EUCLID’S ALGORITHM IN REAL QUADRATIC FIELDS
H. CHATLAND anxp H. DAVENPORT

1. Let m be a positive square-free integer. Euclid’s Algorithm is said to hold
in the field k(+/m) if, given any non-integral element e in the field, an integer
£ can be found so that

|E—a) (—a)]| <1,

where accents denote conjugates. The validity or invalidity of the Euclidean
Algorithm in real quadratic fields has been investigated by many writers,! and
it was established some years ago that the Algorithm can only be valid in a
finite number of fields. A new approach to the question was made in a recent
paper by H. Davenport [1]. Theorem 2 of [1] asserts that if f(x, y) is an in-
definite quadratic form with integral coefficients whose discriminant d is not
a perfect square, then rational numbers p, ¢ exist such that

| fc + p,y + )| > 277d}

for all integers x, y. On taking f(x, ¥) to be the form which represents the norm
of the general integer of k(\/m), it follows that Euclid’s Algorithm cannot hold
if d > 2", Here d is m or 4m according as m = 1 (mod 4) or not. Thus the
enumeration of all the fields with an Euclidean Algorithm was brought within
the bounds of possibility.

The fields with d < 2" were investigated by H. Chatland [2]. Those not
already settled by earlier investigations were treated by the method of Erdés
and Ko [3], and in all but six cases it was shown that Euclid’s Algorithm does
not hold. These six cases are:

(¢)) m = 193, 241, 313, 337, 457, 601.

We shall now prove that Euclid’s Algorithm does not hold in any of these
fields, and so (in virtue of the existing results) we shall have established that
Euclid's Algorithm holds in k(~/m) if

m=2,3,5,6,7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73, 97
and in no other case.

Another proof that the algorithm does not hold in the six cases (1) has been
given independently by K. Inkeri [4], using a method based on that of Erdés
and Ko [3].

Received April 28, 1949.

1For an account of the literature, see [2].
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2. We investigate the six cases (1) by a modification of Davenport’s method.
In order to make this intelligible, we must first summarize the necessary
definitions and results of [1] with such modifications as are appropriate.

Let f(x, y) be the norm-form for k(1/m), which is in fact

flx,y) = 2+ xy — f (m — 1)y*

since m = 1 (mod 4). Let 6 = L (1 ++m). Let o= % (u +/m),
¢o= % (u —+/m), where u is an odd integer so chosen that

—0618... <6,<0.382....

The numbers in the last inequality are (1 —/5)/2 and (3 —4/5)/2. Plainly
6> 2.

Let fo(x, ¥)=(x + 60y)(x + 6'¢y). From fo(x, ¥) we can derive (Lemma 2)?
a chain of equivalent forms

fa(x, ¥)= an(x + 6:3)(x + 6'ny),
which all satisfy 6,> 2 and

- 0618...<L6,£0382....
By comparison of discriminants we have
(2) @n(0a— 0'y) = £ /m.

These forms are connected by recurrence relations:

ba= by + BN g = g Bt
0n+l 0 n+1
Heret, is the integer nearest to 0,, and u, is plus or minus one with sign opposite
to that of 6',. The numbers an, 0,, 6'n, ts, un exist for all integers n (positive,
negative and zero) and are periodic (Lemma 9) with a certain period N.

To prove that Euclid’s Algorithm does not hold, it suffices to construct an
element B, of k(n/m) such that

3) | (x + 60y + Bo)(x + 8oy + B0)| 2 1

for all integers x, y. The construction of B, is based on a choice of a set of
integers v,, also periodic with period N. In (1] the choice was made by taking
v, = [} 6,], but this would not lead to the desired result in the six cases
now under consideration. The choices of v, will be made separately in each
case in § 4. In terms of the v,, we define 8, for all n» by

HKnt1 HKn41Mn4-2
Ba= v+ = Unt1 + St ind Un42 +....
0n+1 0n+10n+2

Since 6,> 2 and the v, are periodic, this series is absolutely convergent. It is

2The lemmas referred to are to be found in [1].
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proved (Lemma 10) that 8, is an element of k(v/m) and that its conjugate
B, is given by

B,n_—' Vp—1 | e’nl - vn—2‘ olnoln—l l + vn-—3| o’noln—loln—z‘ T e e

We prove the following general theorem, and later apply it to each of our
six cases.

