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Abstract

We show that a virtually residually finite rationally solvable (RFRS) group G of type
FPn(Q) virtually algebraically fibres with kernel of type FPn(Q) if and only if the first
n �2-Betti numbers of G vanish, that is, b(2)p (G) = 0 for 0 � p � n. This confirms a
conjecture of Kielak. We also offer a variant of this result over other fields, in particular
in positive characteristic. As an application of the main result, we show that amenable
virtually RFRS groups of type FP(Q) are virtually Abelian. It then follows that if G is
a virtually RFRS group of type FP(Q) such that ZG is Noetherian, then G is virtually
Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of
type FP(Q), which includes (for instance) the class of virtually compact special groups.

1. Introduction

A group G is algebraically fibred (or simply fibred) if it admits a homomorphism onto Z with a
finitely generated kernel. The interest in algebraic fibrings arose from the study of 3-manifolds
fibring over the circle. Using the long exact sequence of homotopy groups associated to a fibration,
one sees that a surface bundle M → S1, where M is a compact 3-manifold, induces an algebraic
fibration π1(M) → Z. A celebrated theorem of Stallings [Sta62] establishes the converse: if G
is isomorphic to the fundamental group of a closed, compact 3-manifold M , then an algebraic
fibration G→ Z is induced by a surface bundle M → S1.

Recently, Kielak characterised the virtual algebraic fibring of residually finite rationally solv-
able (RFRS) groups in terms of the vanishing of the first �2-Betti number. More precisely, he
showed the following.

Theorem 1.1 (Kielak [Kie20c]). Let G be an infinite finitely generated virtually RFRS group.

Then G virtually algebraically fibres if and only if b
(2)
1 (G) = 0.

Virtually RFRS groups arise naturally in geometric group theory; for example, subgroups of
right-angled Artin groups and right-angled Coxeter groups are virtually RFRS and, in particular,
special groups (in the sense of Haglund and Wise) are RFRS. Moreover, the RFRS property
passes to subgroups and is preserved by taking products and free products of RFRS groups.
Kielak’s theorem is an algebraic analogue of the following theorem of Agol, which was a key step
in confirming Thurston’s virtually fibred conjecture.

Theorem 1.2 (Agol [Ago08]). Every compact and irreducible 3-manifold M with χ(M) = 0
and nontrivial RFRS fundamental group admits a finite covering that fibres over the circle.
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Since algebraic fibrings induce topological fibrings of 3-manifolds, Kielak’s theorem gener-
alises the above theorem of Agol by removing the assumption that G is the fundamental group
of a 3-manifold. Note that [Lüc02, Theorem 4.1] states that if M is a compact, irreducible
3-manifold with no S2 boundary components, then b

(2)
1 (π1(M)) = −χ(M). Thus, we interpret

the condition b(2)1 (G) = 0 in Kielak’s theorem as the algebraic analogue of the condition χ(M) = 0
in Agol’s theorem.

In light of Kielak’s theorem, it is natural to ask whether the vanishing of higher �2-Betti
numbers of a groupG controls the higher finiteness properties of the kernel of the virtual fibration.
Indeed, Kielak conjectured that a virtually RFRS group of type FPn(Q) virtually algebraically
fibres with kernel of type FPn(Q) if and only if b(2)p (G) vanishes for all p � n (see [Kie20b,
Conjecture 8]). The main result of this paper confirms Kielak’s conjecture, and gives another
characterisation of RFRS groups virtually fibring with kernel of type FPn(Q). We also note that
the equivalence of parts (2) and (3) in the following theorem generalises [JZ21, Corollary 1.5],
where Jaikin-Zapirain proved the n = 1 case.

Theorem A. Let G be a virtually RFRS group of type FPn(Q). Then the following are
equivalent:

(1) b
(2)
p (G) = 0 for all p � n;

(2) there is a finite-index subgroup H � G and a surjection ϕ : H → Z such that kerϕ is of type
FPn(Q);

(3) there is a finite-index subgroup H ′�G and a surjection ϕ′ : H ′→Z such that bp(kerϕ′) <∞
for all p � n.

It should be emphasised that if kerϕ′ has finite Betti numbers in dimensions � n, it is
not necessarily the case that kerϕ′ is of type FPn(Q). We prove a more general theorem that
treats algebraic fibring with kernels of type FPn(F) for any skew-field F, from which we obtain
Theorem A as a special case. Before stating the result, we give some background. If F is a skew-
field and G is a locally indicable group, then under certain conditions the group ring FG embeds
into a skew-field DFG called the Hughes-free division ring of FG (see Definition 2.3). If it exists,
DFG is unique up to FG-algebra isomorphism [Hug70] and the DFG-homology of G in dimension
p is defined to be HDFG

p (G) := Hp(G;DFG). The pth DFG-Betti number is defined to be

bDFG
p (G) := dimDFG

HDFG
p (G).

In [JZ21, Corollary 1.3], Jaikin-Zapirain proved that if G is finitely generated and RFRS, then
DFG exists for any skew-field F and, if F = Q, it is isomorphic to the Linnell skew-field of G.
For the purposes of this paper, it will not be necessary to know how the Linnell skew-field is
defined, but that it can be used to define the �2-homology and �2-Betti numbers of a group
G (see Definition 6.9). Importantly for us, when G is finitely generated and RFRS, we have
b
DQG
p (G) = b

(2)
p (G) for all p. We prove the following theorem, which reduces to Theorem A in the

case F = Q.

Theorem B. Let F be a skew-field and let G be a virtually RFRS group of type FPn(F). Then
the following are equivalent:

(1) bDFG
p = 0 for all p � n;

(2) there is a finite-index subgroup H � G and a surjection ϕ : H → Z such that kerϕ is of type
FPn(F);
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(3) there is a finite-index subgroupH ′ � G and a surjection ϕ′ : H ′ → Z such that bp(kerϕ′; F) <
∞ for all p � n.

We highlight the following corollary, which implies, in particular, that if F and F′ are skew-
fields of the same characteristic, then a RFRS group G is DFG-acyclic in dimensions � n if and
only if it is DF′G-acyclic in dimensions � n. Moreover, it also implies that if G is DFpG acyclic
in dimensions � n for some prime p, then it is also �2-acyclic in dimensions � n.

Corollary C (Corollary 6.15). Let G be a virtually RFRS group and let n ∈ N.

(1) If F and F′ are skew-fields of the same characteristic, then G virtually algebraically fibres
with kernel of type FPn(F) if and only if it virtually algebraically fibres with kernel of type
FPn(F′).

(2) If p is a prime such that G virtually algebraically fibres with kernel of type FPn(Fp), then
it virtually fibres with kernel of type FPn(Q).

The final section of the paper is devoted to some applications of the main theorems. An inter-
esting question is to determine general conditions under which amenable groups are elementary
amenable. There are many examples of amenable groups that are not elementary amenable, for
instance, Grigorchuk’s group of intermediate growth, but it is not known whether there are exam-
ples of amenable groups of finite cohomological dimension that are not elementary amenable.
Moreover, elementary amenable groups of finite cohomological dimension are virtually solvable
by [Hil91, Lemma 2] and [HL92, Corollary 1]. This leads us to the following question, which first
appeared in the work of Degrijse.

Question 1.3 (Degrijse [Deg16]). Are amenable groups of finite cohomological dimension over
Z virtually solvable?

We obtain the following as an application of Theorem A, which provides evidence of a positive
answer for virtually RFRS groups.

Theorem D (Theorem 7.4). If G is a virtually (amenable RFRS group of type FP(Q)), then
G is virtually Abelian.

We think of this result as being in the same vein as the well-known fact that nilpotent RFRS
groups must be virtually Abelian (see, e.g., [KS20, Proposition 2.5]). As a corollary, we confirm
the following conjecture of Baer for virtually RFRS groups of type FP(Q). Note that this class
of groups includes all virtually compact special groups.

Conjecture 1.4. If G is a group such that the group ring ZG is Noetherian, then G is
polycyclic-by-finite.

Hall showed that polycyclic-by-finite groups have Noetherian group rings [Hal59, Theorem 4],
but it is still unknown whether the converse holds. Some progress was made recently by
Kropholler and Lorensen, who showed that if RG is right Noetherian and R is a domain, then
G is amenable and all of its subgroups are finitely generated [KL19, Corollary B]. This result
provides evidence for the conjecture, as the only known amenable groups in which every sub-
group is finitely generated are polycyclic-by-finite. We obtain the following as a consequence of
Theorem D and Kielak’s appendix to [Bar19].

