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Abstract

The optimistic limit is a mathematical formulation of the classical limit, which is a physical method to
estimate the actual limit by using the saddle-point method of a certain potential function. The original
optimistic limit of the Kashaev invariant was formulated by Yokota, and a modified formulation was
suggested by the author and others. This modified version is easier to handle and more combinatorial
than the original one. On the other hand, it is known that the Kashaev invariant coincides with the
evaluation of the colored Jones polynomial at a certain root of unity. This optimistic limit of the colored
Jones polynomial was also formulated by the author and others, but it is very complicated and needs
many unnatural assumptions. In this article, we suggest a modified optimistic limit of the colored Jones
polynomial, following the idea of the modified optimistic limit of the Kashaev invariant, and show that it
determines the complex volume of a hyperbolic link. Furthermore, we show that this optimistic limit
coincides with the optimistic limit of the Kashaev invariant modulo 4π2. This new version is easier
to handle and more combinatorial than the old version, and has many advantages over the modified
optimistic limit of the Kashaev invariant. Because of these advantages, several applications have already
appeared and more are in preparation.

2010 Mathematics subject classification: primary 57M27; secondary 51M25, 58J28.
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1. Introduction

For a hyperbolic link L, the volume conjecture, proposed by Kashaev in [11], claims
the following nontrivial relation:

2π lim
N→∞

log |〈L〉N |
N

= vol(L),

The author is supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2014047764 and NRF-
2015R1C1A1A02037540).
c© 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 $16.00

303

https://doi.org/10.1017/S144678871600001X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871600001X


304 J. Cho [2]

where vol(L) is the hyperbolic volume of the link complement S3\L and 〈L〉N is the Nth
Kashaev invariant. This conjecture is interesting because it relates geometric aspects
of L with the quantum invariants. Some believe that it is a hint to a deeper connection
between geometric and quantum topologies. (See [13], for example.) After that, the
generalized conjecture was proposed in [16] that

2πi lim
N→∞

log〈L〉N
N

≡ i(vol(L) + i cs(L)) mod π2,

where cs(L) is the Chern–Simons invariant of S3\L defined modulo π2 in [21]. This
conjecture is now called the (generalized) volume conjecture and vol(L) + i cs(L) is
called the complex volume of L.

When the volume conjecture was firstly proposed in [11], Kashaev considered the
classical limit of the Kashaev invariant and verified his conjecture for three examples.
The classical limit is a method of mathematical physics to estimate the actual limit by
using the saddle-point method of a certain potential function. Although the behavior
of the classical limit looks amazing, it cannot be well defined due to the ambiguity
of the choice of the potential function. Therefore, Yokota suggested a combinatorial
method to define the potential function in [20] and showed that some saddle point of
his potential function determines the hyperbolic volume. This method was named the
optimistic limit in [14] and developed by several authors in [8, 19].

Recently, the author together with H. Kim and S. Kim suggested a modified
optimistic limit of any link diagram in [4] by using a slightly different potential
function. Compared with the previous definition in [19], this new definition is easy
to handle and has a natural geometric meaning. (We will summarize the results of [4]
in Section 5.) Furthermore, the new definition has several applications to the quantum
dilogarithm function in [9], the quandle theory in [2] and the cluster algebra in [10].
(The application to the cluster algebra of [10] will be discussed in the author’s later
article.)

On the other hand, the Kashaev invariant was proved to be the special value of the
colored Jones polynomial in [15] as follows:

JL

(
N; exp

2πi
N

)
= 〈L〉N ,

where 〈L〉N is the Nth Kashaev invariant of a link L and JL(N; x) is the Nth colored
Jones polynomial of L with the complex variable x. The optimistic limit of the
colored Jones polynomial, which uses a different potential function from the Kashaev
invariant version, was firstly proposed in [17] and developed in [5, 6]. However, the
general method developed in [6] is very complicated and needs several unnatural
assumptions. In this article, we will suggest a modified optimistic limit of the colored
Jones polynomial using the idea of [4]. This modified definition, which uses a slightly
different potential function from [6], shares the same advantages of the definition in
[4], namely it is easy to handle and has a natural geometric meaning.

The two optimistic limits of the Kashaev invariant and the colored Jones polynomial
are almost the same in many ways. Although they use different potential functions,
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which are denoted by V(z1, . . . , zg) and W(w1, . . . , wn), respectively, and slightly
different subdivisions of the same octahedral decomposition, the resulting values are
the same complex volume. (The potential function W(w1, . . . ,wn) will be defined
in Section 2.) However, due to the difference of the subdivision, the colored Jones
polynomial version has a wonderful advantage that the set of equations

I :=
{
exp

(
wk
∂W
∂wk

)
= 1

∣∣∣∣∣ k = 1, . . . , n
}

(1.1)

always has solutions for any diagram of the hyperbolic link L. As a matter of fact, for
any given boundary-parabolic representation ρ : π1(L)→ PSL(2,C) of the link group
π1(L) := π1(S3\L) and for any link diagram D, we can construct a solution of I that
induces the representation ρ. (This is proved in one of the author’s later articles [1].)
The optimistic limit of the Kashaev invariant has a similar property, which is proved
in [2], but some diagrams cannot have any solution. See Figure 13 in Section 5, for an
example.

The existence of solutions for any link diagram is a very useful property because,
by using it, we can study the hyperbolic structure of the link combinatorially. This
approach already has several interesting applications, for example [1, 3, 7], and more
applications are in preparation.

The set of hyperbolicity equations consists of the gluing equations and the
completeness condition of a certain triangulation. In the case of I, it is related to
an ideal triangulation of S3\(L ∪ {two points}), which will be defined in Section 3. We
name it the five-term triangulation and the two removed points in S3 are denoted by
±∞. The exact relationship between the five-term triangulation and the set I is the
following proposition.

Proposition 1.1. For a hyperbolic link L with a fixed diagram, consider the potential
function W(w1, . . . , wn) of the diagram. Then the set I defined in (1.1) becomes
the set of the hyperbolicity equations associated with the five-term triangulation of
S3\(L ∪ {±∞}).

We remark that Proposition 1.1 was essentially proved in [6, Section 4]. However,
the proof in [6] is very long and complicated, and what we need is only part of it, so
we will sketch the proof of Proposition 1.1 in Section 3 for the reader’s convenience.

Note that many parts of this article overlap with the author’s previous article [6].
However, the major difference is that we are using triangulation of S3\(L ∪ {±∞}),
whereas the previous work used triangulation of S3\L. Therefore, when we proved
some properties in [6], we first considered the general case and then proceeded to the
special cases when certain edges or faces of the triangulation are collapsed to vertices.
(There are many special cases and it requires many unnatural assumptions on link
diagrams.) However, in this article, the proofs of the general case in [6] are good
enough and these remove almost all technical difficulties of the previous work. This is
the major reason to develop this new version.
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Let T = {(w1, . . . ,wn)} be the set of solutions1 of I in Cn. Then, according to
the results in [1], we know that T , ∅2. By [18, Theorem 1], all edges in the five-
term triangulation are essential. (An essential edge roughly means that it is not null-
homotopic. See [18] for the exact definition.) Therefore, for a solution w ∈ T , we can
construct the boundary-parabolic representation

ρw : π1(S3\(L ∪ {±∞})) = π1(S3\L) −→ PSL(2,C), (1.2)

using Yoshida’s construction in [12, Section 4.5]. (The solution w ∈ T satisfies
the completeness condition, so ρw is boundary-parabolic.) Note that the volume
vol(ρw) and the Chern–Simons invariant cs(ρw) of ρw were defined in [21]. We call
vol(ρw) + i cs(ρw) the complex volume of ρw.

For the solution set T ⊂ Cn, let T j be a path component of T satisfying T = ∪ j∈JT j

for the index set J. We assume that 0 ∈ J for notational convenience. To obtain well-
defined values from the potential function W(w1, . . . ,wn), we slightly modify it to

W0(w1, . . . ,wn) := W(w1, . . . ,wn) −
n∑

k=1

(
wk
∂W
∂wk

)
log wk. (1.3)

Then the main result of this article follows.

Theorem 1.2. Let L be a hyperbolic link with a fixed diagram, W(w1, . . . ,wn) be the
potential function of the diagram and T = ∪ j∈JT j be the solution set of I. Then, for
any w ∈ T j, W0(w) is constant (it depends only on j) and

W0(w) ≡ i(vol(ρw) + i cs(ρw)) mod π2, (1.4)

where ρw is the boundary-parabolic representation obtained in (1.2). Furthermore,
there exists a path component T0 of T satisfying

W0(w∞) ≡ i(vol(L) + i cs(L)) mod π2

for any w∞ ∈ T0.

The proof will be given in Section 4. The main idea is to use Zickert’s formula
of the extended Bloch group in [21]. Although this idea was already used in [4] and
several other places, this proof has not appeared anywhere before.

