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ABSTRACT

In most textbooks and papers that deal with the stochastic theory of life
contingencies, the stochastic approach is restricted to the computation of
expectations and higher order moments. For a wide class of insurances on a
single life, we derive the distribution and the probability density function of the
benefit and the loss functions. Both the continuous and the discrete case are
considered.
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1. INTRODUCTION

In the two recent actuarial textbooks of GERBER (1986) and BOweRrs et al.
(1987) the theory of life contingencies is built up in function of the stochastic
remaining life time of the insured.

This stochastic approach permits to define two important kinds of stochastic
functions for an insurance: the benefit function and the loss function at a
certain time. The benefit function of an insured of age x at policy issue is
defined as the discounted value of all the benefits to be paid by the insurer over
the random future lifetime T, of the insured. The loss function at time s, given
the insured is alive at that time, is the discounted value of all the benefits to be
paid by the insurer over the random future lifetime 7, ; of the insured less the
discounted value of all the premiums to be paid by the insured over the same
period.

Most results of the traditional deterministic theory are obtained by consider-
ing only the expected value of the above defined functions. The net single
premium is defined as the expectation of the benefit function. The equivalence
principle is the requirement that the expected loss at time 0 equals 0. From this
requirement the net premiums can be computed. The net premium reserve at
time s is defined as the expectation of the loss function at time s.

BOWERS et al. (1987) state that the probabilistic approach of life contingen-
cies “admits a rich field of random variable concepts such as distribution
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function, probability density function, expected value, variance and moment
generating function”. Nevertheless, the literature on this probabilistic
approach is mostly restricted to the computation of moments of the benefit and
the loss functions, see e.g. POLLARD and POLLARD (1969), WoLTHUIS and VAN
HoEex (1984), GERBER (1986) and BowEgRs et al. (1987).

DEe PriL (1989) gives a survey of the distribution functions (d.f.) and the
probability density functions (p.d.f.) of the benefit function of most common
life insurances and annuities.

In this paper we will consider the benefit and loss functions of a *‘ general
insurance”, by which we mean a combination of the commonly used life
insurances, endowment insurances and life annuities. It will be shown that
these functions are random variables of a special type. The d.f. and the p.d.f. of
a random variable of this type will then be derived. For completeness both the
continuous and discrete case will be treated.

2. CONTINUOUS DESCRIPTION OF SINGLE LIFE CONTINGENCIES

Let T, = T be a continuous nonnegative random variable representing the
future lifetime of a life-aged-x.
Using the common actuarial notation, the d.f. of T can be written as

0 1t <0
2.1 Fr(t) =Prob(T < t) =
thzl—tpx t>0
TABLE 1

CONSTANTS FOR THE CONTINUOUS ACTUARIAL FUNCTIONS
L.I. = Life Insurance, E.I. = Endowment Insurance, L.A. = Life Annuity

Name Notation a b ¢ m n
whole L.L A, 0 1 0 0 o0
n-year term L.I. AL - ] 1 0 0 n
m-year deferred L.I. i Ax ] 1 0 m oo
m-year deferred ml AL nmy 0 1 0 m n
n-year term L.1.

n-year pure E.L Al 0 0 v 0 n
n-year E.L A, 5 0 1 v 0 n
m-year deferred ot A 0 1 yrre m n
n-year E.I

whole L.A. a, 1/6 —1/6 0 0 53]
n-year temporary L.A. ay pm 1/6 -1/ ap 0 n
m-year deferred whole L.A. m| @ v -1/ 0 m e
m-year deferred ) Bx 11 v -1/ v a, m n

n-year temporary L.A.
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with .4, = 0 and lim ,q, = 1.

t— o0

The p.d.f. of T is given by

0
2.2) Sr(t) = Fr(1) = {
tpx lux+t t _>_ 0

where u, denotes the force of mortality of a life aged x.

From Table 1 it can be seen that the benefit function of the common life
insurances, endowment insurances and life annuities on a single life aged x at
policy issue can be written as a stochastic variable of the form

0 0<T<m
2.3) S=< at+b” m<T<m+n
c T>m+n

where a, b and ¢ are real numbers and m and » are nonnegative integers.
Further, v = 1/(1 +1) is the present value factor related to the annual valuation
rate of interest /.

In Table 1 the following notation is used: J = In(1+i) is the force of
interest associated with the valuation rate of interest i and g, = (1—v")/disa
continuous r-year temporary annuity certain.

A general continuous insurance on a single life aged x at policy issue is
defined as a combination of the life insurances, endowment insurances and life
annuities considered in Table 1 and where the premiums are paid by a
combination of the life annuities and pure endowment insurances of
Table .