Corollary E (Corollary 7.6). Let G be a virtually RFRS group of type FP(Q) such that ZG
is Noetherian. Then G is virtually Abelian.
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Finally, we mention that Llosa-Isenrich, Martelli and Py remarked in [LMP21] that an easy
consequence of Theorem A, Agol’s theorem [Ago13], and the work of Agol and Bergeron, Haglund
and Wise [BHW11] is the existence of hyperbolic groups containing type FPn−1(Q) subgroups
that are not of type FPn(Q) for all n ∈ N. We also remark that, by the same argument, such
lattices in PO(2n+ 1, 1) algebraically fibre with kernel of type FP(Q).

Proposition 1.5 [LMP21, Proposition 19]. Let Γ ∈ PO(m, 1) be a hyperbolic arithmetic lattice
of the simplest type. If m = 2n, then Γ virtually fibres with kernel of type FPn−1(Q) but not of
type FPn(Q). If m = 2n+ 1, then Γ virtually fibres with kernel of type FP(Q).

Our methods do not allow us to say anything about algebraic fibring with kernels of type
FPn(Fp) for p prime (nor about algebraic fibring with stronger finiteness properties of the kernel)
since the DFpG-Betti numbers of simplest type hyperbolic arithmetic lattices are not known to
vanish. In a subsequent paper [LP24], Llosa-Isenrich and Py showed that there are hyperbolic
arithmetic lattices of the simplest type in PU(n, 1) that virtually fibre with kernel of type Fn−1

but not of type FPn(Q), answering a question of Brady about the existence of subgroups of
hyperbolic groups with exotic finiteness properties.

1.1 Structure of the paper
In § 2 we introduce some of the main tools and objects that will be used throughout the paper.
In particular, we define finiteness properties of groups, Hughes-free division rings, RFRS groups
and Ore localisation.

Section 3 recalls what we will need from the theory of valuations on free resolutions developed
by Bieri and Renz in [BR88]. The results in [BR88] are stated for free resolutions over group
rings with coefficients in Z, however we will need them for coefficients in an arbitrary associative,
unital ring R. There is no essential dependence on the ring, so our proofs are similar to those of
Bieri and Renz after replacing Z with R.

In § 4, we introduce the complex of horochains associated to a free resolution equipped with
a valuation.

Section 5 begins with the definition of the higher Σ-invariants ΣnR(G;M) for a group G, a uni-
tal, associative ring R, and an RG-module M . Again, these were introduced in the case R = Z in
[BR88], and reduce to the usual Bieri–Neumann–Strebel (BNS) invariant when n = 1, R = Z and
M = Z is the trivial ZG-module. The rest of the section is devoted to the proof of Theorem 5.3,
which gives equivalent characterisations of the invariants Σn

R(G;M). The most important char-
acterisation for our purposes is the following: [χ] ∈ Σn

R(G;M) if and only if TorRGi (R̂G
χ
,M) = 0

for all i � n, where R̂G
χ

is the Novikov ring. When n = 1, this result is Sikorav’s theorem [Sik87]
and is a key ingredient in Kielak’s proof of Theorem 1.1. The proof follows arguments given in
[BR88] and Schweitzer’s appendix to [Bie07]. Theorem 5.3 is the main technical result that will
be used in the proof of Theorem 6.7.

In § 6 we introduce DFG-homology and prove properties of DFG-Betti numbers analogous to
those of �2-Betti numbers. Namely, we prove that

[G : H] · bDFG
p (G) = bDFH

p (H)

(Lemma 6.3) whenever DFG exists and H is a finite index subgroup of G. In Theorem 6.4,
we show that if bDFK

p (K) <∞ and G fits into a short exact sequence 1 → K → G→ Z → 1,
then bDFG

p (G) = 0. This should be thought of as an analogue of [Lüc02, Theorem 7.2] for
DFG-Betti numbers. We then prove the main result, Theorem 6.7, and obtain Theorem 6.11
as a special case. In Theorem 6.14, we show that virtually fibring with kernel of type
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FPn(Q) is equivalent to having a virtual map to Z whose kernel has finite Betti numbers in
dimensions � n.

We conclude with the proofs of Theorem 7.4 and Corollary 7.6 in § 7, and mention related
work of Llosa-Isenrich, Martelli, and Py.

2. Preliminaries

Remark. In the following, all rings will be associative and unital with 1 �= 0.

2.1 Finiteness properties
Definition 2.1 (Type FPn). Let R be a ring and M be a left R-module. We say that M is of
type FPn, and write M ∈ FPn, if M has a projective resolution

· · · → Pn+1 → Pn → · · · → P1 → P0 →M → 0

by left R-modules, where Pj is finitely generated for j � n. If we want to specify the ring, we
say that M is of type FPn over R and write M ∈ FPn(R). If Pj = 0 for j > n, then we write
M ∈ FP(R).

A group G is of type FPn over R if the trivial RG-module R is of type FPn(RG); in this case,
we write G ∈ FPn(R). Similarly, if the trivial RG-module R is of type FP(RG), then we write
G ∈ FP(R).

We will often use the fact that an R-module M is of type FPn if and only if there is a
free resolution · · · → Fn+1 → Fn → · · · → F0 →M → 0 with Fj finitely generated for j � n (see
[Bro94, Proposition VIII.4.3]). Note that the analogous fact does not hold for type FP.

The following definition will not be needed until § 7.

Definition 2.2 (cohomological dimension). A resolution · · · → P1 → P0 →M → 0 of an
R-module M has length n if Pn �= 0 and Pm = 0 for m > n. A group G has cohomological
dimension n over R if n is the shortest length of any projective resolution of the trivial
RG-module R. In this case we will write cdR(G) = n. If R has no finite-length projective
resolution, then cdR(G) = ∞.

Note that G ∈ FP(R) implies that G has finite cohomological dimension over R, but not
conversely.

2.2 Hughes-free division rings
We are following Jaikin-Zapirain’s exposition of this material; in particular, Definitions 2.3 and
2.4 are taken from [JZ21].

Definition 2.3 (Hughes-free division rings). Let F and D be skew-fields, let G be a locally
indicable group, and let ϕ : FG→ D be a ring homomorphism. Then the pair (D, ϕ) is Hughes-
free if:

(1) D is the skew-field generated by ϕ(FG), i.e. if E ⊆ D is a skew-field such that ϕ(FG) ⊆ E ,
then E = D;

(2) for every nontrivial finitely generated subgroup H � G, every normal subgroup N � H such
that H/N ∼= Z, and every set of elements h1, . . . , hn ∈ H lying in pairwise distinct cosets of
N , the sum

〈ϕ(FN)〉 · ϕ(h1) + · · · + 〈ϕ(FN)〉 · ϕ(hn)

is direct, where 〈ϕ(FN)〉 is the sub-skew-field of D generated by ϕ(FN).
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Hughes showed that if such a pair (D, ϕ) exists, then D is unique up to FG-algebra iso-
morphism [Hug70]. Thus, we denote D by DFG. Let H � G be a subgroup and suppose that DFG

exists. Then DFH exists as well and is equal to 〈ϕ(FH)〉 ⊆ DFG. Hence, we will view DFH as a
subset of DFG whenever H is a subgroup of G. Moreover, Gräter showed that DFG is strongly
Hughes-free whenever it exists [Grä20, Corollary 8.3], which is to say that condition (2) above
can be replaced with the following:

(2′) for every nontrivial subgroup H � G, every normal subgroup N �H, and every set of
elements h1, . . . , hn ∈ H lying in pairwise distinct cosets of N , the sum

〈ϕ(FN)〉 · ϕ(h1) + · · · + 〈ϕ(FN)〉 · ϕ(hn)

is direct.

Definition 2.4 (Crossed products). A ring R is G-graded if its underlying Abelian group is
isomorphic to a direct sum

⊕
g∈GRg of Abelian groups Rg and RgRh ⊆ Rgh for all g, h ∈ G.

If Rg contains a unit for each g ∈ G, then we say that R is a crossed product of Re and G, and
we write R = Re ∗G.

Strong Hughes-freeness implies the following useful properties, which are stated in [JZ21].