We call the value W0(w) the optimistic limit of the colored Jones polynomial. Note
that it depends on the choice of the diagram and the path component T j.

1We only consider solutions satisfying the condition that, when the potential function is expressed by
W(w1, . . . ,wn) =

∑
± Li2(w) + (extra terms), the variables inside the dilogarithms satisfy w < {0, 1,∞}.

Previously, in [6, 19], these solutions were called essential solutions.
2The article [1] depends on this article, so using T , ∅ may look illogical. However, the proof of it in

[1] relies only on Proposition 1.1 of this article and it does not require the fact that T , ∅. Furthermore,
all results in this article still work well if we just assume T , ∅.

https://doi.org/10.1017/S144678871600001X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871600001X


[5] Optimistic limits and complex volumes 307

Figure 1. Assignment of variables.

The optimistic limit of the Kashaev invariant, defined in [4], will be surveyed in
Section 5. The potential function V(z1, . . . , zg) is defined from the diagram D of the
hyperbolic link L, and the set of equations

H :=
{
exp

(
zk
∂V
∂zk

)
= 1

∣∣∣∣∣ k = 1, . . . , g
}

becomes the set of the hyperbolicity equations associated with the four-term
triangulation. Four-term triangulation is obtained from the same octahedron of the
five-term triangulation by subdividing it into four tetrahedra. Therefore, four-term
triangulation is also a triangulation of S3\(L ∪ {±∞}).

Although both sets of the hyperbolicity equations I and H are based on the same
octahedron decomposition of S3\(L ∪ {±∞}), these two sets look quite different. The
variables w1, . . . ,wn of I are assigned to regions of the link diagram D, but z1, . . . , zg
ofH are assigned to sides of D. (See Figure 1.) Furthermore, the equations in I are all
gluing equations and they induce the completeness condition, whereas the equations
in H are all completeness conditions along the meridian and they induce the gluing
equations. The author feels that these two definitions of the optimistic limits seem to
be dual to each other.

Let S = {(z1, . . . , zg)} be the set of solutions ofH in Cg. Then, for a solution z ∈ S,
we can obtain the boundary-parabolic representation

ρz : π1(S3\(L ∪ {±∞})) = π1(S3\L) −→ PSL(2,C).

Now we modify the potential function V to

V0(z1, . . . , zg) := V(z1, . . . , zg) −
g∑

k=1

(
zk
∂V
∂zk

)
log zk.

Then the main result of [4] can be summarized to the following identity:

V0(z) ≡ i(vol(ρz) + i cs(ρz)) mod π2. (1.5)

From (1.4) and (1.5), we can easily see that, if ρw = ρz, then

W0(w) ≡ V0(z) mod π2.

This result is formulated in a stronger form as follows.
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Figure 2. The figure-eight knot 41.

Theorem 1.3. Assume that the diagram D of the hyperbolic link L does not have a
kink. For a solution w ∈ T , if the variables w j, . . . ,wm in Figure 1 satisfy

w j + wl , wk + wm

at all crossings, then there exists a solution z ∈ S satisfying

ρw = ρz and W0(w) ≡ V0(z) mod 4π2. (1.6)

Inversely, for a solution z ∈ S, there always exists a solution w ∈ T satisfying (1.6).

The proof of Theorem 1.3 essentially appeared in [6]. However, it is based on very
long and complicated calculations, and what we need here is only some parts of them.
So, we will sketch the proof of Theorem 1.3 in Section 6 for the reader’s convenience.

In Section 7, we will apply Theorem 1.3 to the example of twist knots and show
several numerical calculations. Finally, in Appendix A, we will discuss the invariance
of the optimistic limit under the change of signs of the variables of the potential
function. This property will be used in the author’s later article.

2. Potential function W(w1, . . . ,wn)

Consider a hyperbolic link L and its oriented diagram D. We define sides of D by
the arcs connecting two adjacent crossing points1. For example, the diagram of the
figure-eight knot 41 in Figure 2 has eight sides. Also, we define regions of D by the
regions surrounded by sides. For example, the diagram in Figure 2 has six regions.

1Most people use the word edge instead of side here. However, in this paper, we want to keep the word
edge for the edge of a tetrahedron.
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Figure 3. Potential functions of the crossings.

We assign complex variables w1, . . . ,wn to each region of the diagram D. Using the
dilogarithm function Li2(w) = −

∫ w
0 (log(1 − t)/t) dt, we define the potential function1

of a crossing as in Figure 3.
Note that this potential function comes from the formal substitution of the R-matrix

of the colored Jones polynomial. Refer to [6] for details.
The potential function W(w1, . . . ,wn) of the diagram D is defined by the summation

of all potential functions of the crossings. For example, the potential function of the
figure-eight knot 41 in Figure 2 is

W(w1, . . . ,w6)

=

{
−Li2

(w1

w3

)
− Li2

(w1

w2

)
+ Li2

(w1w4

w2w3

)
+ Li2

(w3

w4

)
+ Li2

(w2

w4

)
−
π2

6
+ log

w3

w4
log

w2

w4

}
+

{
−Li2

(w4

w3

)
− Li2

(w4

w5

)
+ Li2

(w1w4

w3w5

)
+ Li2

(w3

w1

)
+ Li2

(w5

w1

)
−
π2

6
+ log

w3

w1
log

w5

w1

}
+

{
Li2

(w2

w4

)
+ Li2

(w2

w6

)
− Li2

(w2w5

w4w6

)
− Li2

(w4

w5

)
1Note that, by using ≈ to denote the equivalence relation in [6, Lemma 3.1], we know that

log
w j

wm
log

w j

wk
≈ (log w j − log wm)(log w j − log wk) ≈ log

wm

w j
log

wk

w j
.

Therefore, changing log (w j/wm) log (w j/wk) of WN to log (wm/w j) log (wk/w j) does not have any effect
on I and the optimistic limit. To avoid redundant calculation, we will use log (w j/wm) log (w j/wk) up to
Section 4 and change it to log (wm/w j) log (wk/w j) in Section 6.
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− Li2
(w6

w5

)
+
π2

6
− log

w4

w5
log

w6

w5

}
+

{
Li2

(w5

w1

)
+ Li2

(w5

w6

)
− Li2

(w2w5

w1w6

)
− Li2

(w1

w2

)
− Li2

(w6

w2

)
+
π2

6
− log

w1

w2
log

w6

w2

}
.

We define a modified potential function W0(w1, . . . ,wn) as in (1.3). Recall that I
was defined in (1.1) and T is the set of solutions of I in Cn. Also, recall that we
are considering the solutions w = (w1, . . . ,wn) ∈ Cn of I with the property that if the
potential function is expressed by W(w1, . . . ,wn) =

∑
± Li2(w) + (extra terms), then

variables inside the dilogarithms satisfy w < {0, 1,∞}.
Note that the functions Li2(w) and log w are multi-valued functions. Therefore,

to obtain well-defined values, we have to select the proper branch of the logarithm
by choosing arg w and arg(1 − w). The following lemma, which corresponds to [4,
Lemma 2.1], shows why we consider the potential function W0 instead of W.

Lemma 2.1. Let w = (w1, . . . ,wn) ∈ T . For the potential function W(w1, . . . ,wn), the
value of W0(w) is invariant under any choice of branch of the logarithm modulo 4π2.

Proof. Note that it was almost proved in [4, Lemma 2.1]. Using the idea in [4], we can
write down

W∗0 (w) −W0(w) ≡
n∑

k=1

{
−

(
wk
∂W
∂wk

)
log∗ wk +

(
wk
∂W
∂wk

)
log wk

}
mod 4π2, (2.1)

where W∗(w) and log∗ w are the functions with different log-branches corresponding
to an analytic continuation of W(w) and log w, respectively. We already assumed that
that w = (w1, . . . ,wn) ∈ T , so(

wk
∂W
∂wk

)
log∗ wk ≡

(
wk
∂W
∂wk

)
log wk mod 4π2,

and (2.1) is zero modulo 4π2. �

The following lemma and corollary already appeared in [4] and were proved as
Lemma 2.2 and Corollary 2.3, respectively. (Substituting V , V0, H , S j and zk in the
proof of [4] by W, W0, I, T j and wk, respectively, gives the proof.)

Lemma 2.2. Let T = ∪ j∈JT j ⊂ C
n be the solution set of I with T j being a path

component. Assume that T , ∅. Then, for any w = (w1, . . . ,wn) ∈ T j,

W0(w) ≡ C j mod 4π2,

where C j is a complex constant depending only on j ∈ J.
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Figure 4. Octahedron on the crossing r.

Corollary 2.3. If w = (w1, . . . ,wn) ∈ T j, then

λw := (λw1, . . . , λwn) ∈ T j

for any nonzero complex number λ. Furthermore,

W0(w) ≡ W0(λw) mod 4π2.