The stochastic variable describing the benefit function of a general contin-
uous insurance is a linear combination of random variables of the form (2.3).
So it follows immediately that this stochastic variable can be written as

(2.4) S=a+bv" m@i—-1)<T<m@@); i=1..,n

with T=T,, a; and b; (i = 1,...,n) real numbers and m(i) (( =0,...,n)
nonnegative integers satisfying

(2.5) 0<m@) <m(l)y<..<mm < ©

It is easy to see that the loss function at times s (s > 0), given survival of the
insured at that time, can also be described by a stochastic variable of the
form (2.4) with T= T, .

The p.d.f. of a random variable of the form (2.4) will be derived in the
following theorem. The delta-function will be denoted by A4(x) to avoid
confusion with the symbol & for the force of interest. For a study of the
delta-function see e.g. PapouLIs (1962).
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Theorem 1. Let S be the stochastic variable defined in (2.4) with T = T,.
Define fori=1,...,n

(2.6) m(i)" = a,~+min (bi vm(,'fl)’ b,— vm(i))

2.7) m(@i)* = a,+max (b, v, p, y")

The p.d.f. of S is given by

n

28)  f(s)= Y. Gi(s)

i=1
with fori=1,...,n
A(s—ay) (m(i—1)1’z“m(i)l7z) 2 b;=0
2.9 Gi(s) =< 1Pz Herrp/|O(s—a)] 1 by #0and m(i)) <s<m()
0 . elsewhere
where r (i) is given by
@10)  r@) =~ In (H) R
7} b;
Proof. Using the Law of Total Probability the p.d.f. of S can be written in the
form (2.8) with
G)=f(im@i—-1) < T<m@)Prob(m(i—1) < T < m(i))
For b, = 0 it follows that
fim@i-H) < T<m@) =A4(6—a).
Consider now the case b, +# 0. We obtain
fr(r@)/(6(s—a;)) C b >0, a+ b v < s < a0 Y
Gi(s) = < fr(r())/(0(a;—s)) :b; <0, a;+b "™V < s < g +b,v"?
0 : elsewhere.

with r (i) defined in (2.10).
So it follows that G,(s) is given by (2.9).

The d.f. of S is derived in the next theorem. The following notation will be

used :
(x); = max (0, x)
and
0:x<0
H(X)={
l1: x>0
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Theorem 2. The d.f. of the random variable S defined in (2.4) with T = T, is
given by

(2.12) F(s) = Y. (ad:—pad:)+ Ki(s)
i=1

where a (i) and f(i) (i = 1,..., n) are given by

1 . 1 S_"ai
max{O, mm{m(z’), —Sln( )}} b <0, s <g

@.13) a(i) = ﬁ

L m(i) . elsewhere
[ m@i—1) : b, <0
. . 1 s—a
2.14) B@) = max{m(z—l), —6ln( 3 )} b, >0, s> g
m(i) 0 b6,>0, 5 <aq;
Finally, K;(s) (i = 1, ..., n) is defined as
H - 4a; : b =3
(2.15)  Ki(s) = { (s—a) i
b #0

Proof. Using the Law of Total Probability we find that

n

(2.16)  F(s) = ). Prob(a+b,v" < sand m(i—1) < T < m(i))

=
It follows that

Prob (a;,+ b, v <sand m(i—1) < T < m(i))
(H(s—a)Prob(m(i—1) < T < m(i)) :bh,=0

1
Prob (max{m(i—l), - 3 In

S—a,-

}sT<m(i)) b, >0, s> g

=<0 >0, s < a
Prob(m(i—1) < T < m()) 1 b;<0, s> aq;

" } 1 bh; <0, s<aq
b;

Prob (a,+b;v" <sand m(i—1) < T < m(i)) = (4.~ pi92)+ Ki(s)

1
Prob (m(i—l) <T< min{m(i), - gln

\

Or
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with a (i) and B(i) defined in (2.13) and (2.14).
Now (2.12) is obtained with the help of (2.16).

The p.d.f. and the d.f. of the benefit function of the insurances and annuities
considered in Table 1 can be written in a simpler form as is proven in the
following corollary.

Corollary 1. Let S be the stochastic variable defined in (2.3) with T = T,.