THEOREM. Suppose the integers v, can be chosen in such a way that for all n

4) 1<B,<8, 0<p<1, 0,<f.<1, fn— o’,,<’1,
(5) BaB'n| @n| > 1,

(6) (Ba— 1)(1 — ') | aa] > 1,

) (Bn— Bn)(B'n— 0'2) | aa] > 1,

8) (4 6= Bn)(1L + 8u— B) | ad| > 1.

Then Euclid’'s Algorithm does not hold in the field.

3. Proof of the theorem. We suppose there exist integers xo, yo which
contradict (3), so that

9) l (xo+ Boyo+ Bo) (®o+ 6 oyvo+ 80) | <1

Let
Ly(x,y)=x 4+ 0,y + Bn, L'alx,y)=2+ 02y + B

The recurrence relations satisfied by 6, and 8, give

Ln(x, y)= =+ (t,. + %’i‘) y + oo+ :m Bast

n+1 n+1

= B2 L mana(® F Y 4 va).
on+1

A similar relation holds with accented symbols. Hence, if we start from x,, y,
and define integers x,, ¥, for n > 0 and n < 0 by the recurrence relations

Xn41= Yny Ynp1= I‘n+l(xn+ tnyn+ vn)r
we then have

1

n+1

(10) | Ln(xuy yn)l = 9 I Ln+1(xn+1. y,.+1) ‘

for all n. It is also easily verified, from the recurrence relations and (2), that
l @nLn(%n, Yn) L' (x4, yﬂ)l
is independent of #, so that, by (9),
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(11) | @aLa(Xn, ¥n) L'n(%n, ¥a)| < 1
for all n.

Suppose first that Lo(xoe, y0) # 0. Then, by (10), an(x,., y,.)l increases steadily
from 0 to 4+ « as # increases from — <« to + «. There will be exactly one
value of # for which

(12) | Lo—1(®ne1, yno1) | L m~t < | La(@a, ya) |.

Then, by (10),

(13) | La(xn, ¥0) | = 0a] Lac1(®n—1, Ya—1) | < m~6,.

Also, by (11) and (2),

(14) | L' a(n 90) | < | @nLn(®n, ya) |71 < mt| an| 1= m~H (0, — 0'2).

Suppose next that Lo(xo, o) = 0. Then L’y(xo, yo) = 0, and moreover, by
the above recurrence relations, L,(xn, ¥») and L',(x,, ¥») are 0 for all #. In
this case, the inequalities (11), (13), (14) are satisfied trivially for any ». Only
these will be used in the rest of the proof. We now drop the suffix » on x and vy,
and rewrite the inequalities as

(15) | an(x 4 0ay + Ba)(x + 00y + 82)] < 1,
(16) | % + 0.y + Ba| < m~,,
a7 | + 60y + 8| < m 0.~ 0',).

If y > 1lory £ — 2, we combine (16) and (17) by subtraction, and obtain
|6a— ")y + (Ba— B'm)| < mH(280— 0',).
Now, by (4),0 < 8, —B8'2n< 0,— 0'n. Hence, ify > 1ory < — 2, we obtain
On— 0'n < m—2(20,— 0',).
But if m*> 3, this is impossible, since it implies 3(6,— 6'») < 20, — 6, or

0, < 26, whereas 6,> 2 and 0',< 3.
If y = 0, (15) becomes

| aa(x + Ba)(x + 8'a)] < 1.

Now @', lies between 0 and 1, and B, lies between v, and v,+ gni1, since
Bn = Un+ pnt1B8nt+1/0n41. Hence, if the last inequality holds for an integer
x, it must hold when x is replaced by some one of the four values

0, — 1, — 93, — Un — pagr.

The first two values give us inequalities which contradict (5) and (6). The
last two give

l an(va— Ban)(vn— B'n)l <1or l n(Vat pnt1— Bn)(Uat Bny1— B’n)l <1
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On using the recurrence relations satisfied by 8, and §8’,, and the relation
| @a| = | 60416'n118011],
which follows from (2), we obtain
| @nt1Bn418 nt1] < 1 or | Gnp1(Bngr— Batr) @ ni1— B'na| <1,
which contradicts (5) and (7).
If y = — 1, the inequality (15) becomes
| anlx — Oa-t Ba)(x — Ont B'a)] < 1.