Due to Corollary 2.3, we can consider the solution setT as a subset ofCPn−1 instead
of Cn.

3. Five-term triangulation of S3\(L ∪ {±∞})

In this section, we describe the five-term triangulation of S3\(L ∪ {two points}). We
remark that this triangulation was previously named Thurston triangulation in [6].

We place an octahedron ArBrCrDrErFr on each crossing r of the link diagram as
in Figure 4 so that the vertices Ar and Cr lie on the over-bridge and the vertices Br

and Dr on the under-bridge of the diagram, respectively. Then we twist the octahedron
by gluing edges BrFr to DrFr and ArEr to CrEr, respectively. The edges ArBr, BrCr,
CrDr and DrAr are called horizontal edges and we sometimes express these edges in
the diagram as arcs around the crossing on the left-hand side of Figure 4.

Then we glue faces of the octahedra following the sides of the diagram.
Specifically, there are three gluing patterns as in Figure 5. In each case (a), (b) and
(c), we identify the faces 4ArBrEr ∪ 4CrBrEr to 4Cr+1Dr+1Fr+1 ∪ 4Cr+1Br+1Fr+1,
4BrCrFr ∪ 4DrCrFr to 4Dr+1Cr+1Fr+1 ∪ 4Br+1Cr+1Fr+1 and 4ArBrEr ∪ 4CrBrEr to
4Cr+1Br+1Er+1 ∪ 4Ar+1Br+1Er+1, respectively. We call (a) alternating gluing and (b)
and (c) nonalternating gluings.
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Figure 5. Three gluing patterns.

Note that this gluing process identifies vertices {Ar,Cr} to one point, denoted by
−∞, and {Br,Dr} to another point, denoted by ∞, and finally {Er, Fr} to the other
points, denoted by P j, where j = 1, . . . , s and s is the number of the components of
the link L. The regular neighborhoods of −∞ and ∞ are 3-balls and that of ∪s

j=1P j is
a tubular neighborhood of the link L. Therefore, if we remove the vertices P1, . . . , Ps

from the octahedra, then we obtain a decomposition of S3\L, denoted by T . On the
other hand, if we remove all the vertices of the octahedra, the result becomes an ideal
decomposition of S3\(L ∪ {±∞}). We call the latter the octahedral decomposition and
denote it by T ′.

To obtain an ideal triangulation from T ′, we divide each octahedron ArBrCrDrErFr

in Figure 4 into five ideal tetrahedra ArBrDrFr, BrCrDrFr, ArBrCrDr, ArBrCrEr and
ArCrDrEr. We call the result the five-term triangulation of S3\(L ∪ {±∞}). On the other
hand, if we divide the same octahedron into four ideal tetrahedra ArBrErFr, BrCrErFr,
CrDrErFr and DrArErFr, then the result is called the four-term triangulation. The
four-term triangulation was used in [4] and will appear again in Sections 5 and 6 of
this article.

Note that if we assign the shape parameter u ∈ C\{0, 1} to an edge of an ideal
hyperbolic tetrahedron, then the other edges are also parameterized by u, u′ :=
1/(1 − u) and u′′ := 1 − (1/u) as in Figure 6.

To determine the shape of the octahedron in Figure 4, we assign shape parameters to
edges of tetrahedra as in Figure 7. Note that both of (w jwl)/(wkwm) in Figure 7(a) and
(wkwm)/(w jwl) in Figure 7(b) are the shape parameters of the tetrahedron ArBrCrDr

assigned to the edges BrDr and ArCr. Also, note that the assignment of shape
parameters here does not depend on the orientations of the link diagram.

To obtain the boundary parabolic representation π1(S3\(L ∪ {±∞})) −→ PSL(2,C),
we require two conditions on the ideal triangulation of S3\(L ∪ {±∞}); the product of
shape parameters on any edge in the triangulation becomes one, and the holonomies
induced by meridian and longitude of the torus cusps act as translations on the torus
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Figure 6. Parameterization of an ideal tetrahedron with a shape parameter u.

cusp. Note that these conditions are expressed as equations of shape parameters.
The former equations are called (Thurston’s) gluing equations, the latter is called
the completeness condition and the whole set of these equations are called the
hyperbolicity equations. As already discussed in [4] and Section 1, a solution w of
the hyperbolicity equation determines a boundary-parabolic representation

ρw : π1(S3\(L ∪ {±∞})) = π1(S3\L) −→ PSL(2,C).

The rest of this section is devoted to the proof of Proposition 1.1. It was already
proved1 in [6], so we sketch the proof here.

Proof (Sketch of the proof of Proposition 1.1). For all the crossings of the link
diagram and the corresponding octahedra in Figure 4, let A be the set of horizontal
edges ArBr, BrCr, CrDr and DrAr. Let B be the set of edges BrFr, DrFr, ArEr, CrEr of
all crossings and other edges glued to them. Let C be the set of edges ArCr and BrDr
of all crossings. Finally, letD be the set of all the other edges in the triangulation. Note
that if the link diagram is alternating, thenD = ∅.

Recall that WP and WN are the potential functions defined in Figure 3. Direct
calculation shows that exp(wa(∂WP/∂wa)) for a = j, k, l,m is the product of the
shape parameters assigned to the horizontal edge corresponding to the region wa in
Figure 7(a). For example,

exp
(
w j
∂WP

∂w j

)
=

( w jwl

wkwm

)′(wm

w j

)′′(wk

w j

)′′
,

which is the product of the shape parameters assigned to the edge ArBr. (See [6, (8)–
(10)] for the other equations. In [6], our WP and WN were denoted by P1 and N1,
respectively.) Furthermore, the same holds for exp(wa(∂WN/∂wa)), too. Therefore, I
becomes the gluing equations of the edges inA.

The gluing equations of the edges in C andD hold trivially because of the assigning
rule of the shape parameters to the tetrahedra. We will show that the gluing equations

1The proof is in [6, Lemma 4.1 and Proposition 1.1], which started from the general case and then
proceeded to the collapsed cases. In this article, the collapsed cases do not happen, so the general case is
enough.
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Figure 7. Assignment of shape parameters.

of the edges in B hold trivially, too. Consider the alternating gluing in Figure 8(a).
This induces a part of the cusp diagram as in Figure 8(b), which comes from the
gluing of two tetrahedra in Figure 8(c). On the other hand, the nonalternating gluings
in Figure 5(b) and (c) do not have any effect on the cusp diagram of the torus cusp.
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Figure 8. Cusp diagram induced from Figure 5(a).

Note that the cusp diagram in Figure 8(b) is an annulus because the edge cr+1br+1 is
identified with crbr. The shape parameter wb/wa is assigned to the edges BrEr and
Cr+1Fr+1 in Figure 8(c), and the product of shape parameters on the edge BrEr =

Br+1Fr+1 = Dr+1Fr+1 ∈ B (around the vertex br = br+1 = dr+1 in Figure 8(b)) is

wb

wa

(wb

wa

)′′(wb

wa

)′
= −1.

Therefore, if we consider another annulus on the right-hand side of the edge br+1dr+1

in Figure 8(b), the gluing equation of the edge BrEr = Br+1Fr+1 = Dr+1Fr+1 ∈ B is
satisfied trivially.

The other gluing equations of the edges in B can be obtained in the same
way. Hence, we conclude that I induces the gluing equations of all the edges in
A ∪ B ∪ C ∪ D. Furthermore, the cusp diagram in Figure 8(b) already satisfies one
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Figure 9. Vertex orderings and labelings of edges.

completeness condition of the meridian that sends the edge crbr to cr+1br+1. Therefore,
I induces all the hyperbolicity equations. �

4. Proof of Theorem 1.2

In this section, we always assume that w = (w1, . . . ,wn) is a solution in T . The main
technique of the proof of Theorem 1.2 is the extended Bloch group theory in [21]. To
apply it, we first define the vertex ordering of the five-term triangulation in Figure 9 so
that the order 0, 1, 2 and 3 is assigned to the vertices of each tetrahedra in the order of
DrBrFrAr, BrErArCr, DrBrFrCr, DrErArCr and DrBrArCr.

Note that the vertex ordering of each tetrahedron induces the orientations of the
edges and the tetrahedron. The induced orientation of the tetrahedron can be different
from the original orientation induced by the triangulation. For example, this is the case
for the tetrahedra DrBrFrCr and DrErArCr in Figure 9(a) and DrBrFrAr, BrErArCr

and DrBrArCr in Figure 9(b). If the two orientations are the same, we define the sign
of the tetrahedron σ = 1 and, if they are different, then σ = −1.

One important property of our vertex orientation is that when two edges are glued
together in the triangulation, the orientations of the two edges induced by each vertex
ordering coincide. (We call this condition edge-orientation consistency.) Because of
this property, we can apply the formula in [21].