Define
.17 m~ = a+min (bv", bv"""
(2.18) m* = ag+max (bv", bv""")
The p.d.f. of S is given by
(2.19) S(8) = g A() TG ()t pinpr Ad(s—c)

where G (s) is defined as

A(S_a) (mpx_m+xpx) : b = 0

(220) G(5) =< Py Urs /IO (s—a)] cb#0andm™ <s<m”®
0 : elsewhere
with
1 _ —
@21) r=-_-In| """ %50
o b b
The d.f. of S is given by
(222) F(S) = mqx H(S)+(aqx_ﬂqx)+ K(s)+m+npx H(S_C)
with
1 _
rmax{O, min{m+n, - gln (:v_a)}} 1 b<0,s<a
b
2.23) a=<
m+n : elsewhere
(m :b<0
1 —
(2.24) ﬁ=<max{m,—ln i } - b>0,5>a
o b
\m+n :b>0,5<a
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225 K(s) = { His=a) $6=0
b #£0

Proof. The random variable S defined in formula (2.3) is a special case of the
random variable defined by (2.4) with the constants n = 3, a; = 0, b, = 0,
a=a, b,=b, ay=c¢, by;y=0, m(0)=0, m(l)=m, m@2)=m+n,
m(B3)=wand T=T,.

Using Theorems 1 and 2, after some straightforward calculation one obtains
formulae (2.19) and (2.22).

The d.f. and the p.d.f. of all the continuous insurances and annuities
considered in DE PrIL (1989) can be obtained by using Table 1 and Corollary 1.

TABLE 2
CONSTANTS FOR THE DISCRETE ACTUARIAL FUNCTIONS
L.I. = Life Insurance, E.I. = Endowment Insurance, L.A. = Life Annuity

Name Notation a b c m n
whole L.I. A, 0 1 0 0 ©
n-year term L.I. AL 0 1 0 0 n
m-year deferred L.I. mi Ay 0 1 0 m oe)
m-year deferred AL am 0 1 0 m n
n-year term L.I.

n-year pure E.IL Ay g 0 0 v 0 n
n-year E.I. Ay nm 0 1 v' 0

m-year deferred w1 Ax 0 0 1 ymre m n
n-year E.I.

whole L.A. due d, 1/d —1/d 0 0 0
whole L.A. immediate a, /i - 1/d 0 0 ©
n-year temporary L.A. due Ay pnn 1/d —1/d dpyn 0 n
n-year temporary L.A. Qy /i —1/d ayq 0 n
immediate

m-year deferred whole LA, d, v id —-1/d 0 m o’
due

m-year deferred m) x vi —1/d 0 m o0
whole L.A. immediate

m-year deferred miGx nm v7™/d —-1/d | - m n
n-year temporary L.A. due

m-year deferred

n-year temporary L.A. mGx n v7li —-1/d V™ m n

immediate
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3. DISCRETE DESCRIPTION OF SINGLE LIFE CONTINGENCIES

Let K = K, be a nonnegative random variable, representing the number of full
years to death of a life-aged-x.
The distribution of K can then be written as

B.1)  Fg(k) = Prob(K < k) = y1gx = T—ps1px k=0,1,2,...

with lim ,q,=1

k— o
The p.d.f. of K is given by
(32) fK(k):kpx_k+lpx:qux k=09 132""

The benefit functions of the common discrete life insurances, endowment
insurances and life annuities on a single life aged x at policy issue can be
defined as stochastic variables of the form

0 K=0,1,...,m—1
(3.3) S =< at+bvF! cK=mm+1,...,m+n—1
c cK=mtnm+n+1, ...

The suiting values for a, b, ¢, m and »n are given in Table 2.

The following notation is used: d = 1—v, d,, = (1—v")/d is a discrete
n-year temporary annuity due and a,-, = (1—v")/i is a discrete n-year tempo-
rary annuity immediate.

A general discrete insurance on a single life-aged-x is defined as a combina-
tion of the insurances defined in Table 2. The premiums are paid by a
combination of the life annuities and pure endowment insurances of
Table 2.

The benefit function and the loss function of a general discrete insurance can
be described by a stochastic variable S of the form

(3.4 S=a+bv""  m@i-1)<K<m@G); i=1,...,n

with K = K, for the benefit function and K = K, ., for the loss function at
time s. Further, q;, and b; (i=1,...,n) are real numbers and m(i)
(i =0,1,...,n) are nonnegative integers satisfying

(3.5) 0<m@)<m(l)<..<mmn)<
In the following theorems the p.d.f. and the d.f. of .S are derived.

Theorem 3. The p.d.f. of the variable S defined in (3.4) where K = K, is given
by

(3.6) f6) = Gis)
i=1
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where for i = 1, ..., n the functions G,(s) are given by
(m- )Pz~ m@P2) 4(s—ay) ;=0
(3.7) Gi(s) = mi)—1

k‘qu(s—a,-—b,-ka) b #0
k=m(i—1)

Proof. For m(i—1) < K < m(i) and b; = 0 we get that S = q, or
fsim@i—1) < K <m(i)) = 4(s—a)
If m(i—1) < K< m(i) and b; # 0 the possible values for S are
a;+b; V! k=m@i—-1),...,m@—1

with respective probabilities
£/ /Prob (m(i—1) < K < m(i))

So we find for b; # 0

f(sim@i—1) < K < m(i)) Prob(m(i—1) < K < m(i))
m()—1
= ) w4 ds—a—b Y

k=m(i—1)

By using the Law of Total Probability we obtain formula (3.6).