Proposition 2.5. Let G be a locally indicable group such that DFG exists, let ϕ be as in
Definition 2.3 and let N � G be a normal subgroup. If R is the subring of DFG generated by DFN

and ϕ(FG), then:

(1) R ∼= DFN ∗ (G/N);
(2) if [G : N ] <∞, then DFG = R.

Proof. Starting with property (1), let {ti}i∈I be a transversal for N in G. We claim that every
element of R can be written as a finite sum

∑
i αiϕ(ti), where αi ∈ DFN for each i ∈ I. This

will conclude the proof of property (1) by strong Hughes-freeness. Since every element of G is of
the form nti for some n ∈ N and i ∈ I, it is enough to show that ϕ(ti)aϕ(ti)−1 ∈ DFN for every
i ∈ I and every a ∈ DFN . Note that DFN =

⋃
j�0 Dj where D0 = ϕ(FN) and Dj+1 is generated

by Dj and the set {x−1 : x ∈ Dj � {0}}. Because N is normal in G, it is clear that ϕ(FN) is
closed under conjugation by ϕ(G). By induction, we see that each Dj is closed under conjugation
by ϕ(G).

To prove property (2), we recall the fact that a finite-dimensional algebra over a skew-field
with no zero-divisors is a skew-field. Hence, if [G : N ] <∞, then R ∼= DFN ∗ (G/N) is finite-
dimensional over DFN and is therefore a skew-field. However, DFG is the smallest skew-field
containing ϕ(FG), so DFG = R. �

2.3 RFRS groups
RFRS groups were defined by Agol in [Ago08] in order to show that certain hyperbolic
3-manifolds virtually fibre over the circle. Let G be a group and let Gab := G/[G,G] be its
Abelianisation. Since Gab is Abelian, it is canonically a Z-module, so we can form the ten-
sor product Q ⊗Z G

ab, and there is a group homomorphism G→ Q ⊗Z G
ab sending g ∈ G to

1 ⊗ g[G,G].

Definition 2.6. A group G is RFRS if:

(1) there is a chain G = G0 � G1 � G2 � · · · of finite index normal subgroups of G such that⋂∞
i=0Gi = {1};

(2) ker(Gi → Q ⊗Z G
ab
i ) � Gi+1 for every i � 0.
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The following fact that will be used in the proof of Theorem 6.7.

Proposition 2.7. Let G be a finitely generated RFRS group. Then:

(1) G is residually poly-Z;
(2) G virtually retracts onto all of its finitely generated Abelian subgroups;
(3) G is locally indicable.

Proof. Item (1) is proven in [JZ21, Proposition 4.4]. We now prove item (2). By [Min21,
Proposition 1.5], it suffices to show that G virtually retracts onto its cyclic subgroups. Let
G = G0 � G1 � · · · be a RFRS chain and let 〈a〉 be a cyclic subgroup of G. Let i be the
unique integer such that a ∈ Gi �Gi+1. It follows that a is not in the kernel of the free
Abelianisation map Gi → Gfab

i . Let a denote the image of a in Gfab
i . There is a finite index

subgroup H ′ � Gfab
i and a retraction H ′ → 〈a〉. Let H � Gi be the preimage of H ′. The compo-

sition H → H ′ → 〈a〉 → 〈a〉 is the desired retraction. Item (3) is an immediate consequence of
item (1). �

2.4 Ore localisation
Ore localisation is an analogue of usual localisation for noncommutative rings. Let R be a ring
and let S be its set of non-zero-divisors. Then R satisfies the Ore condition if for every r ∈ R
and s ∈ S there are elements p, p′ ∈ R and q, q′ ∈ S such that

qr = ps and rq′ = sq′.

If S = R \ {0} and R satisfies the Ore condition, then it is called an Ore domain, and we can form
its Ore localisation Ore(R) as follows. Define an equivalence relation ∼R on R× S by declaring
that (r, s) ∼R (r′, s′) if and only if there are elements a, b ∈ S such that

ra = r′b and sa = s′b.

The equivalence class of (r, s) under ∼R is denoted r/s and called a right fraction. Then Ore(R)
is defined to be the set of right fractions. We can similarly define an equivalence relation ∼L and
define Ore(R) as a set of left fractions. The Ore condition ensures that these two constructions
are isomorphic and indicates how to convert right fractions into left fractions and vice versa. For
a detailed construction of Ore(R) and the definition of addition and multiplication making this
set into a ring, we refer the reader to § 4.4 of Passman’s book [Pas77].

The facts about Ore localisation that we will use are summarised in the following proposition.

Proposition 2.8. Let R be an Ore domain. Then:

(1) Ore(R) is a skew-field;
(2) for every r ∈ R, we have r/1 = 1\r and the map R→ Ore(R), r �→ r/1 = 1\r is an injective

ring homomorphism;
(3) (see [JZ21, Proposition 2.2(2)]) if G is a group and F is a skew-field such that DFG exists

and K is a normal subgroup such that G/K ∼= Z, then DFG
∼= Ore(DFK ∗ (G/K)).

3. Valuations on free resolutions

In this section, we introduce valuations on free resolutions over a group ring. We very closely
follow Bieri and Renz [BR88] where the theory is developed in the case where the ring is Z.
Their proofs go through without change when Z is replaced by an arbitrary ring R.
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Let R be a ring, G a group, and M a left RG-module. A free resolution of M is an exact
sequence

· · · ∂n+1−−−→ Fn
∂n−→ Fn−1

∂n−1−−−→ · · · ∂1−→ F0
∂0−→M → 0

of left RG-modules, where Fi is free for all i � 0. We will usually omit the subscripts on the
boundary maps ∂n and denote the free resolution by F• →M → 0. Let F be the free RG-module⊕∞

i=0 Fi, and define the n-skeleton of F to be F (n) :=
⊕n

i=0 Fi. The elements of F are called
chains, so a chain is not necessarily an element of Fi for any i in our context. Fixing a basis Xi

for each Fi, we note that X :=
⋃∞
i=0Xi is a basis for F and X(n) :=

⋃n
i=0Xi is a basis for F (n).

The resolution F• →M → 0 is admissible with respect to X if ∂x �= 0 for every x ∈ X. We will
always assume that our free resolutions are admissible with respect to the basis we are working
with. This is not a strong requirement, since if all boundary maps are nonzero, then F has a
basis with respect to which F• →M → 0 is admissible; otherwise, we can truncate the resolution
and choose a basis to obtain an admissible resolution of finite length. We also define the support
of a chain c ∈ F (with respect to X), denoted suppX(c), as follows: every chain c ∈ F can be
written uniquely as

∑
g∈G,x∈X rg,xgx, where rg,x ∈ R. Then suppX(c) := {gx : rg,x �= 0}; we will

usually drop the subscript X when the basis is understood.
Let χ : G→ R be a nontrivial character, that is, a nonzero group homomorphism from G

to the additive group R. This provides the elements of G with a notion of height, which we
now extend to the chains of F . Let R∞ = R ∪ {∞}, where ∞ is an element such that t <∞
for every t ∈ R. We construct a function vX : F → R∞ via the following inductive procedure.
For an element c ∈ F0, define vX(c) = inf{χ(g) : gx ∈ supp(c)}. Let n > 0 and assume that we
have defined vX on Fn−1. For x ∈ Xn, let vX(x) := vX(∂x). For c ∈ Fn, set vX(c) = inf{χ(g) +
vX(x) : gx ∈ supp(c)}. For an arbitrary c ∈ F , write c =

∑
i ci, where ci ∈ Fi, and define c =

infi{vX(ci)}. We are assuming the convention vX(0) = ∞, since supp(0) = ∅. The function vX
is called the valuation extending χ with respect to X. It is clear from the definition that vX(c) =
inf{χ(g) + vX(x) : gx ∈ supp(c)} for any chain c ∈ F . Again, we will usually drop the X in the
subscript when the basis is understood.

Proposition 3.1. For the valuation vX = v : F → R∞ defined above and for any c, c′ ∈ F and
g ∈ G, we have:

(1) v(c+ c′) � min{v(c), v(c′)};
(2) v(c) � v(rc) for all r ∈ R, and v(c) = v(rc) if r is not a zero-divisor;
(3) if v(c) �= v(c′), then v(c+ c′) = min{v(c), v(c′)};
(4) v(gc) = χ(g) + v(c);
(5) v(c) = ∞ if and only if c = 0;
(6) if c ∈ ⊕

i�1 Fi, then v(∂c) � v(c).