The five-term triangulation we are using is an ideal triangulation, so we
parameterized all ideal tetrahedra of the triangulation by assigning shape parameters
as in Figure 7. For each tetrahedron with the vertex orientation, we define an element
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of the extended pre-Bloch group σ[uσ; p, q] ∈ P̂(C), where σ is the sign of the
tetrahedron, u is the shape parameter assigned to the edge connecting the zeroth and
first vertices and p, q are certain integers.

Zickert suggested a way to determine p and q from the developing map of the
representation ρ : π1(M)→ PSL(2,C) of a hyperbolic manifold M in [21], and showed
that ∑

σL̂([uσ; p, q]) ≡ i(vol(ρ) + i cs(ρ)) mod π2, (4.1)

where the summation is over all tetrahedra and

L̂([u; p, q]) = Li2(u) −
π2

6
+

1
2

qπi log u +
1
2

(pπi + log u) log(1 − u)

is a complex-valued function defined on P̂(C).
Although our five-term triangulation is for S3\(L ∪ {±∞}), the formula of [21] is

still valid because we can consider the two points ±∞ as interior points of the manifold
S3\L. To apply the formula, we have to remove the interior vertices, which results in
our five-term triangulation of S3\(L ∪ {±∞}). (See [21, Theorem 4.11] for details.)

Here, we remark that the author made a mistake in his previous article [4] when
justifying the usage of the triangulation of S3\(L ∪ {±∞}). He mentioned Thurston’s
spinning construction of [12], but it can be applied when a boundary-parabolic
representation is already given, and the construction shows that the parameter space
determines the volume of the representation, not the complex volume. (Note that
[12, Lemma 2.3 and Proposition 3.1] are still valid for any boundary-parabolic
representation and its volume. However, we cannot directly guarantee the invariance
of the Chern–Simons invariant from [12].)

To determine p, q of σ[uσ; p, q] corresponding to each tetrahedron with vertex
orientation, we assign certain complex numbers g jk to the edge connecting the jth and
kth vertices, where j, k ∈ {0, 1, 2, 3} and j < k. We assume that g jk satisfies the property
that if two edges are glued together in the triangulation, then the assigned numbers g jk

of the glued edges coincide. We do not use the exact values of g jk in this article, but
remark that there is an explicit method in [21] for calculating these numbers using the
developing map. With the given numbers g jk, we can calculate p, q using the following
equation, which appeared as [21, Equation (3.5)]:{

pπi = − log uσ + log g03 + log g12 − log g02 − log g13,
qπi = log(1 − uσ) + log g02 + log g13 − log g01 − log g23.

(4.2)

To avoid confusion, we use variables α1, α2, α3, β1, β2, β3, γ j, γk, γl, γm, δ1 and δ2

instead of g jk as in Figure 9. Note that γa (a = j, k, l,m) is assigned to the horizontal
edge that lies in the region with wa. The orientation we defined in Figure 9 satisfies
the edge-orientation consistency, so we will apply the formula of [21] to our five-term
triangulation.
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For the positive crossing r in Figure 9(a), let σ(r)
1 [uσ

(r)
1

1 ; p(r)
1 , q

(r)
1 ], . . . , σ(r)

5 [u
σ(r)

5
5 ;

p(r)
5 , q

(r)
5 ] be the elements in P̂(C) corresponding to DrBrFrAr, BrErArCr, DrBrFrCr,

DrErArCr and DrBrArCr, respectively. Then

σ(r)
1 = σ(r)

2 = σ(r)
5 = 1, σ(r)

3 = σ(r)
4 = −1,

u
σ(r)

1
1 =

wm

w j
, u

σ(r)
2

2 =
wk

w j
, u

σ(r)
3

3 =
wl

wk
, u

σ(r)
4

4 =
wl

wm
, u

σ(r)
5

5 =
w jwl

wkwm
,

and direct calculation from (4.2) shows that

p(r)
1 πi + log

wm

w j
= log γm − log γ j,

p(r)
2 πi + log

wk

w j
= log γk − log γ j,

p(r)
3 πi + log

wl

wk
= log γl − log γk,

p(r)
4 πi + log

wl

wm
= log γl − log γm,

p(r)
5 πi + log

w jwl

wkwm
= log γ j + log γl − log γk − log γm

(4.3)

and 

q(r)
1 πi − log

(
1 −

wm

w j

)
= logα1 + log γ j − log δ1 − log β1,

q(r)
2 πi − log

(
1 −

wk

w j

)
= log γ j + log β3 − logα2 − log δ2,

q(r)
3 πi − log

(
1 −

wl

wk

)
= logα1 + log γk − log δ1 − log β2,

q(r)
4 πi − log

(
1 −

wl

wm

)
= log γm + log β3 − logα3 − log δ2,

q(r)
5 πi − log

(
1 −

w jwl

wkwm

)
= log γm + log γk − log δ1 − log δ2.

(4.4)

For the negative crossing r in Figure 9(b), let σ(r)
1 [uσ

(r)
1

1 ; p(r)
1 , q

(r)
1 ], . . . , σ(r)

5 [u
σ(r)

5
5 ;

p(r)
5 , q

(r)
5 ] be the elements in P̂(C) corresponding to BrErArCr, DrBrFrAr, DrErArCr,

DrBrFrCr and DrBrArCr, respectively. Then

σ(r)
1 = σ(r)

2 = σ(r)
5 = −1, σ(r)

3 = σ(r)
4 = 1,

u
σ(r)

1
1 =

wm

w j
, u

σ(r)
2

2 =
wk

w j
, u

σ(r)
3

3 =
wl

wk
, u

σ(r)
4

4 =
wl

wm
, u

σ(r)
5

5 =
w jwl

wkwm
,
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and direct calculation from (4.2) shows that

p(r)
1 πi + log

wm

w j
= log γm − log γ j,

p(r)
2 πi + log

wk

w j
= log γk − log γ j,

p(r)
3 πi + log

wl

wk
= log γl − log γk,

p(r)
4 πi + log

wl

wm
= log γl − log γm,

p(r)
5 πi + log

w jwl

wkwm
= log γ j + log γl − log γk − log γm

(4.5)

and 

q(r)
1 πi − log

(
1 −

wm

w j

)
= log γ j + log β3 − logα2 − log δ2,

q(r)
2 πi − log

(
1 −

wk

w j

)
= logα1 + log γ j − log δ1 − log β1,

q(r)
3 πi − log

(
1 −

wl

wk

)
= log γk + log β3 − logα3 − log δ2,

q(r)
4 πi − log

(
1 −

wl

wm

)
= logα1 + log γm − log δ1 − log β2,

q(r)
5 πi − log

(
1 −

w jwl

wkwm

)
= log γk + log γm − log δ1 − log δ2.

(4.6)

From the above definitions, we can conclude that∑
r: crossings

5∑
c=1

σ(r)
c [uσ

(r)
c

c ; p(r)
c , q

(r)
c ] ∈ P̂(C)

is the corresponding element of the five-term triangulation. The following observation
can be easily obtained.

Observation 4.1. There exists a constant C satisfying

log wb ≡ log γb + C mod πi

for all b = 1, . . . , n.

Proof. The relation (4.3) or (4.5) holds for any crossing r of the link diagram.
Therefore, by letting C = log w1 − log γ1, it follows trivially. �

Now we define an integer Q(r)
a for the crossing r and a = j, k, l,m in the following

ways. For the positive crossing r in Figure 9(a), we define

Q(r)
j = q(r)

1 + q(r)
2 − q(r)

5 + p(r)
1 + p(r)

2 ,

Q(r)
k = −q(r)

2 − q(r)
3 + q(r)

5 − p(r)
1 ,

Q(r)
l = q(r)

3 + q(r)
4 − q(r)

5 ,

Q(r)
m = −q(r)

4 − q(r)
1 + q(r)

5 − p(r)
2

(4.7)
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and, for the negative crossing r in Figure 9(b), we define

Q(r)
j = −q(r)

1 − q(r)
2 + q(r)

5 − p(r)
1 − p(r)

2 ,

Q(r)
k = q(r)

2 + q(r)
3 − q(r)

5 + p(r)
1 ,

Q(r)
l = −q(r)

3 − q(r)
4 + q(r)

5 ,

Q(r)
m = q(r)

4 + q(r)
1 − q(r)

5 + p(r)
2 .

(4.8)

Note that, from the definitions (4.7) and (4.8), we can directly obtain∑
a= j,k,l,m

Q(r)
a = 0 (4.9)

for any crossing r.

Lemma 4.2. For the potential function W(w1, . . . ,wn) and the index b = 1, . . . , n,

wb
∂W
∂wb

=
∑

r

Q(r)
b πi,

where r is over the crossings that lie on the boundary of the region associated with wb.