Since 0 < f',— 6, < 1 by (3), the values of x which are relevant to the second
factor are x = 0 and x = — 1. These give contradictions to (7) and (8). As
regards the first factor, we have

on_ ﬁn= tn— Un— aas (Bn+l— 1)-
n+41

Hence the values of x which are relevant are ¢, — v, and t, — v, — p,41. These
give the inequalities

| @n(tn— vn— Ont Bu)(ta— va— O'nt B'a)| < 1
or
| @ntn— va— bnt1 = Ont Ba)(tn— Vn— pns1— O'nt £'4)| < L
On using the recurrence relations as before, these become
| at1Bnt1= )(Bna— 1) < 1
or
| @11 + Bnr = Batd) (1 + &nia— B'ayr)| < 1,

which contradict (6) and (8). This proves that the inequalities (15), (16), (17)
cannot be satisfied by any pair x, y of integers, and so completes the proof of
the Theorem.

4. To show that Euclid’s Algorithm is not valid in any of the cases (1) it
is sufficient to give integers v,, for a complete period in each case, such that
the hypotheses of the theorem are satisfied. Such values for v,, together with
the resulting values (rounded off) of 8, and #,, are given in the following
tables. We use Py, Qn, R., S, to denote the products of the left of (5), (6), (7),
(8). It will be seen that these are all greater than 1, and that the conditions (4)
are satisfied throughout.
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m = 337
n 0n 0 Un Ba B'n Ianl P, QOx R, Sn
0 18.679 821 9 8233 512 1 422 353 200 9.26
1 3.113 054 2 2.387 454 6 6.51 4.54 1.75 6.20
2 8839 —.339 4 3.421 .525 2 3.59 230 9.36 1.75
3 6.226 107 3 3.602 372 3 4.02 490 209 7.99
4 4420 —.170 2 2.660 .446 4 4.75 3.68 4.33 4.24
5 2383 —.240 1 1.574 373 7 4.11 2.52 3.47 491
6 2613 —.446 2 1.499 .280 6 252 216 4.86 3.47
7 2.585 290 2 1.295 499 8 5.17 1.18 2.16 1449
8 2.409 369 1 1.697 554 9 8.46 2.80 1.18 12.55
9 2446 —.613 1 1.706 274 6 280 3.08 394 1.18
10 2240 —383 1 1.5682 .278 7 3.08 294 304 394
11 4170 —.420 2 2427 303 4 294 398 5.04 3.04
12 5803 —.226 3 2515 .38 3 290 280 6.18 5.12
13 9.339 161 4 4.529 420 2 3.81 409 250 8.60
14 2946 —.113 2 1.559 .405 6 3.79 200 431 6.90
m = 457
n 0 0y Un Ba ﬁ’ﬂ ‘an P, Qn R, Sn
0 21.189 -—.189 10 10.711 .104 1 1.11 8.71 3.06 8.12
1 5297 —.047 3 3.765 467 4 7.03 589 3.15 492
2 3.365 —.198 2 2573 .502 6 775 470 332 3.22
3 2741 -313 2 1.572 468 7 5.15 2.13 6.39 3.32
4 3.865 302 2 1.654 .462 6 459 211 213 16.17
5 7.396 270 2 2.559 416 3 3.19 273 211 14.97
6 2524 —.149 2 1.410 .235 8 2.66 251 3.42 10.42
7 2.099 318 1 1.239 .560 12 833 1.26 251 16.90
8 10.094 —.594 2 2409 .261 2 1.26 2.08 13.15 2.51
9 10.594 —.094 5 4338 .164 2 1.42 558 3.23 10.76
10 2.465 090 1 1.632 .436 9 6.40 3.21 259 10.79
11 2.149 —-.524 1 1.358 .295 8 3.21 202 5.18 2.59
12 6.730 —.396 3 2411 279 3 202 3.05 875 5.18
13 3.698 135 3 2.179 .368 6 481 4.47 2.12 11.60
14 3.313 259 2 2719 681 7 1296 3.84 1.76 6.45
15 3.198 —.365 2 2298 481 6 6.63 4.04 4.57 1.76
16 5.047 —.297 1 1.505 451 4 2.72 1.11 10.60 4.57
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m = 241