Proof. Property (1) follows from the fact that supp(c+ c′) ⊆ supp(c) ∪ supp(c′). The first part
of property (2) follows from the fact that supp(c) ⊇ supp(rc). If r is not a zero-divisor, then
supp(c) = supp(rc), which yields the second statement of property (2).

To prove property (3), assume without loss of generality that v(c) < v(c′). Then,

v(c) = v((c+ c′) − c′) � min{v(c+ c′), v(−c′)} = min{v(c+ c′), v(c′)}.
Since we assumed that v(c) < v(c′), the previous line implies that min{v(c+ c′), v(c′)} =
v(c+ c′); hence, v(c) = min{v(c), v(c′)} � v(c+ c′). However, v(c+ c′) � min{v(c), v(c′)} by
property (1), so we obtain property (3).
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For property (4), we have

v(gc) = inf{χ(h) + v(x) : hx ∈ supp(gc)}
= inf{χ(g(g−1h)) + v(x) : hx ∈ g · supp c}
= χ(g) + inf{χ(g−1h) + v(x) : (g−1h)x ∈ supp c}
= χ(g) + v(c).

For property (5), we first show that if c ∈ Fn \ {0}, then v(c) <∞ by induction on n. This
is true for n = 0 since χ(G) ⊆ R. Now let n > 0. Since c �= 0, there is some element gx in its
support, where g ∈ G and x ∈ X. Then

v(c) � v(gx) = χ(g) + v(x) = χ(g) + v(∂x) <∞
by the inductive hypothesis and by admissibility of F• →M → 0 with respect to X. For a general
nonzero element c ∈ F , write c =

∑
i ci with ci ∈ Fi. Then v(c) = infi{v(ci)} <∞ since at least

one of the chains ci is nonzero. Conversely, if c = 0, then v(c) = ∞, since the infimum of the
empty set is ∞.

For property (6), let c =
∑

g∈G,x∈X rg,xgx ∈ ⊕
i�1 Fi. Then

v(∂c) = v

(
∂

( ∑
g∈G,x∈X

rg,xgx

))

= v

( ∑
g∈G,x∈X

rg,xg∂x

)

� inf{v(rg,xg∂x) : gx ∈ supp(c)} (by (1))

� inf{v(g∂x) : gx ∈ supp(c)} (by (2))

= inf{χ(g) + v(∂x) : gx ∈ supp(c)}
= inf{χ(g) + v(x) : gx ∈ supp(c)}
= v(c). �

Definition 3.2 (Valuation subcomplex and essential acyclicity). Given an admissible free res-
olution F• →M → 0 over RG (with respect to some fixed basis X), a nontrivial character
χ : G→ R, and the valuation v : F → R∞ extending χ, define the valuation subcomplex of F
with respect to v to be the chain complex · · · → F vn → · · · → F v0 →M → 0, where F vn = {c ∈
Fn : v(c) � 0}. We denote the valuation subcomplex by F v• →M → 0 and let F v :=

⊕∞
i=0 F

v
i .

Proposition 3.1(6) ensures that F v• →M → 0 is a chain complex of left RGχ-modules, where Gχ
is the monoid {g ∈ G : χ(g) � 0}. It is not hard to show that each F vi is a free RGχ-module and
has an RGχ-basis of cardinality |Xi|, where Xi is an RG-basis for Fi.

The chain complex F v• →M → 0 is essentially acyclic in dimension n if there is a real number
D � 0 such that for every cycle z ∈ F vn there is a c ∈ Fn+1 with ∂c = z and D � v(z) − v(c). We
extend the definition of essential acyclicity to dimension −1 by declaring that v(m) = 0 for all
m ∈M \ {0}.

The definition of essential acyclicity in dimension n is equivalent to the following seemingly
weaker condition: for every cycle z ∈ F vn , there is a c ∈ Fn+1 such that ∂c = z and v(c) � −D.
To see this, let z ∈ F vn be a cycle. It is easily shown that v(F ) ⊆ χ(G) ∪ {∞}, so there is a g ∈ G
such that χ(g) = v(z). Since g−1z is also in F vn with v(g−1z) = 0, there is some c ∈ F vn+1 such
that ∂c = g−1z and v(c) � −D. Thus, ∂(gc) = z, and D � v(z) − v(gc).
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4. Horochains

Definition 4.1 (Complex of horochains and horo-acyclicity). Let F• →M → 0 be an admis-
sible free resolution with respect to some basis X, let χ : G→ R be a nontrivial character, and
let v : F → R∞ be the valuation extending χ. Define F̂ to be the left RG-module of chains that
are finitely supported below every height. More precisely, F̂ is the RG-module of formal sums∑

g∈G,x∈X rg,xgx such that {gx : v(gx) � t, rg,x �= 0} is finite for every t ∈ R. The elements of F̂
are called horochains. If ĉ ∈ F̂ , then its support is suppX(ĉ) := {gx : rg,x �= 0}. Let F̂i ⊆ F̂ be
the subset of chains with support in Fi and let F̂ (n) :=

⊕n
i=0 F̂i. Proposition 3.1(6) guarantees

that ∂ : Fn → Fn−1 extends to a map ∂ : F̂n → F̂n−1 in the obvious way, so we get a complex
· · · → F̂n → · · · → F̂0 → 0. Note that F̂ is not equal to

⊕∞
i=0 F̂i since the support of a horochain

might intersect infinitely many of the modules F̂i. A cycle in the chain complex F̂ is called a
horocycle. We say that F• →M → 0 is horo-acyclic in dimensions n � 0 with respect to v if the
chain complex · · · → F̂1 → F̂0 → 0 is acyclic in dimension n.

We can extend the definition of v to F̂ by defining v(ĉ) := inf{v(gx) : supp(ĉ)} for any
horochain ĉ. If ĉ �= 0, then {v(gx) : supp(ĉ)} is nonempty and attains a minimum because chains
are finitely supported below any given height. Properties (1)–(5) of Proposition 3.1 hold in this
setting with the same proofs.

A version of Proposition 3.1(6) holds for horochains, namely we have v(∂ĉ) � v(ĉ) for all
horochains ĉ, but we need to modify the proof: If ĉ = 0, then the claim is clear. Otherwise,
let ĉ �= 0 be a horochain, and let gx ∈ supp(ĉ) be such that v(gx) = v(ĉ). By the finite version
of property (6), we have that v(∂g′x′) � v(g′x′) � v(gx) for every g′x′ ∈ supp(ĉ). Since every
g′′x′′ ∈ supp(∂ĉ) is contained in supp(∂g′x′) for some g′x′ ∈ supp(ĉ), we have that v(g′′x′′) �
v(∂g′x′) � v(gx) for every g′′x′′ ∈ supp(∂ĉ). Thus, v(∂ĉ) � v(ĉ).

The following lemma will be used in the proof of Theorem 5.3.

Lemma 4.2. Let F• →M → 0 (respectively, F ′• →M → 0) be a free resolution over RG admis-
sible with respect to a basis X (respectively, X ′), and let v (respectively, v′) be the valuation
extending a nontrivial character χ : G→ R. Suppose that F (n) is finitely generated, and that
ϕ : F → F ′ is a homomorphism of RG-modules. Then:

(1) ϕ induces a homomorphism of left RG-modules given by

ϕ̂ : F̂ (n) → F̂ ′,
∑

rg,xgx �→
∑

rg,xgϕ(x);

(2) v′(ϕ̂(ĉ)) � v(ĉ) + minx∈X(n){v′(ϕ(x)) − v(x)} for every ĉ ∈ F (n).