Proof. Note that WP and WN were defined in Figure 3.
For the positive crossing r in Figure 9(a), direct calculation from (4.3) and (4.4)

shows that 

w j
∂WP

∂w j
= Q(r)

j πi + (log β1 − logα1) + (logα2 − log β3),

wk
∂WP

∂wk
= Q(r)

k πi + (logα1 − log β2) + (log β3 − logα2),

wl
∂WP

∂wl
= Q(r)

l πi + (log β2 − logα1) + (logα3 − log β3),

wm
∂WP

∂wm
= Q(r)

m πi + (logα1 − log β1) + (log β3 − logα3).

For the negative crossing r in Figure 9(b), direct calculation from (4.5) and (4.6) shows
that 

w j
∂WN

∂w j
= Q(r)

j πi + (logα1 − log β1) + (log β3 − logα2),

wk
∂WN

∂wk
= Q(r)

k πi + (log β1 − logα1) + (logα3 − log β3),

wl
∂WN

∂wl
= Q(r)

l πi + (logα1 − log β2) + (log β3 − logα3),

wm
∂WN

∂wm
= Q(r)

m πi + (log β2 − logα1) + (logα2 − log β3).
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Figure 10. Two cases of the gluing of ArBrFr.

From the above calculations, we can find a general rule. Elaborating on
w j(∂WP/∂w j), consider the faces ArBrFr and ArBrEr in Figure 9(a). The term
(log β1 − log α1) in w j(∂WP/∂w j) comes from the edges ArFr and BrFr of the face
ArBrFr counterclockwise, and the term (logα2 − log β3) comes from the edges BrEr

and ArEr of the face ArBrEr clockwise. These rules hold for all the cases.

Consider the face ArBrFr and its corresponding term (log β1 − log α1). As in
Figure 10, the face glued to ArBrFr induces the term (logα1 − log β1), which cancels
out the term corresponding to ArBrFr. (The shaded faces in Figure 10 are glued to
ArBrFr.) In the same way, all the other terms corresponding to the other faces cancel
each other and the proof follows. �

By combining (4.9) and Lemma 4.2, or by direct calculation,

n∑
b=1

wb
∂W
∂wb

= 0. (4.10)
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To obtain (1.4), we need to use (4.1) and prove that

W(w1, . . . ,wn) −
n∑

b=1

(
wb

∂W
∂wb

)
log wb ≡

∑
r,c

σ(r)
c L̂([uσ

(r)
c

c ; p(r)
c , q

(r)
c ]) mod π2, (4.11)

where c = 1, . . . , 5 and r is over all crossings. At first, from (4.7) and (4.8),∑
a= j,k,l,m

Q(r)
a πi log wa ≡ −σ

(r)
1

{
q(r)

1 πi log
wm

w j
+ q(r)

2 πi log
wk

w j
− q(r)

3 πi log
wl

wk

− q(r)
4 πi log

wl

wm
+ q(r)

5 πi log
w jwl

wkwm
+ p(r)

1 πi log
wk

w j
+ p(r)

2 πi log
wm

w j

}
≡ −

5∑
c=1

σ(r)
c q(r)

c πi log uσ
(r)
c

c

−σ(r)
1 p(r)

1 πi log u
σ(r)

2
2 − σ(r)

1 p(r)
2 πi log u

σ(r)
1

1 mod 2π2. (4.12)

Combining (4.12) and Lemma 4.2,

1
2

∑
r,c

σ(r)
c q(r)

c πi log uσ
(r)
c

c ≡ −
1
2

n∑
b=1

(
wb

∂W
∂wb

)
log wb

−
1
2

∑
r

{σ(r)
1 p(r)

1 πi log u
σ(r)

2
2 + σ(r)

1 p(r)
2 πi log u

σ(r)
1

1 } mod π2, (4.13)

where c = 1, . . . , 5 and r is over all crossings.
Let W (r) be the potential function of the crossing r, that is,

W (r) :=
{

WP if r is a positive crossing,
WN if r is a negative crossing.

From (4.3), (4.5) and direct calculation,

5∑
c=1

σ(r)
c (p(r)

c πi + log uσ
(r)
c

c ) log(1 − uσ
(r)
c

c )

= σ(r)
1

{
(log γm − log γ j) log

(
1 −

wm

w j

)
+ (log γk − log γ j) log

(
1 −

wk

w j

)
− (log γl − log γk) log

(
1 −

wl

wk

)
− (log γl − log γm) log

(
1 −

wl

wm

)
+ (log γ j + log γl − log γk − log γm) log

(
1 −

w jwl

wkwm

)}
= −

∑
a= j,k,l,m

log γa

(
wa
∂W (r)

∂wa

)
+σ(r)

1 (log γm − log γ j) log
wk

w j
+ σ(r)

1 (log γk − log γ j) log
wm

w j
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= −
∑

a= j,k,l,m

log γa

(
wa
∂W (r)

∂wa

)
+σ(r)

1 p(r)
1 πi log u

σ(r)
2

2 + σ(r)
1 p(r)

2 πi log u
σ(r)

1
1 + 2 log

wk

w j
log

wm

w j
. (4.14)

Using Observation 4.1, (4.10) and

wb
∂W
∂wb

≡ 0 mod 2πi,

∑
r: crossings

∑
a= j,k,l,m

log γa

(
wa
∂W (r)

∂wa

)
=

n∑
b=1

log γb

(
wb

∂W
∂wb

)
≡

n∑
b=1

(
wb

∂W
∂wb

)
log wb mod 2π2. (4.15)

From (4.13), (4.14) and (4.15),

1
2

∑
r,c

σ(r)
c {q

(r)
c πi log uσ

(r)
c

c + (p(r)
c πi + log uσ

(r)
c

c ) log(1 − uσ
(r)
c

c )}

≡ −

n∑
b=1

(
wb

∂W
∂wb

)
log wb +

∑
r

log u
σ(r)

1
1 log u

σ(r)
2

2 mod π2, (4.16)

where c = 1, . . . , 5 and r is over all crossings.
By definition, the potential function W(w1, . . . ,wn) is expressed by

W(w1, . . . ,wn) =
∑
r,c

σ(r)
c

{
Li2(uσ

(r)
c

c ) −
π2

6

}
+

∑
r

log u
σ(r)

1
1 log u

σ(r)
2

2 . (4.17)

From (4.16) and (4.17), we obtain (4.11) and complete the proof of the first part of
Theorem 1.2.

On the other hand, the existence of w∞ is guaranteed by [12]. (See [4] for details.
Or, if we allow the construction in [1], we can construct w∞ from the discrete faithful
representation ρ : π1(L)→ PSL(2,C).) Then we can choose T0, the path component
containing w∞. This completes the proof of Theorem 1.2.

5. The optimistic limit of the Kashaev invariant

To prove Theorem 1.3, we briefly review the results of [4].
Consider a hyperbolic link L and its nonoriented diagram D. (If D already has an

orientation, then we ignore it.) Assume that D does not have any kinks1 by removing
them as in Figure 11.

1This assumption is only for the optimistic limit of the Kashaev invariant. If the diagram has a kink,
then the hyperbolicity equations in H defined in (5.1) do not have any solution. On the other hand, the
hyperbolicity equations in I always have a solution whether it has a kink or not.
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Figure 11. Removing kinks.

Figure 12. Potential function of a crossing.

Figure 13. Diagram with S = ∅ and T , ∅.

We assign complex variables z1, . . . , zg to sides of the diagram. Then we define the
potential function of the crossing as in Figure 12.

The potential function V(z1, . . . , zg) of the diagram D is defined by the summation
of all potential functions of the crossings. Then we define the setH by

H :=
{
exp

(
zk
∂V
∂zk

)
= 1

∣∣∣∣∣ k = 1, . . . , g
}
. (5.1)

Let S = {(z1, . . . , zg)} be the set of solutions1 of H in Cg. We always assume that
S , ∅. Note that we cannot avoid this assumption because, if the diagram contains the
left-hand side of Figure 13, then S = ∅, but T , ∅. (See [1, 4] for details.)

1As already mentioned in Section 1, we only consider solutions satisfying the condition that, when the
potential function V is expressed by V(z1, . . . , zg) =

∑
±Li2(za/zb), the variables inside the dilogarithms

satisfy za/zb < {0, 1,∞}. Furthermore, for the crossing in Figure 14, the solution should satisfy zc/za , 1
and zd/zb , 1. The latter condition, which the author missed in his previous paper [4], is needed to avoid
the holonomies induced by the meridians becoming the trivial map.
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Figure 14. Parameterizing tetrahedra.

