given by e'(a)=— a is an //-homo-
lib

morphism ; if e is the identity map of A onto itself, we have

e{a)-a =2jcve'(x^a).

Hence, appealing to Lemma 6.1 again, we have
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Theorem 6.6. / / A is a left G-module satisfying (6.4) and (6.5), then Hr{[0 : H],A) =0.
In particular, Hr([0 : H], R) =0 where R denotes the additive group of real numbers with simple
action by 6.

Let Z denote the group of integers, with simple action by 6. • Then we have, as immediate
consequences of Theorems 4.3, 4.5, 4.6,

Theorem 6.7. H-1 ([G : H], Z) =#* ([G :H],Z)=0; H° ([G :H],Z) is cyclic of order m.
Finally, let T =R/Z be the group of real numbers modulo integers, also with simple

action by G. Then the exact sequence

0^Z->R->T^0
satisfies the condition of Theorem 5.4. Hence we have an exact sequence

... ->H'([G : H], R) -+Hr([G : H], T) -+Hr+1{[G : H], Z)-^H^l({G : H], R) -> ... .
By virtue of Theorem 6.6, this yields

Theorem 6.8. Hr([G : H], T) is isomorphic to Hr^{[G : H], Z).
Now Horn (G, T) is the character group, Char G, of G. According to Theorem 4.6,

HX{[G : H], T) is isomorphic to the subgroup of Char G consisting of characters which vanish
on H. This, as is well known, is isomorphic to the character group of GjG'H, where G' is the
commutator subgroup of G. Hence we have

Corollary. H*([G : H], Z) and IP&G : H], T) are isomorphic to Char {GjG'H).

7. Link between the Cohomology Groups of G, H and [G : H]. The inflation (lifting) homo-
morphisms Ar: Cr([G : H], A)^Cr(G,A) are defined by

(A'/)(z0> .... xr) =f(x0H xrH), feC'([G : H], A).

Clearly S^' =Ar+1 Sr ; hence the homomorphisms Ar induce corresponding homomorphisms
Â  of the cohomology groups. The restriction homomorphisms, p r : CT(G, A) ->Cr(H, A) are
defined by

(P'g)(h0,...,hr)=g(h0,...,hr), geC'(G,A);

these also induce cohomology group homomorphisms p^.. We are thus led to consider the
sequence

0 ->Hn([G : H), A) ->Hn(G, A) -> H»(H, A) (7.1)
Our aim is to show that under certain conditions this sequence is exact. To this end we
prove first

Lemma 7.2. Every left G-module A can be embedded isomorphically in a regular G-module.

Proof. Let A be the additive abelian group formed by all arbitrary maps / : G -s- A. We
define an action of G on A by setting (xf)(y)=f(yx), (x, yeG). Then A is a regular
G-module; for the maps/such that/(a;) =0 for x^l form a subgroup B, and A -ZxlQxB. A
is then mapped isomorphically into A by the correspondence a ->-/„ where /„ (a;) -xa.

Theorem 7.3. Let H"(U,A)=0for all subgroups UofHandforv=l,2,...,n-l. Then
the sequence (7.1) is exact.

Proof. We proceed by induction on n.

First, let » = 1 . Let feZx([G : H],A) besuch that A/ = Sgr, wheregeC°(G, A). Wemust
show that f = $g', where g' e C° ([(? : H], A). We remark that the values of g depend only on
the coset of its argument modulo H ; for

g(x) - g(xh) = (A/) (xh, x) =f(xH, xH) =0,
F CM.A.
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since Bf(xH, xH, xH) =0. Hence we may define g' e C°{[G :H],A) by setting g'(xH) =g(x);
clearly f = &g', so we have proved exactness at the first stage.

Next let feZl(G, A) be such that Pf = Sg, wheTegeC°{H,A). We must show that/differs
by at most a coboundary from a cocycle of the form A/', where/' e CX([G: H], A). With this
aim, we extend g to a 0-cochain g' e C°(G, A) by setting g'(x) —xg(l). Then let e = / - 8gr'; we
claim that e is a cocycle whose values depend only on the cosets of its arguments modulo H.
This follows from the formulae

0 = Se(xohlt x0h2, xx) =e(x0h2, x1)-e(xjiv x

0 =Se(z0, xjil} xji2) =e(x1h1, xji2) -e{x0, xji2) +e(x0, xjij),

when we notice that e(xoh1, x0h2) =xoe(h1, h2) =0, and similarly e(xihv Xjh2) —0. Then it is
clear that e =A/', where we define / ' by setting f'(x0H, x-JI) =e(x0, Xj). This completes the
proof of the exactness at the second stage, and hence establishes a basis for the induction.

Let us now suppose that we have established the theorem for n=k~^\, and, further,
that the conditions of the theorem are satisfied for n = k +1 . We embed the module A in a

regular C-module A ; let A* be the factor module. Then the exact sequence

satisfies the condition of Theorem 5.4. Hence we have exact sequences

... ->H'(A) -+ H'(A*) -> H^iA) -> H'+l(A) -+ ...

for the cohomology groups of 6, H, [G, H], and all subgroups U of H. Since A is regular,
all the groups HV{A) are zero, and hence we obtain isomorphisms

H'+1{A) (7.4)

Thus the factor module A* satisfies the conditions of the Theorem with n =k. I t follows
that in the diagram

0->Hk([G:H], A*) ->Hk(G, A*) -+Hk(H,A*)

+Hk+1(G,A) -+Hk+1{H,A)

the upper sequence is exact. Since the inflation and restriction maps clearly commute with
the isomorphisms (7.4) it follows that the lower sequence is exact. This establishes the
induction and hence completes the proof of the theorem.