Proof. For part (1), we need to show that ϕ̂(ĉ) is a horochain for any horochain ĉ ∈ F̂ (n). To
this end, let ĉ =

∑
rg,xgx, and note that there are only finitely many elements x ∈ X such that

gx ∈ suppX(ĉ). If ϕ̂(ĉ) is not a horochain, then the set {gx ∈ suppX(ĉ) : v′(gϕ(x)) � t} is infinite
for some t ∈ R. Since F (n) is finitely generated, there is some fixed y ∈ X such that v′(gϕ(y)) � t
and gy ∈ suppX(ĉ) for infinitely many values of g ∈ G. But then

v(gy) = χ(g) + v(y)

= χ(g) + v′(ϕ(y)) + v(y) − v′(ϕ(y))

= v′(gϕ(y)) + v(y) − v′(ϕ(y))

� t+ v(y) − v′(ϕ(y))

for infinitely many gy ∈ suppX(ĉ), but ĉ is a horochain.
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For part (2), write ĉ =
∑

x∈X(n) ĉx, where ĉx =
∑

g∈G rg,xgx. Then

v′(ϕ̂(ĉ)) � min
x∈X(n)

{v′(ϕ̂(ĉx))}

� min
x∈X(n)

{inf{v′(gϕ(x)) : gx ∈ supp ĉx}}

= min
x∈X(n)

{inf{v(gx) : gx ∈ supp ĉx} + v′(ϕ(x)) − v(x)}

= min
x∈X(n)

{v(ĉx) + v′(ϕ(x)) − v(x)}

� min
x∈X(n)

{v(ĉx)} + min
x∈X(n)

{v′(ϕ(x)) − v(x)}

= v(ĉ) + min
x∈X(n)

{v′(ϕ(x)) − v(x)}. �

Note that Lemma 4.2(2) applies to chains in F since these are just finite horo-chains. We
will use this in the proof Theorem 5.3.

5. Characterisations of the Σ-invariant

We introduce the invariants Σn
R(G;M), which are generalisations of the classical BNS invariant

[BNS87] and its higher-dimensional analogues [BR88]. The only difference is that we work over
a general ring R, whereas the higher BNS invariants are defined over Z.

Let G be a group. We declare two characters χ, χ′ : G→ R to be equivalent if χ = α · χ′ for
some α > 0 and let S(G) denote the set of equivalence classes of nonzero characters. We call
S(G) the character sphere of G, because it can be given the topology of a sphere when G is
finitely generated.

Definition 5.1 (Σ-invariants). Let M be an RG-module. Then define

Σn
R(G;M) = {[χ] ∈ S(G) : M ∈ FPn(RGχ)},

where Gχ = {g ∈ G : χ(g) � 0}. Note that Gχ = Gχ′ if [χ] = [χ′], so Σn
R(G;M) is well-

defined.

Definition 5.2 (Novikov ring). Let G be a group, let R be a ring and let χ : G→ R be a
character. Then the Novikov ring R̂G

χ
is the set of formal sums∑

g∈G
rgg

such that {g ∈ G : rg �= 0 and ϕ(g) � t} is finite for every t ∈ R. We give R̂G
χ

a ring struc-
ture by defining rg + r′g := (r + r′)g and rg · r′g′ := rr′gg′ for r, r′ ∈ R, g, g′ ∈ G, and extending
multiplication to all of R̂G

χ
in the obvious way.

Theorem 5.3 gives several characterisations of the Σ-invariants and is the main technical
tool we will need to prove Theorem 6.7. More specifically, we will need the characterisation of
Σn
R(G;M) in terms of the vanishing of Novikov homology; this is the equivalence of parts (1)

and (5) in the following theorem, which should be thought of as a higher-dimensional version of
Sikorav’s theorem [Sik87].

Theorem 5.3. Let R be a ring, let M be a left RG-module of type FPn and let χ : G→ R

be a nontrivial character. Let F• →M → 0 be a free resolution admissible with respect to a
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basis X =
⋃∞
i=0Xi and with finitely generated n-skeleton F (n). Let v : F → R∞ be the valuation

extending χ with respect to X. The following are equivalent:

(1) [χ] ∈ Σn
R(G;M);

(2) F v• →M → 0 is essentially acyclic in dimensions −1, . . . , n− 1;
(3) there is a chain map ϕ : F → F lifting the identity idM such that v(ϕ(c)) > v(c) for every

c ∈ F (n);
(4) F• →M → 0 is horo-acyclic in dimensions 0, . . . , n with respect to v;

(5) TorRGi (R̂G
χ
,M) = 0 for all 0 � i � n.

The strategy of the proof will be as follows: we begin by proving (2) ⇒ (3) ⇒ (4) ⇒ (2).
This is done by Schweitzer in the appendix of [Bie07] in the case R = Z. Once this is done,
we prove the equivalence of parts (4) and (5), again following Schweitzer. Finally, we prove the
equivalence of parts (1) and (2) following the appendix to Theorem 3.2 in [BR88], where again
this is done in the case R = Z. The proofs below are essentially the same as those given in the
references just cited; there is no crucial dependence on the coefficient ring R.

Proof of (2) ⇒ (3). Assume that F v• →M → 0 is essentially acyclic in dimensions � n− 1 and
let D > 0 be a constant such that for each k < n and every cycle z ∈ Fk, there is a chain c ∈ Fk+1

with ∂c = z and D � v(z) − v(c). We will construct a chain map ϕ : F → F lifting idM such that
v(ϕ(c)) > v(c) + (n− k)D for every c ∈ F (k), which implies part (3).

We define ϕ on F (k) by induction on k. For the base case, let x ∈ X0 be arbitrary and fix some
g ∈ G such that χ(g) > (n+ 1)D. The element g−1∂x ∈M is a cycle, so there is some cx ∈ F0

such that ∂cx = g−1∂x and D � v(g−1∂x) − v(cx) = −v(cx), since v|M\{0} = 0. Define ϕ on F (0)

by setting ϕ(x) = gcx for each x ∈ X0. It is clear that idM∂ = ∂ϕ on F (0). By Lemma 4.2(2),

v(ϕ(c)) � v(c) + min
x∈X0

{v(ϕ(x)) − v(x)} > v(c) + nD

for every c ∈ F (0).
Let k > 0 and suppose ϕ is defined on F (k−1) such that it lifts idM and v(ϕ(c)) > v(c) + (n−

k + 1)D for all c ∈ F (k−1). Let x ∈ Xk and note that ϕ(∂x) is a cycle. By essential acyclicity,
there is a chain dx ∈ Fk such that ∂dx = ϕ(∂x) and D � v(ϕ(∂x)) − v(dx). Define ϕ on F (k) by
setting ϕ(x) = dx. Then ϕ∂ = ∂ϕ by construction, and for every x ∈ Xk we have

v(ϕ(x)) − v(x) = v(dx) − v(x)

� v(ϕ(∂x)) − v(x) −D

= v(ϕ(∂x)) − v(∂x) −D

> (n− k)D

by induction. By Lemma 4.2(2), we have

v(ϕ(c)) � v(c) + min
x∈Xk

{v(ϕ(x)) − v(x)} > v(c) + (n− k)D. �

We pause here to prove a lemma that will immediately imply (3) ⇒ (4) and will be useful
in the proofs of (4) ⇒ (2) and (4) ⇒ (5). We recall that the maps Ĥ and ϕ̂ that appear in the
statement of the lemma below are defined in Lemma 4.2.

Lemma 5.4. With the assumptions of Theorem 5.3, let ϕ : F → F be a chain map lifting idM
such that v(ϕ(c)) > v(c) for all c ∈ F (n) and let H : F → F be a chain homotopy such that
∂H +H∂ = idF −ϕ. Let ẑ ∈ F̂ (n) be a horocycle and define ĉẑ :=

∑∞
i=0 Ĥϕ̂

i(ẑ). Then ĉẑ is a
horochain and ∂ĉẑ = ẑ.
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Proof. By Lemma 4.2(2) there are constants α and β such that

v(ϕ̂(ĉ)) � v(ĉ) + α and v(Ĥ(ĉ)) � v(ĉ) + β

for every horochain ĉ ∈ F̂ (n). Moreover, α > 0 since v(ϕ(f)) > v(f) for every f ∈ F (n). To see
that ĉ is a horochain, by induction we have v(Ĥϕ̂i(ẑ)) � v(ẑ) + iα+ β, so for all t ∈ R there are
only finitely many integers i � 0 such that v(Ĥϕ̂i(ẑ)) � t. Since supp(ĉẑ) ⊆

⋃∞
i=0 supp(Ĥϕ̂i(ẑ))

and each Ĥϕ̂i(ẑ) is a horochain, it follows that there are only finitely many gx ∈ supp ĉ such
that v(gx) � t, so ĉ is a horochain.