Recall that the four-term triangulation of S3\(L ∪ {±∞}) was defined in Section 2.
To determine the shape of the tetrahedra, we assign shape parameters zb/za, zc/zb,
zd/zc and za/zd to the horizontal edges AkBk, BkCk, CkDk and DkAk, respectively. (See
Figure 14.) Then we obtain the following proposition, which was [4, Proposition 1.1].

Proposition 5.1. For a hyperbolic link L with a fixed diagram, consider the potential
function V(z1, . . . , zg) of the diagram. Then the set H defined in (5.1) becomes
the set of the hyperbolicity equations associated with the four-term triangulation of
S3\(L ∪ {±∞}).

By using Yoshida’s construction in [12, Section 4.5], for a solution z = (z1, . . . , zg) ∈
S, we can obtain a boundary-parabolic representation

ρz : π1(S3\(L ∪ {±∞})) = π1(S3\L) −→ PSL(2,C). (5.2)

For the solution set S, let S j be a path component of S satisfying S = ∪ j∈J′S j for
some index set J′. We assume that 0 ∈ J′ for notational convenience. To obtain well-
defined values from the potential function V(z1, . . . , zg), we slightly modify it to

V0(z1, . . . , zg) := V(z1, . . . , zg) −
n∑

k=1

(
zk
∂V
∂zk

)
log zk.

Then we obtain the main result of [4] as follows.

Theorem 5.2. Let L be a hyperbolic link with a fixed diagram and V(z1, . . . , zg) be
the potential function of the diagram. Assume that the solution set S = ∪ j∈J′S j is not
empty. Then, for any z ∈ S j, V0(z) is constant (it depends only on j) and

V0(z) ≡ i(vol(ρz) + i cs(ρz)) mod π2,

where ρz is the boundary-parabolic representation in (5.2). Furthermore, there exists
a path component S0 of S satisfying

V0(z∞) ≡ i(vol(L) + i cs(L)) mod π2

for all z∞ ∈ S0.
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We call the value V0(z) the optimistic limit of the Kashaev invariant. Note that it
depends on the choice of the diagram and the path component S j.

6. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. Note that it was almost proved
in [6], so we will skip several calculations and refer to the results in [6].

To avoid redundant calculations, we change the definition of WN in Figure 3 to that
below:

WN := Li2
( wl

wm

)
+ Li2

( wl

wk

)
− Li2

( w jwl

wkwm

)
−Li2

(wm

w j

)
− Li2

(wk

w j

)
+
π2

6
− log

w j

wm
log

w j

wk
. (6.1)

It is possible because, by using ≈ to denote the equivalence relation defined in [6,
Lemma 3.1], we know that

log
w j

wm
log

w j

wk
≈ (log w j − log wm)(log w j − log wk) ≈ log

wm

w j
log

wk

w j
.

Therefore, changing log (wm/w j) log (wk/w j) of WN to log (w j/wm) log (w j/wk) does
not have any effect on I and the optimistic limit W0(w).

Lemma 6.1. Fix an oriented diagram D of the hyperbolic link L, which does not have
a kink. For a solution w = (w1, . . . ,wn) ∈ T , if the variables w j, . . . ,wm in Figure 1
satisfy

w j + wl , wk + wm (6.2)

at all crossings, then there exists a solution z ∈ S satisfying ρw = ρz. Inversely, for a
solution z = (z1, . . . , zg) ∈ S, there always exists a solution w ∈ T satisfying ρz = ρw.

Proof. For a hyperbolic ideal octahedron in Figure 15, we assign shape parameters
t1, t2, t3, t4, u1, u2, u3 and u4 to the edges CD, DA, AB, BC, CF, DE, AF and BE,
respectively. Let u5 := 1/(u1u3) = 1/(u2u4) be the shape parameter of the tetrahedron
ABCD assigned to the edges AC and BD.

Then we obtain the following relations.


t1 = u′′1 u′′2 u′5,

t2 = u′2u′3u′′5 ,

t3 = u′′3 u′′4 u′5,

t4 = u′4u′1u′′5 ,



u1 = t′1t′′4 ,

u2 = t′1t′′2 ,

u3 = t′3t′′2 ,

u4 = t′3t′′4 ,

u5 = (t′1t′′2 t′3t′′4 )−1.

(6.3)

Now we consider the octahedra placed on the crossings in Figure 7. Note that
the five-term triangulation and the four-term triangulation use the same octahedral
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Figure 15. Assignment of variables.

decomposition of S3\(L ∪ {±∞}), but the subdividing methods are different. Therefore,
if we apply (6.3) to the octahedral decomposition, we can find relations between
variables w1, . . . , wn and z1, . . . , zg. The octahedron in Figure 1(a) (or the one in
Figure 7(a)) gives the relations

zb

za
=

(wm

w j

)′′(wk

w j

)′′( w jwl

wkwm

)′
,

zc

zb
=

(wk

w j

)′(wk

wl

)′( w jwl

wkwm

)′′
,

zd

zc
=

(wk

wl

)′′(wm

wl

)′′( w jwl

wkwm

)′
,

za

zd
=

(wm

wl

)′(wm

w j

)′( w jwl

wkwm

)′′ (6.4)

and 
wm

w j
=

(zb

za

)′( za

zd

)′′
,

wk

w j
=

(zb

za

)′( zc

zb

)′′
,

wk

wl
=

(zd

zc

)′( zc

zb

)′′
,

wm

wl
=

(zd

zc

)′( za

zd

)′′
,

w jwl

wkwm
=

(za

zb

)′′(zb

zc

)′( zc

zd

)′′(zd

za

)′
.

(6.5)

The octahedron in Figure 1(b) (or the one in Figure 7(b)) gives the relations
zb

za
=

( w j

wm

)′(w j

wk

)′(wkwm

w jwl

)′′
,

zc

zb
=

(w j

wk

)′′( wl

wk

)′′(wkwm

w jwl

)′
,

zd

zc
=

( wl

wk

)′( wl

wm

)′(wkwm

w jwl

)′′
,

za

zd
=

( wl

wm

)′′( w j

wm

)′′(wkwm

w jwl

)′ (6.6)

and 
w j

wm
=

( za

zd

)′(zb

za

)′′
,

w j

wk
=

( zc

zb

)′(zb

za

)′′
,

wl

wk
=

( zc

zb

)′(zd

zc

)′′
,

wl

wm
=

( za

zd

)′(zd

zc

)′′
,

wkwm

w jwl
=

(za

zb

)′(zb

zc

)′′( zc

zd

)′(zd

za

)′′
.

(6.7)
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If w j, . . . ,wm of each crossing is fixed, then we can determine za, . . . , zd using
(6.5) and (6.7), and the inverse can be done using (6.4) and (6.6). Furthermore, if
we consider w ∈ CPn−1 and z ∈ CPg−1, then w determines z uniquely and vice versa.

For the set of equations
(wm

w j

)′′(wk

w j

)′′( w jwl

wkwm

)′
, 1,

(wk

w j

)′(wk

wl

)′( w jwl

wkwm

)′′
, 1,(wk

wl

)′′(wm

wl

)′′( w jwl

wkwm

)′
, 1,

(wm

wl

)′(wm

w j

)′( w jwl

wkwm

)′′
, 1

(6.8)

in (6.4) and 
( w j

wm

)′(w j

wk

)′(wkwm

w jwl

)′′
, 1,

(w j

wk

)′′( wl

wk

)′′(wkwm

w jwl

)′
, 1,( wl

wk

)′( wl

wm

)′(wkwm

w jwl

)′′
, 1,

( wl

wm

)′′( w j

wm

)′′(wkwm

w jwl

)′
, 1

(6.9)

in (6.6), direct calculation shows that (6.8), (6.9) and (6.2) are equivalent to each other.
Therefore, (6.2) guarantees that z determines a solution for z ∈ S.

Also, for the set of equations
(zb

za

)′( za

zd

)′′
, 1,

(zb

za

)′( zc

zb

)′′
, 1,

(zd

zc

)′( zc

zb

)′′
, 1,(zd

zc

)′( za

zd

)′′
, 1,

(za

zb

)′′(zb

zc

)′( zc

zd

)′′(zd

za

)′
, 1

(6.10)

in (6.5) and 
( za

zd

)′(zb

za

)′′
, 1,

( zc

zb

)′(zb

za

)′′
, 1,

( zc

zb

)′(zd

zc

)′′
, 1,( za

zd

)′(zd

zc

)′′
, 1,

(za

zb

)′(zb

zc

)′′( zc

zd

)′(zd

za

)′′
, 1

(6.11)

in (6.7), direct calculation shows that (6.10), (6.11) and za , zc, zb , zd are equivalent
to each other. The latter is the assumption of the solution; hence, any z ∈ S determines
a solution w ∈ T .