Theorem 4. The d.f. of the random variable S defined in (3.4) where K = K, is
given by

(3.8) F(s) =Y. God-—pwd)+ Ki(s)
i=1

where for i = 1, ..., n the functioins a (i), (i) and K;(s) are given by

. . 1 S-ai
max{O, mm{m(z),[—~ln( H}} b, <0, s<agq
] b;

m(i) . elsewhere

(39) (i) =

m(i—1) b, <0

. . 1 §S—a;
(3.10) B@) = max{m(z~l), :l— 6ln( ) - l[} 1 bh; <0, s> g

m(i) b, >0, s < g
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H(s—a) :b;=0
3.11) K(s) = {

b, 40

For a real number x, ]x[ denotes the smallest integer greater than or equal to x
and [x] denotes the greatest integer less than or equal to x.

Proof. For m(i—1) < K < m(i) we find
Prob (a;+ b, v**! < s and m(i—1) < K < m(i))
(H(s—a;) Prob (m(i—1) < K <m(i)) ;=0

Prob(max{m(i~1),}— —; ln(s—ai) —1[:}SK< m(i)) :b;>0,5>aq;

=<0 :b;>0,s<aq;

Prob(m(i—1) < K < m(i)) 15, <0,5>aq;
. ) . 1 s—a;

m(i—1) < K<min<{m(i), —gln ) 1b;<0,5<q

i

Prob

.

Or
Prob (a;+ b, v**' < sand m(i—1) < K < m(i)) = (4y9-— p9:) + Ki(5)

with a(i), (i) and K;(s) defined in (3.9), (3.10) and (3.11).
By using the Law of Total Probalility we obtain the desired result.

The p.d.f. and the d.f. of the benefit function of the discrete insurances and
annuities considered in Table 2 can be written in a simpler form which is
derived in the next corollary.

Corollary 2. Let S be the stochastic variable defined in (3.3) with K = K, .
The p.d.f. of S is given by

(3.12) J() = mg 4()+ G (s)+ pypp A(s—c)
with
(mpx—m+npx)A(s_a) :bh=0
(3.13) G(s) = mn—1
Y kg As—a—bytY) cbh+0
k=m
The d.f. of S is given by
(314) F(S) = quH(s)+(aqx_ﬂqx)+ K(S)+m+npx H(S_C)
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with
. 1 s—a
max{O, m1n{m+n,[—gln( P ):'}} 1 b<0,s<a
(3.15 a=
m+n . elsewhere
m :h<0
1 s—a
3.16) = max{m, - 1——In|— } :bhb>0, 5s>a
) b
m+n :b>0,5<a

(3.17) K@)={H“_“) 10=0
I b 40

Proof. The proof follows immediately from Theorems 3 and 4.

The p.d.f. and the d.f. of the discrete insurances and annuities considered in
DE PriL (1989) can be derived with the help of Table 2 and Corollary 2.

4. EXAMPLE

A person aged x purchases a combination benefit consisting of a n-year term
life insurance of I payable immediately on his death and a n-year deferred
whole life annuity of J per annum payable continuously while he survives
beyond age x+n.

Let the benefit functions of the insurances and annuities defined in Table 1
be denoted by adding a tilde to the usual deterministic symbols. The benefit
function of the continuous general insurance defined above is then given by

S = I"j)lcnﬁ-"']n\g_x

By using (2.3) and Table 1 this benefit function can be written as a variable of
the form (24) with T = T,
Iy :0<T<n
S =
vn _ VT

0

J :T>n

From Theorem 1 it follows that the p.d.f. of S is given by
S(s) = G(s)+G,(s)
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with
c+r)/(Os M <s <]
G, (s) = {r(l)px Hx+ (1)/( ) s
: elsewhere
< Hxira/(JV'—0s 0 < s < VYO
G,(s) = { r)Px Ux+ (2)/( ) s v
. elsewhere
and

r(1) = —(1/0) In (s/I)
r(2) = =(1/9) In ("= (3s)/J)
The d.f. of S follows from Theorem 2:
F(s) = (49x— 590 + T (aqx— ndx) +

with
max {0, r(2)} s < JV'Ye
‘- {oo s> JV'o
n 850
- {max {0, r(1)} ts>0
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