Corollary. Under the conditions of Theorem 7.3, Hn([G : H], A) is isomorphic to the sub-
group of Hn(G, A) consisting of cohomology classes which split on restriction to H.

8. Cohomology Groups for Arbitrary Field Extensions. Let E \ k be an arbitrary field
extension of finite degree. Let K be a normal extension of k containing E ; let G be the
Galois group of K \ k, H the subgroup of G which leaves E fixed. Let AK denote either the
multiplicative group, K*, of non-zero elements of K, or (in the case where K is a field to
which global class field theory applies) the group of ideles, JK, or the group of idele classes,
CK, of K. These groups are all G-modules (actually they are written multiplicatively, but
this causes us no alarm). Let AE and Ak denote the corresponding groups for E and k.
Then, as is well known, in each of the cases we are considering, AE and Ak may be identified
with the subgroups of A^ left fixed by H and G respectively.
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Using the auxiliary normal extension K, we define cohomology groups for the " layers "
AE | Ak by setting

H'K{AB\Ak)=H'([G:H],AK)-
Concerning these, we prove

Theorem 8.1. The cohomology groups HT
K(AE \ Ak) do not depend on the normal extension

K.
Proof. Let K and K' be normal extensions of k containing E. First we consider the

case in which K contains K'. Let U be the normal subgroup of G which leaves K' fixed.
Then, according to Theorem 3.2,

H'K{AE | Ak) =H*([Q : H], AK) a ^([G/U : H/V], A*) =H'K,(AE \ Ak).

Finally, if K and K' are any two normal extensions of k containing E, then so is K fl K', and
we have

H'K{AB | At)t*H'KnK.{AB | Ak)*H'K.(AB \ Ak).

This completes the proof.
Henceforth we may omit all reference to the auxiliary normal extension, and write the

groups simply as Hr(AE | Ak).

Corollary. If E is itself a normal extension, with Galois group G, then Hr(AE \ Ak) as
defined above is isomorphic to Hr(G, AE).

9. The Cohomology Groups of Class Field Theory. As in the preceding section, let E | k
be an arbitrary extension of finite degree ; let K be a normal extension of k containing E ;
let G and H be as before.

It is an immediate consequence of Theorem 7.3 that if FP-fJJ, AK) =0 for all subgroups
U of G, then IP-([G : H], AK) = H1(AE \ Ak) =0 also. This condition is satisfied in the cases
under consideration, AK =K*, JR, CK (2), (5). Thus we have

Theorem 9.1. For oilfield extensions E \ k, normal or not, Hl(E* \ k*) =0, -SM^JB I ^*) =0,

Next, from the Corollary to Theorem 7.3 it follows that if H1^, AK) =0 for all sub-
groups U of H, then H2([G : H], AK) =H2(AE \ Ak) is isomorphic to the subgroup of H2(G, AK)
consisting of cohomology classes which split on restriction to H. According to (3), this yields
the following description of the 2-dimensional cohomology group in the case A^ =K* :

Theorem 9.2. H2(E* \ k*) is isomorphic to the group of central simple algebra classes over
k tvhich have E as splitting field.

Let now A; be a field for which class field theory holds. For every finite extension E of
k, let AE denote either the multiplicative group of non-zero elements of E (local case) or the
group of idele classes of E (global case). Then it is well known, (2), (5), that for normal exten-
sions K\k, H2(AR\ Ak) is cyclic of degree equal to the degree of K \ k, and is generated by a
canonical cohomology class y(K \ k)=y which has [inter alia) the property that y* splits on a
subfield E of K if and only if i is divisible by the degree of K | E. Thus we have

Theorem 9.3. For all field extensions E \ k, normal or not, H2(AE \ Ak) is cyclic of order

equal to the degree of E\k; it has a canonical generator, yd, where d = deg (K \ E) and y is the

canonical generator for H2(AK \ Ak).
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We now give a non-arithmetic model for the cohomology groups H2(AE\ Ak) for an
arbitrary extension. As in (6), let A denote the splitting group over Ax for y(K | k). Then
we have Hr(U, A) =0 for all subgroups U of G, r>0. Hence from Theorem 7.3 it follows at
once that Hr([G : H], A) =0, r>0. We now use the exact sequence

where I denotes the submodule of the group ring G consisting of elements Za^jx such that
2ax=0. This sequence satisfies the condition of Theorem 5.4; hence we have an exact
sequence

...-+H'([G: H), A) ->Hr([G :H], I)->H'+i([G : H], AK)^H^{[G :H),A)^....

Since the extreme groups are zero (see the remark above), we obtain '

Theorem 9.4. For r > 0 , Hr^(AE \ Ak) is isomorphic to Hr([G : H], I).

This is certainly less satisfactory than Tate's result, but we cannot use (as he does) the
exact sequence

since it does not satisfy the condition of Theorem 5.4. To overcome this difficulty, Dr. Y.
Kawada has suggested to the author that we use certain modified cohomology groups,

H'([G : H], Z) =[ZT([G : H], Z) njZ'([G : H], G)]IJB'([G : H], G).

Clearly we can then obtain an exact sequence

... ^H'([G:H}, G)->H*([G : H], Z)^Hr+^([G : H], I)->Hr^([G : H], G)-*... .

Since the cohomology groups with coefficients in G are zero (Theorem 6.3), this exact sequence
yields isomorphisms,

Hr([G : H], Z)^Hr+l([G : H], I), -oo<r<oo.

Combining these isomorphisms with Theorem 9.4, we obtain

Theorem 9.5. For r>0 , Hr+1(AE\Ak) is isomorphic to the modified cohomology group
H'-i([G:H],Z).

Since, in particular, H}([G : H], Z) =0, we see that H3(AE \ Ak) =0. But in general the
modified cohomology groups appear to be very complicated.
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