Finally, if z and w are related as above, then they determine the same octahedral
decomposition and the same developing map. Therefore, we conclude that ρz = ρw. �

Let D(z) := Im Li2(z) + log |z| arg(1 − z) be the Bloch–Wigner function for z ∈
C\{0, 1}. It is a well-known fact that D(z) = vol(Tz), where Tz is the hyperbolic ideal
tetrahedron with the shape parameter z. Therefore, from Figure 15,

D(t1) + D(t2) + D(t3) + D(t4) = D(u1) + D(u2) + D(u3) + D(u4) + D(u5). (6.12)

Note that the variables t1, . . . , t4, u1, . . . , u5 satisfying (6.3) determine a hyperbolic
ideal octahedron in Figure 15, so (6.3) guarantees (6.12).
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Lemma 6.2. Let t1, t2, t3, t4, u1, u2, u3, u4, u5 < {0, 1,∞} be the shape parameters defined
in the hyperbolic octahedron in Figure 15, which satisfies (6.3) and (6.12). Then the
following identities hold for any choice of log-branch modulo 4π2.

Li2(t1) − Li2
( 1
t2

)
+ Li2(t3) − Li2

( 1
t4

)
≡ Li2(u1) + Li2(u2) − Li2

( 1
u3

)
− Li2

( 1
u4

)
+ Li2(u5) −

π2

6
+ log u1 log u2

−

(
− log(1 − t1) + log

(
1 −

1
t4

))
log u2

−

(
− log(1 − t1) + log

(
1 −

1
t2

))
log u1

+

(
− log(1 − t1) + log

(
1 −

1
t4

))
log(1 − u1)

+

(
− log(1 − t1) + log

(
1 −

1
t2

))
log(1 − u2)

+

(
− log(1 − t3) + log

(
1 −

1
t2

))
log

(
1 −

1
u3

)
+

(
− log(1 − t3) + log

(
1 −

1
t4

))
log

(
1 −

1
u4

)
+

(
log(1 − t1) − log

(
1 −

1
t2

)
+ log(1 − t3) − log

(
1 −

1
t4

))
log(1 − u5)

≡ Li2(u1) − Li2
( 1
u2

)
− Li2

( 1
u3

)
+ Li2(u4) − Li2

( 1
u5

)
+
π2

6
− log u2 log u3

+

(
− log(1 − t3) + log

(
1 −

1
t2

))
log u2

+

(
− log(1 − t1) + log

(
1 −

1
t2

))
log u3

+

(
− log(1 − t1) + log

(
1 −

1
t4

))
log(1 − u1)

+

(
− log(1 − t1) + log

(
1 −

1
t2

))
log

(
1 −

1
u2

)
+

(
− log(1 − t3) + log

(
1 −

1
t2

))
log

(
1 −

1
u3

)
+

(
− log(1 − t3) + log

(
1 −

1
t4

))
log(1 − u4)

+

(
log(1 − t1) − log

(
1 −

1
t2

)
+ log(1 − t3) − log

(
1 −

1
t4

))
log

(
1 −

1
u5

)
mod 4π2.

Proof. See the proof of [6, Lemma 5.1]. �
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Let w ∈ T and z ∈ S be the corresponding pair in Lemma 6.1. To prove

V0(z) ≡ W0(w) mod 4π2, (6.13)

we consider the two cases of the crossing with parameters za, . . . , zd,w j, . . . ,wm in
Figure 1.

For the case of Figure 1(a), we let t1 = zb/za, t2 = zc/zb, t3 = zd/zc, t4 = za/zd,
u1 = wm/w j, u2 = wk/w j, u3 = wk/wl, u4 = wm/wl and u5 = (w jwl)/(wkwm), so that
(6.3) is satisfied. Then the potential function of a crossing defined in Figure 12 is
expressed by

VP(za, . . . , zd) := Li2(t1) − Li2
( 1
t2

)
+ Li2(t3) − Li2

( 1
t4

)
and the potential function of a positive crossing defined in Figure 3(a) is expressed by

WP(w j,wk,wl,wm)

= Li2(u1) + Li2(u2) − Li2
( 1
u3

)
− Li2

( 1
u4

)
+ Li2(u5) −

π2

6
+ log u1 log u2.

Using Lemma 6.2, we can calculate

VP0 −WP0 ≡ −(log w j − log wm) log za − (log wk − log w j) log zb

+ (log wk − log wl) log zc

+ (log wl − log wm) log zd mod 4π2. (6.14)

(The detailed calculations are in [6, (41)–(42)] and the following paragraphs. Note
that, in [6], we denoted VP and WP by X(za, . . . , zd) and P1(w j, . . . ,wm), respectively.)

For the case of Figure 1(b), we let t1 = za/zd, t2 = zb/za, t3 = zc/zb, t4 = zd/zc,
u1 = wl/wm, u2 = w j/wm, u3 = w j/wk, u4 = wl/wk and u5 = (wkwm)/(w jwl), so that
(6.3) is satisfied. Then the potential function of a crossing defined in Figure 12 is
expressed by

VN(za, . . . , zd) := Li2(t1) − Li2
( 1
t2

)
+ Li2(t3) − Li2

( 1
t4

)
and the potential function of a negative crossing defined in (6.1) is expressed by

WN(w j,wk,wl,wm)

= Li2(u1) − Li2
( 1
u2

)
− Li2

( 1
u3

)
+ Li2(u4) − Li2

( 1
u5

)
+
π2

6
− log u2 log u3.

Using Lemma 6.2, we can calculate

VN0 −WN0 ≡ −(log w j − log wm) log za − (log wk − log w j) log zb

+ (log wk − log wl) log zc

+ (log wl − log wm) log zd mod 4π2. (6.15)
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Figure 16. Side assigned by za.

Note that the right-hand sides of (6.14) and (6.15) coincide. We can deduce the
general rule of these equations using Figure 16.

For the side with za in Figure 16, when it goes out of a crossing, the contribution to
(6.14) or (6.15) of the crossing is

−(log w j − log wm) log za

and, when it goes into a crossing, the contribution is

+(log w j − log wm) log za.

Therefore, if we consider the whole crossings of the link diagram, the right-hand
sides of (6.14) or (6.15) at all crossings are cancelled out and we obtain (6.13). This
completes the proof of Theorem 1.3.

7. Example of the twist knots

In this section, we apply Theorem 1.3 to the example of the twist knot in [4,
Section 6] and show several numerical results. For the calculations, we assume the
principal branch of logarithm. Also, we use the definition of WN in Figure 3(b).

Let Tn (n ≥ 1) be the twist knot with n + 3 crossings in Figure 17. For example, T1 is
the figure-eight knot 41 and T2 is the 52 knot. We follow the orientations in Figure 17.

We assign variables a, b, x0, . . . , xn+1, y0, . . . , yn+1 to the sides and c, d, e,
w0, . . . ,wn+1 to the regions of Figure 17, respectively. Let

Ak := Li2
( c
wk

)
+ Li2

( c
wk+1

)
− Li2

( ce
wkwk+1

)
− Li2

(wk

e

)
− Li2

(wk+1

e

)
+
π2

6
− log

wk

e
log

wk+1

e
,

Bk := Li2
( e
wk

)
+ Li2

( e
wk+1

)
− Li2

( ce
wkwk+1

)
− Li2

(wk

c

)
− Li2

(wk+1

c

)
+
π2

6
− log

wk

c
log

wk+1

c

for k = 0, 1, . . . , n. If n is odd, the potential function W(Tn; c, d, e,w0, . . . ,wn+1) of
Figure 17(a) is

W(Tn; c, d, e,w0, . . . ,wn+1)

=

{
−Li2

(wn+1

c

)
− Li2

(wn+1

d

)
+ Li2

(w0wn+1

cd

)
+ Li2

( c
w0

)
+ Li2

( d
w0

)
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Figure 17. Twist knot Tn.

−
π2

6
+ log

c
w0

log
d

w0

}
+

{
−Li2

(w0

d

)
− Li2

(w0

e

)
+ Li2

(w0wn+1

de

)
+ Li2

( d
wn+1

)
+ Li2

( e
wn+1

)
−
π2

6
+ log

d
wn+1

log
e

wn+1

}
+

(n−1)/2∑
k=0

(A2k + B2k+1)

and, if n is even, the potential function W(Tn; c, d, e,w0, . . . ,wn+1) of Figure 17(b) is

W(Tn; c, d, e,w0, . . . ,wn+1)

=

{
Li2

( c
w0

)
+ Li2

( c
wn+1

)
− Li2

( cd
w0wn+1

)
− Li2

(w0

d

)
− Li2

(wn+1

d

)
+
π2

6
− log

w0

d
log

wn+1

d

}
+

{
Li2

( d
w0

)
+ Li2

( d
wn+1

)
− Li2

( de
w0wn+1

)
− Li2

(w0

e

)
− Li2

(wn+1

e

)
+
π2

6
− log

w0

e
log

wn+1

e

}
+ B0 +

n/2∑
k=1

(A2k−1 + B2k).
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Figure 18. The (k + 2)th crossing for k = 1, . . . , n + 1.