mo 6 0a v B B e Pa 0 Re S
0 15262 —.262 7 7396 .39 1 293 386 518 3.03
1 3816 —.066 2 1510 433 4 261 116 4.60 6.64
2 5.421 246 2 2658 .386 3 3.07 3.06 1.16 9.71
3 2377 =210 1 1.564 340 6 3.19 223 268 4.90
4 2.652 —.452 2 1.495 .299 5 223 1.74 4.35 2.68
5 2.877 200 2 1.453 493 6 429 138 1.74 11.59
6 8.131 369 4 4451 556 2 4.95 3.06 138 7.61
7 7631 —.131 4 3442 451 2 3.11 268 488 433
8 2.710 123 2 1513 436 6 3.96 174 225 9.05
9 3.452 348 1 1.680 .543 5 4.56 1.55 1.74 11.15
10 2210 =377 1 1.502 .172 6 1.55 250 233 4.62
11 4754 —.421 3 2389 348 3 250 272 546 233
12 4.066 184 2 2485 489 4 486 3.03 1.93 7.18
m = 601
n 0n o,n Un Ba ﬂ/n |anl P, Qn R, Sn
0 24.758 242 12 12802 373 1 478 7.40 1.57 11.26
1 4.126 040 3 3309 .470 6 932 735 210 6.22
2 7919 —-.253 3 2.448 639 3 4.69 1.57 14.64 2.10
3 12.379 J21 6 6838 286 2 391 834 183 10.92
4 2640 —.084 3 2213 .481 9 9.58 5.67 217 5.58
5 2.776 324 3 2.184 .817 10 17.84 217 291 8.08
6 4.460 374 3 3639 816 6 17.82 291 218 6.09
7 2.176 —.276 1 1.391 .602 10 838 1.55 689 218
8 5689 —.439 3 2222 175 4 155 4.03 852 6.89
9 3220 .155 2 2504 439 8 879 6.75 1.62 9.84
10 4.552 —.352 3 2203 549 5 6.29 292 10.17 1.62
11 2.230 ‘ 187 1 1.576 .458 12 8.66 3.74 2.13 14.47
12 4352 —.5562 2 2505 299 5 374 528 7.85 213
13 2.845 —.220 2 1437 374 8 430 219 6.68 7.83
14 6.439 311 3 3626 .505 4 733 520 219 12.29
15 2276 —.176 1 1425 439 10 6.25 239 523 7.14
16 3.626 —.460 2 1.540 .258 6 239 241 898 5.23
17 2.676 224 2 1230 .391 10 4.80 1.40 241 2.04
18 3.084 360 2 2376 580 9 1240 5.20 1.40 12.00
19 11.879 —379 5 4470 538 2 481 3.21 13.59 1.40
20 8.253 081 4 4375 .360 3 4.73 6.47 3.25 10.54
21 3.960 —.126 2 1.483 460 6 4.09 1.57 8.71 8.64
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m = 193
n On 0'x Un Bn B'a |anl P, On R. Sn
0 13446 —.446 6 6.703 .271 1 1.82 416 484 2.19
1 2241 —-074 1 1.575 426 6 4.03 1.98 200 4.99
2 4149 —482 2 238 .277 3 198 3.01 4.01 2.00
3 6.723 —.223 3 2592 .38 2 199 196 502 4.03
4 3.612 JA38 2 1475 362 4 214 121 191 9.74
5 2574 259 2 1351 424 6 344 121 121 11.14
6 2350 365 1 1524 575 7 6.13 1.56 1.21 10.09
7 2862 —612 2 1501 .260 4 156 148 474 121
8 7223 277 3 3607 .482 2 348 270 148 7.34
9 4482 —-.149 2 2722 375 3 3.06 323 276 3.95
10 2074 —-241 1 1498 392 6 352 182 219 347
m = 313
n 6 0n vu Bn Ba |oal Pn Qn R. Sa
0 17346 —346 8 8525 520 1 444 361 764 131
1 28)1 —.058 2 1517 431 6 392 176 4.03 7.28
2 9.173 327 4 4431 513 2 455 334 176  9.35
3 5782 —.115 3 2494 402 3 3.01 268 5.10 6.21
4 4.586 164 3 2319 425 4 394 3.04 237 9.65
5 2418 207 1 1.646 .532 8 7.01 242 201 9.56
6 2391 —-.558 1 1545 261 6 242 242 4.16 2.01
7 2558 —.391 2 1393 .280 6 242 168 4.75 4.16
8 2.261 295 1 1373 505 9 6.23 166 1.68 13.43
9 3836 —.586 2 1431 .291 4 166 122 844 1.68
10 6115 218 3 3483 373 3 389 467 122 9.21
11 8673 —.173 5 4.185 454 2 380 3.48 563 4.09
12 3058 109 2 2491 496 6 7.41 451 131 576
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