Finally, we have

∂ĉ =
∞∑
i=0

∂Ĥϕ̂i(ẑ) =
∞∑
i=0

(id
F̂ (n) −ϕ̂− Ĥ∂)ϕ̂i(ẑ) =

∞∑
i=0

(ϕ̂i − ϕ̂i+1)(ẑ) = ẑ. �

Proof of (3) ⇒ (4). By [Bro94, Lemma I.7.4], there is a chain homotopy H : F → F such that
∂H +H∂ = idF −ϕ. If ẑ ∈ F̂ (n) is a horocycle, then ∂ĉẑ = ẑ by Lemma 5.4. �
Proof of (4) ⇒ (2). We will prove that F v• →M → 0 is essentially acyclic in dimension k for all
k < n by induction on k. For the base case, we show that F v• →M → 0 is exact at M , which
implies essential acyclicity in dimension −1. Let m ∈M . By exactness of F• →M → 0, there
is a chain c ∈ F0 such that ∂c = m. By horo-acyclicity in dimension 0, there is some horochain
ĉ ∈ F̂1 such that ∂ĉ = c. There are c− ∈ F1 and ĉ+ ∈ F̂1 such that ĉ = c− + ĉ+, where v(c−) < 0
and v(ĉ+) � 0. Then ∂(c− ∂c−) = m and

v(c− ∂c−) = v(c− ∂(ĉ− ĉ+)) = v(∂ĉ+) � v(ĉ+) � 0.

This shows that c− ∂c0 ∈ F v0 , which proves that F v• →M → 0 is exact at M .
Let k > −1 and suppose that F v• →M → 0 is essentially acyclic in dimensions < k. By

(2) ⇒ (3) applied at k − 1, there is a chain map ϕ : F → F lifting idM such that v(ϕ(c)) > v(c)
for all c ∈ F (k). Since idF and ϕ both lift idM and F• →M → 0 is acyclic, there is a chain
homotopy H : F → F such that ∂H +H∂ = idF −ϕ (see [Bro94, Lemma I.7.4]). As in the proof
of Lemma 5.4, there are constants α > 0 and β < 0 such that

v(ϕ(c)) � v(c) + α and v(H(c)) � v(c) + β

for every c ∈ F (k).
Let z ∈ F vk be a cycle. Since F• →M → 0 is acyclic, there is some d ∈ Fk+1 such that ∂d = z.

Consider the horocycle ẑ := d− d̂z, where d̂z =
∑∞

i=0Hϕ
i(z) is defined as in Lemma 5.4. Note

that
v(Hϕi(z)) � v(z) + iα+ β � β

for every i � 0, and therefore that v(d̂z) � β. By horo-acyclicity in dimension k + 1, there is a
(k + 2)-horochain d̂ such that ∂d̂ = ẑ. As in the base case, there are d− ∈ Fk+2 and d̂+ ∈ F̂k+2

such that d̂ = d− + d̂+, where v(d−) < 0 and v(d̂+) � 0. Then ∂(d− ∂d−) = ∂d = z, and

v(d− ∂d−) = v(d̂z + ẑ − ∂(d̂− d̂+))

= v(d̂z + ∂d̂+)

� min{v(d̂z), v(∂d̂+)}
� β

since v(d̂z) � β and v(∂d∞) � v(d∞) � 0 > β. Letting D = −β in the definition of essential
acyclicity, we see that F v• →M → 0 is essentially acyclic in dimension k. �
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Proof of (5) ⇒ (4). Suppose that TorRGi (R̂G
χ
,M) = 0 for 0 � i � n. Consider the chain map

ψ : R̂G
χ ⊗RG F → F̂ , α⊗ c �→ αc

of left RG-modules. It is clear that ψ is injective. We claim that ψ induces an isomorphism
R̂G

χ ⊗RG F
(n) → F̂ (n). To see this, simply note that for an arbitrary horochain

ĉ =
∑

g∈G,x∈X(n)

rg,xgx

in F̂ (n), we have ∑
x∈X(n)

( ∑
g∈G

rg,xg

)
⊗ x

ϕ�−→ ĉ.

The horochain condition implies that the sums
∑

g∈G rg,xg are elements of R̂G
χ
. Thus, ψ is

surjective on the n-skeleta and is therefore an isomorphism. Note that this only works because
X(n) is finite; in general, we cannot expect ψ to be surjective since the support of a horochain
might intersect infinitely many of the modules Fn. Since TorRGi (R̂G

χ ⊗RG F,M) = 0 for all
0 � i � n, we conclude that Tori(F̂ ,M) = 0 for 0 � i � n as well. �
Proof of (4) ⇒ (5). The map ψ defined above is an isomorphism of the n-skeleta, so we imme-
diately have that TorRGi (R̂G

χ
,M) = 0 for 0 � i � n− 1. Since ψ is not necessarily surjective

as a map of the (n+ 1)-skeleta, we must work harder to show that TorRGn (R̂G
χ
,M) = 0. Let

z ∈ R̂G
χ ⊗RG Fn be an n-cycle, and let ẑ = ψ(z). Since we are assuming that part (4) holds, we

may also assume that part (3) holds and use the horochain ĉẑ from Lemma 5.4. Since ĉẑ ∈ Ĥ(F̂n),
we have that ĉẑ is in the R̂G

χ
-submodule of F̂n+1 generated by Ĥ(Xn) and, thus, ĉẑ ∈ imψ since

this is a finite set. Let c ∈ R̂G
χ ⊗RG Fn+1 such that ψ(c) = ĉẑ. Then ψ∂(c) = ∂ψ(c) = ∂ĉẑ = ẑ.

However, ψ is injective, so ∂c = z, proving that TorRGn (R̂G
χ
,M) = 0. �

We pause again before proving the equivalence of parts (1) and (2) to prove another lemma.

Lemma 5.5. Free RG-modules are flat over RGχ.

Proof. It suffices to prove that RG is flat as an RGχ-module, since the direct sum of flat modules
is flat. To this end, let ι : M ↪→ N be an injection of right RGχ-modules; our goal is to show that
ι⊗ id : M ⊗RGχ RG→ N ⊗RGχ RG is injective. Let g ∈ G be such that χ(g) < 0 and consider
the left RGχ-module RGχgk = {αgk : α ∈ RGχ, k ∈ Z}. The modules RGχgk form a directed
system with respect to the inclusion maps RGχgk ↪→ RGχg

l for k � l and the direct limit is
lim−→RGχg

k ∼= RG.
There are left RGχ-module isomorphisms RGχg

k → RGχ given by right multiplication
by g−k. Then RGχg

k is flat over RGχ, so M ⊗RGχ RGχg
k → N ⊗RGχ RGχg

k is injective for
all k ∈ Z. By exactness of the direct limit,

lim−→(M ⊗RGχ RGχg
k) → lim−→(N ⊗RGχ RGχg

k)

is injective. Since the direct limit commutes with the tensor product, the previous line implies
ι⊗ idM is injective. �

We now return to the proof of Theorem 5.3.

Proof of (1) ⇔ (2). Let g ∈ G be such that χ(g) < 0 and let Ek be the left RGχ-module gkF v.
We denote the chain complexes F v• →M → 0 and (Ek)• →M → 0 by F̃ v and Ẽk, respectively.
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Essential acyclicity in dimension j is equivalent to the existence of an integer D � 0 such that
the inclusion-induced homomorphism Hj(Ẽk) → Hj(Ẽk+D) is the zero map for all k ∈ N. This in
turn is equivalent to lim−→

∏
I Hj(Ẽk) = 0 for any index set I. Here, for fixed I and j, the powers∏

I Hj(Ẽk) form a directed system with respect to the inclusion-induced maps
∏
I Hj(Ẽk) →∏

I Hj(Ẽl) for k � l. Indeed, if D � 0 is such that Hj(Ẽk) → Hj(Ẽk+D) is the zero map, it
is clear that the direct limit will be zero. Conversely, let I = Zj(Ẽ0) = Zj(F̃ v) be the set of
j-cycles of F̃ v and consider the element ([x])x∈I ∈

∏
I Hj(Ẽ0). Since the direct limit is zero,

there is some D � 0 such that ([x])x∈I = 0 in
∏
I Hj(ẼD), which means that F̃ v is essentially

acyclic in dimension j.
There is a short exact sequence of chain complexes 0 →M → Ẽk → Ek → 0, where, by abuse

of notation, M is a chain complex concentrated in dimension −1 and Ek is the chain complex
(Ek)• → 0 with (Ek)0 in dimension 0. The long exact sequence in homology associated to the
short exact sequence gives Hj(Ẽk) ∼= Hj(Ek) for j � 1. The interesting part of the long exact
sequence is

0 → H0(Ẽk) → H0(Ek)
δ−→M → H−1(Ẽk) → 0,

where δ is the connecting homomorphism. By exactness of the direct power and direct limit
functors, the sequence

0 → lim−→
∏
I

H0(Ẽk) → lim−→
∏
I

H0(Ek)
∏

I δ−−−→
∏
I

M → lim−→
∏
I

H−1(Ẽk) → 0

is exact. Then F̃ v is essentially acyclic in dimension 0 if and only if δ induces an injection
lim−→

∏
I H0(Ek) →

∏
IM for every I. Moreover, F̃ v is essentially acyclic in dimension −1 if and

only if δ induces a surjection lim−→
∏
I H0(Ek) →

∏
IM for every I.