Table 1. Defining equation of t for n = 1, . . . , 5.

n Defining equation of t
1 16 − 12t + 3t2 = 0
2 −64 + 80t − 40t2 + 7t3 = 0
3 256 − 448t + 336t2 − 120t3 + 17t4 = 0
4 −2048 + 4608t − 4608t2 + 2464t3 − 696t4 + 82t5 = 0
5 4096 − 11264t + 14080t2 − 9984t3 + 4192t4 − 980t5 + 99t6 = 0

In [4, Section 6], we chose (a, b, x0, . . . , xn+1, y0, . . . , yn+1) by

a = 2, b = −1, x0 = t, y0 = 1 +
2
t
, x1 =

t(t + 2)
t2 − 4t + 8

, y1 =
4
t
,

xk+1 =
xkyk

−xk−1 + xk + yk
, yk+1 = xk + yk −

xkyk

yk−1
, xn+1 = 3, yn+1 = 1,

where k = 1, . . . , n − 1 and t is a solution of the defining equation in Table 1. All the
solutions t of the defining equation determine the solutions in S and the corresponding
representation

ρ(Tn)(t) : π1(S3\Tn) −→ PSL(2,C).

Using the equations (6.5) and (6.7), we can express (c, d, e,w0, . . . ,wn+1) in terms
of t. Specifically, the (k + 2)th crossing (in the order from top to bottom) in Figure 17
becomes Figure 18 and it determines

e
wk

=

( yk

xk

)′( xk

xk−1

)′′
for k = 1, . . . , n + 1. The first crossing in Figure 17 gives an equation of c:

c
wn+1

=

( a
yn+1

)′(yn+1

y0

)′′
=

2
t
.

The second crossing in Figure 17 gives a more simple equation of wn+1:

e
wn+1

=

( xn+1

a

)′( x0

xn+1

)′′
= −

2(t − 3)
t

and other equations of d and w0:

d
wn+1

=

( xn+1

a

)′(a
b

)′′
= −3,

e
w0

=

( b
x0

)′( x0

xn+1

)′′
=

t − 3
t + 1

.
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Table 2. Expressions of wk in terms of t for k = 0, . . . , 6.

k wk

0 (1 + t)/(−3 + t)
1 −(16 + t2)/((−3 + t)t2)
2 (256 − 256t + 112t2 − 16t3 − 3t4 + t5)/((−3 + t)t4)
3 (−4096 + 8192t − 7424t2 + 3584t3 − 864t4 + 32t5 + 27t6 − 4t7)/((−3 + t)t6)
4 (65536 − 196608t + 274432t2 − 225280t3 + 115456t4 − 35584t5 + 5152t6

+320t7 − 231t8 + 25t9)/((−3 + t)t8)
5 (−1048576 + 4194304t − 7929856t2 + 9175040t3 − 7094272t4 + 3760128t5

−1337088t6 + 287232t7 − 21232t8 − 6048t9 + 1751t10 − 144t11)/((−3 + t)t10)
6 (16777216 − 83886080t + 200278016t2 − 298844160t3 + 307822592t4

−228524032t5 + 123846656t6 − 48324608t7 + 12842496t8 − 1930752t9

−2544t10 + 66288t11 − 12587t12 + 841t13)/((−3 + t)t12)

Therefore, after choosing e = 1, we can express (c, d, e,w0, . . . ,wn+1) in terms of t
by

c = −
1

t − 3
, d =

3t
2(t − 3)

, e = 1, w0 =
t + 1
t − 3

, wk =

( xk

yk

)′′( xk−1

xk

)′
for k = 1, . . . , n + 1. The exact expression of wk for k = 1, . . . , 6 is in Table 2.

For the solutions t of the defining equations, the numerical values of the
corresponding optimistic limits

W0(Tn)(t) ≡ i(vol(ρ(Tn)(t)) + i cs(ρ(Tn)(t))) mod π2

for n = 1, . . . , 5 are in Table 3. Note that these values exactly coincide with the
optimistic limits of Kashaev invariants in [4, Table 3].

Appendix A. Change of the signs of the variables

In this appendix, we show that the change of the signs of the variables of the
potential function does not have an effect on the set of equations I and the optimistic
limit. Note that this property will be used in the author’s later article.

Let W(w1, . . . , wn) be the potential function defined in Section 2. Let
τ1, . . . , τn, ε1, . . . , εn ∈ {−1, 1} be fixed signs and define another potential function

W̃(w1, . . . ,wn) := W(τ1wε1
1 , . . . , τnwεn

n ).

In the same way, we define

Ĩ :=
{
exp

(
wk
∂W̃
∂wk

)
= 1

∣∣∣∣∣ k = 1, . . . , n
}

and let T̃ be the solution set of Ĩ. Also, for w = (w1, . . . ,wn), define

w̃ := (τ1wε1
1 , . . . , τnwεn

n ).
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Table 3. Values of W0(Tn)(t) for n = 1, . . . , 5.

n t W0(Tn)(t)
1 t = 2 + 1.1547 · · · i i(2.0299 · · · + 0i)

t = 2 − 1.1547 · · · i i(−2.0299 · · · + 0i)

2 t = 1.4587 · · · + 1.0682 · · · i i(2.8281 · · · + 3.0241 · · · i)
t = 1.4587 · · · − 1.0682 · · · i i(−2.8281 · · · + 3.0241 · · · i)
t = 2.7969 · · · i(0 − 1.1135 · · · i)

3 t = 1.2631 · · · + 1.0347 · · · i i(3.1640 · · · + 6.7907 · · · i)
t = 1.2631 · · · − 1.0347 · · · i i(−3.1640 · · · + 6.7907 · · · i)
t = 2.2664 · · · + 0.7158 · · · i i(1.4151 · · · + 0.2110 · · · i)
t = 2.2664 · · · − 0.7158 · · · i i(−1.4151 · · · + 0.2110 · · · i)

4 t = 1.1713 · · · + 1.0202 · · · i i(3.3317 · · · + 10.9583 · · · i)
t = 1.1713 · · · − 1.0202 · · · i i(−3.3317 · · · + 10.9583 · · · i)
t = 1.8097 · · · + 0.9073 · · · i i(2.2140 · · · + 1.8198 · · · i)
t = 1.8097 · · · − 0.9073 · · · i i(−2.2140 · · · + 1.8198 · · · i)
t = 2.5257 · · · i(0 − 0.8822 · · · i)

5 t = 1.1208 · · · + 1.0129 · · · i i(3.4272 · · · + 15.3545 · · · i)
t = 1.1208 · · · − 1.0129 · · · i i(−3.4272 · · · + 15.3545 · · · i)
t = 1.5498 · · · + 0.9676 · · · i i(2.6560 · · · + 4.6428 · · · i)
t = 1.5498 · · · − 0.9676 · · · i i(−2.6560 · · · + 4.6428 · · · i)
t = 2.2789 · · · + 0.4876 · · · i i(1.1087 · · · − 0.2581 · · · i)
t = 2.2789 · · · − 0.4876 · · · i i(−1.1087 · · · − 0.2581 · · · i)

Proposition A.1. There is a one-to-one correspondence between w ∈ T and w̃ ∈ T̃ .
Furthermore,

W̃0(w̃) ≡ W0(w) mod 2π2. (A.1)

Proof. At first, we show that w̃ ∈ T̃ for each w ∈ T . Note that

wk
∂

∂wk
Li2

(τkwεk
k

τ jw
ε j

j

)
= εk · log

(
1 −

τkwεk
k

τ jw
ε j

j

)
implies that

wk
∂

∂wk
Li2

(τkwεk
k

τ jw
ε j

j

) ∣∣∣∣∣
w=w̃

= εk · log
(
1 −

wk

w j

)
= εk · wk

∂

∂wk
Li2

(wk

w j

)
,

where |w=w̃ means the evaluation of the equation at w̃. Therefore,

wk
∂W̃
∂wk

∣∣∣∣∣
w=w̃

= εk · wk
∂W
∂wk

, (A.2)

which shows that w̃ ∈ T̃ and the coincidence of I and Ĩ. Therefore, there is a one-to-
one correspondence between T and T̃ .

Note that W̃(w̃) = W(w) holds trivially. For w ∈ T , the value of (A.2) is zero modulo
2πi. Therefore, (A.1) follows from(

wk
∂W̃
∂wk

)
log wk

∣∣∣∣∣
w=w̃
≡ εk ·

(
wk
∂W
∂wk

)
log(τkwεk

k ) ≡
(
wk
∂W
∂wk

)
log wk mod 2π2. �
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We finally remark that the same result holds for the potential function of the
Kashaev invariant in Section 5 by exactly the same arguments.
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