By Lemma 5.5, F• →M → 0 is a flat resolution of M by left RGχ-modules, so

TorRGχ

j

( ∏
I

RGχ,M

)
= Hj

(( ∏
I

RGχ

)
⊗RGχ F

)

and, therefore,

TorRGχ

j

(∏
I

RGχ,M

)
= lim−→Hj

(( ∏
I

RGχ

)
⊗RGχ Ek

)
,

as F = lim−→Ek and direct limits commute with tensor products and homology. Since (Ek)j is a
finitely generated free RGχ-module for j � n, we have (

∏
I RGχ) ⊗RGχ (Ek)j ∼=

∏
I(Ek)j . Hence,

TorRGχ

j (
∏
I RGχ,M) = lim−→Hj(

∏
I Ek) for j < n.

To summarise the work done above, we have F̃ v is essentially acyclic in dimensions −1 �
j < n if and only if:

(a) (
∏
I RGχ) ⊗RGχ M → ∏

IM is surjective if n = 0; and
(b) (

∏
I RGχ) ⊗RGχ M → ∏

IM is an isomorphism and

TorRGχ

j

( ∏
I

RGχ,M

)

vanishes for 1 � j < n otherwise.

Here we have used the general fact that TorR0 (A,B) ∼= A⊗R B. Together with Lemma 1.1 and
Proposition 1.2 of [BE74], parts (a) and (b) are equivalent to M being of type FPn(RGχ).
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Thus, we conclude that [χ] ∈ Σm
R (G;M) if and only F̃ v is essentially acyclic in dimensions j =

−1, 0, 1, . . . , n− 1. �

6. Agrarian homology and main result

Definition 6.1 (Agrarian groups and D-homology). Let R be a ring. A group G is agrarian
over R if there is a skew-field D and an injective ring homomorphism RG ↪→ D. In this case, we
will say that G is D-agrarian over R if we wish to specify the skew-field.

If G is D-agrarian over R, we define its p-dimensional D-homology to be

HD
p (G) := TorRGp (D, R),

where R is the trivial RG-module and D is viewed as a D-RG-bimodule via the embedding
RG ↪→ D. The pth D-Betti number of G is then

bDp (G) := dimDHD
p (G).

Note that bDp (G) is well-defined and integral or infinite, since a module over a skew-field has a
well-defined dimension.

Remark 6.2. The term ‘agrarian’ was introduced by Kielak in [Kie20a] in the case R = Z. Using
strong Hughes-freeness, i.e. condition (2′) after Definition 2.3, it follows that if G is a locally
indicable group and F is a skew-field such that DFG exists, then G is DFG-agrarian over F. If R
is a skew-field or an integral domain, then there are no known examples of torsion-free groups
that are not agrarian over R. For the remainder of the section, we will be interested in the
DFG-homology of G.

In what follows, we will need that DFG-Betti numbers have good scaling properties when
passing to finite index subgroups. This is analogous to the fact that �2-Betti numbers also scale
under passage to finite index subgroups.

Lemma 6.3. Let H be a finite index subgroup of G and let F be a skew-field such that DFG

exists. Then

bDFG
p (G) =

bDFH
p (H)
[G : H]

.

Proof. It suffices to prove the claim when H is normal in G. To see this, if H � G is any subgroup
of finite index, then there is normal subgroup N � G of finite index such that N � H � G (we
can take N to be the normal core of H, that is, the intersection of all the conjugates of H).
Then

bDFG
p (G) =

bDFN
p (N)
[G : N ]

=
[H : N ]bDFH

p (H)
[G : N ]

=
bDFH
p (H)
[G : H]

,

by the claim for normal subgroups.
Assume that H is a finite index normal subgroup of G and let {t1, . . . , tn} be a transversal for

H in G. By Proposition 2.5(2), we have a DFH -FG-bimodule isomorphism DFG
∼= DFH ⊗FH FG.

Take a free resolution F• → F → 0 of the trivial left FG-module F; there are chain isomorphisms

DFG ⊗FG F• ∼= (DFH ⊗FH FG) ⊗FG F• ∼= DFH ⊗FH (FG⊗FG F•) ∼= DFH ⊗FH F•
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of left DFH -modules, so HDFG
p (G) ∼= HDFH

p (H) as DFH -modules. Therefore,

bDFH
p (H) = dimDFH

HDFH
p (H)

= dimDFH
HDFG
p (G)

= [G : H] · dimDFG
HDFG
p (G)

= [G : H] · bDFG
p (G). �

In view of Lemma 6.3, if G is a group with a finite index subgroup H such that DFH exists,
we can define bDFG

p (G) = bDFH
p (H)/[G : H]. This is an abuse of notation since DFG might not

exist.
The following theorem is an analogue of a theorem of Lück which holds for �2-Betti numbers

[Lüc02, Theorem 7.2].

Theorem 6.4. Let 1 → K → G→ Z → 1 be a short exact sequence of groups and suppose that
DFG exists for some skew-field F. If bDFK

p (K) <∞ for some p � 0, then bDFG
p (G) = 0.

Proof. Let F• → F → 0 be a free resolution of F by left FG-modules. Note that the modules Fj
are also free left FK-modules and there are chain maps ιj : DFK ⊗FK Fj → DFG ⊗FG Fj , induced
by the inclusion DFK ↪→ DFG. We claim that the maps ιj are injective. To see this, it is enough to
consider the case where Fj = FG. Choose t ∈ G such that {tn : n ∈ Z} is a transversal for K � G.
By Proposition 2.5, there is an embedding

⊕
n∈Z DFK · ϕ(tn) ↪→ DFG. Since FG is free over FK,

there is also an isomorphism DFK ⊗FK FG ∼= ⊕
n∈Z DFK · ϕ(tn) determined by α⊗ tn �→ αϕ(tn).

Then the diagram

of left DFK-modules commutes, proving that ιj is an injection. From now on, we will treat the
maps ιj as inclusions.

Consider the following portions of the chain complexes computing bDFG
p (G) and bDFK

p (K).

Let x be a cycle in DFG ⊗FG Fp. By [JZ21, Proposition 2.2(2)], DFG
∼= Ore(DFK ∗ Z), where

we are making the identifications DFK ⊗FK FG ∼= ⊕
n∈Z DFK · ϕ(tn) ∼= DFK ∗ Z. Hence, there is

some nonzero a ∈ DFK ∗ Z such that ax ∈ DFK ⊗FK Fp. Since (DFK ∗ Z) · ax ⊆ Zp(DFG ⊗FG F•)
and ιp−1 is injective, (DFK ∗ Z) · ax is an infinite-dimensional DFK-subspace of Zp(DFK ⊗FK F•).
Since bDFK

p (K) <∞, there is a nonzero b ∈ DFK ∗ Z such that bax = ∂y for some y ∈ DFK ⊗FK

Fp+1. However, then x = ∂((ba)−1y), so we conclude that Hp(DFG ⊗FG F•) = 0. �
For the proof of the main theorem, we will need the following version of a theorem of Bieri

and Renz. The details of the proof are given in [BR88, Theorem 5.1] in the case R = Z, though
the proof goes through in exactly the same way after replacing the ring Z by an arbitrary
ring R.

Theorem 6.5 (Bieri–Renz). Let G be a finitely generated group and let N � G be a normal
subgroup containing the commutator subgroup [G,G]. Let R be a unital ring and let M be an
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RG-module of type FPn(RG). Then M ∈ FPn(RN) if and only if Σn
R(G;M) ⊇ S(G,N) := {[χ] ∈

S(G) : χ(N) = 0}.
We will also need the following result due to Kielak and Jaikin-Zapirain. Kielak first proved

the result in [Kie20c, Theorem 5.2] by giving an explicit construction of the Linnell skew-field
D(G) when G is RFRS. In the appendix to [JZ21], Jaikin-Zapirain showed that when G is RFRS
and F is any skew-field, then DFG exists and admits a completely analogous construction to D(G)
(in fact, D(G) = DQG for a RFRS group G). As a consequence, Kielak’s proof of Theorem 6.6
still holds after making the replacements Q� F and D(G)� DFG.

Theorem 6.6 (Kielak and Jaikin-Zapirain). Let F be a skew-field, G a finitely generated RFRS
group, and n ∈ N. Let F• be a chain complex of free FG-modules with Fp is finitely generated
and Hp(DFG ⊗FG F•) = 0 for all p � N . Then, there exist a finite index subgroup H � G and an
open subset U ⊆ S(H) such that:

(1) the closure of U contains S(G);
(2) U is invariant under the antipodal map;

(3) Hp(F̂H
χ ⊗FH F•) = 0 for every p � n and every [χ] ∈ U .

We are now ready to prove the main theorem.

Theorem 6.7. Let F be a skew-field and let G be a virtually RFRS group of type FPn(F). Then
there is a finite index subgroup H � G admitting a homomorphism onto Z with kernel of type
FPn(F) if and only if bDFG

p (G) = 0 for p = 0, . . . , n.

Proof. (⇒) Let ϕ : H → Z be an epimorphism with kernel K ∈ FPn(F). Then there is a free
resolution F• → F → 0 of the trivial FK-module F with finitely generated n-skeleton. Therefore,

bDFK
p (K) = dimDFK

Hp(DFK ⊗FK F•) <∞
for p � n and we have a short exact sequence 1 → K → H → Z → 1, so bDFH

p (H) = 0 for p � n
by Theorem 6.4. Then bDFG

p (G) = 0 for p � n by Lemma 6.3.
(⇐) The properties of being of type FPn(F) and of having vanishing pth DFG-Betti number

pass to finite index subgroups. Moreover, the property of being virtually fibred passes to finite
index overgroups (the same is, of course, true of any virtual property). Hence, we may assume
that G is RFRS and of type FPn(F). Then H1(G; R) �= 0 by Proposition 2.7.

Since G ∈ FPn(F), there is a free resolution F• → F → 0 of the trivial FG-module F with Fp
finitely generated for p � n. By assumption, Hp(DFG ⊗FG F•) = 0 for p � n. By Theorem 6.6,
there is a finite index subgroupH � G and an open subset U ⊆ H1(H; R) such that the closure of
U contains H1(G; R), is invariant under nonzero scalar multiplication, and Hp(F̂H

ϕ ⊗FH F•) = 0
for p � n and all φ ∈ U . Since U is nonempty, we can find a surjective character ϕ : H → Z in U .
To see this, let ϕ ∈ H1(G; R) be a nontrivial character. Since U is open, ϕ can be perturbed so
that its image is in Q. Finally, since H is finitely generated, we can rescale the character so that
it maps H onto Z. Then [±ϕ] ∈ Σn

F(H; F) by Theorem 5.3. It is not hard to show that [χ] = [±ϕ]
for any character χ : H → R with kerϕ ⊆ kerχ. Thus, kerϕ ∈ FPn(F) by Theorem 6.5. �
Corollary 6.8. Let G be virtually RFRS and of type FP(F). Then G virtually algebraically
fibres with kernel of type FP(F) if and only if G is DFG-acyclic.

Proof. One direction is clear. If G is DFG-acyclic, then G virtually algebraically fibres with kernel
K of type FPn(F) for n > cdF(G). However, then n > cdF(K), so K is of type FP(F). �

We now apply Theorem 6.7 to the case F = Q.
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Definition 6.9 (�2-Betti numbers). Let G be a torsion-free group satisfying the Atiyah
conjecture and let D(G) be the Linnell skew-field of G (see the following remark). Define

b(2)p (G) = dimD(G) TorQG
p (D(G),Q)

to be the pth �2-Betti number of G.
If a group G has a torsion-free subgroup H of finite index satisfying the Atiyah conjecture,

we extend the definition of �2-Betti numbers by declaring that

b(2)n (G) =
b
(2)
n (H)

[G : H]
.

Remark 6.10. This definition of �2-Betti numbers for torsion-free groups satisfying the Atiyah
conjecture agrees with the usual definition by [Lüc02, Lemma 10.28(3)]. Moreover, �2-Betti num-
bers for virtually torsion-free groups are well-defined and coincide with the usual definition by
[Lüc02, Theorem 6.54(6)]. We will not give the definition of the Linnell ring D(G) since that
would take us too far afield. We take the Atiyah conjecture to be the statement that D(G) is a
skew-field, which allows us to make Definition 6.9. Linnell showed that this formulation implies
the strong Atiyah conjecture over Q for torsion-free groups [Lin93]. The details of the reverse
implication can be found in Lück’s book [Lüc02, § 10].

In the case where G is finitely generated and RFRS, DQG exists and is isomorphic to the
Linnell skew-field D(G) by Jaikin-Zapirain’s appendix to [JZ21]. Then, the �2-Betti numbers of
G are defined and b(2)p (G) = b

DQG
p (G). Hence, applying Theorem 6.7 to the case F = Q yields the

following result stated in the introduction.

Theorem 6.11. Let G be a virtually RFRS group of type FPn(Q). Then there is a finite index
subgroup H � G admitting a homomorphism onto Z with kernel of type FPn(Q) if and only if

b
(2)
p (G) = 0 for p = 0, . . . , n.

Thanks to Jaikin-Zapirain’s work on rank functions in [JZ21], we can give a third character-
isation of algebraic fibring. First, we set up some notation and terminology. If R is a ring and
ϕ : R→ D is a division R-ring, then there is a natural rank function on matrices over R, which
we denote rkD,ϕ or simply rkD when the map ϕ is understood. If ϕ is epic, meaning that ϕ(R)
generates D as a division ring, then we call D universal if the rkD � rkE for every division R-ring
ψ : R→ E . Note that if a universal division R-ring exists, then it is unique up to R-isomorphism
by a result of Cohn [Coh95, Theorem 4.4.1]. If, additionally, ϕ is an injection, then we call D
the universal division ring of fractions for R.

Theorem 6.12 (Jaikin-Zapirain [JZ21, Corollary 1.3]). If G is a residually (locally indicable
and amenable) group and F is a skew-field, then the Hughes-free division ring DFG exists and is
the universal division ring of fractions for FG.

Following Jaikin-Zapirain, whenever G has a Hughes-free division ring DFG, we denote the
rank function rkDFG

by rkFG. Note, in particular, that Theorem 6.12 holds for RFRS groups since
they are residually poly-Z (see, e.g., [JZ21, Proposition 4.4]). Therefore, we have the following
corollary, which will be useful to us later.

Corollary 6.13. Let G be a RFRS group and let ϕ : G→ Z be a homomorphism. Let A
be a matrix over FG and let AZ be the matrix over F[Z] obtained by applying ϕ to A. Then
rkFGA � rkF[Z]A

Z.

Proof. There is a map ϕ : FG→ F[Z] ↪→ DF[Z] induced by ϕ and, therefore, rkFGA �
rkDF[Z],ϕA = rkF[Z]A

Z by universality of DFG. �
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The following theorem generalises Corollary 1.5 of [JZ21], where the result is proven for n = 1.
In the proof, if M is a finitely generated F[Z]-module, then we define dimM := dimDF[Z]

(M ⊗F[Z]

DF[Z]). We will also write rkG instead of rkFG to lighten the notation.

Theorem 6.14. Let F be a skew-field and let G be a virtually RFRS group of type FPn(F). The
following are equivalent:

(1) there is a finite index subgroup H0 � G and a surjection ϕ0 : H0 → Z with kerϕ0 of type
FPn(F);

(2) there is a finite index subgroup H1 � G and a surjection ϕ1 : H1 → Z with bp(kerϕ1; F) <∞
for p = 0, . . . , n.

Proof. If G algebraically fibres with kernel K of type FPn(F), then there is a free resolution
F• → F → 0 of the trivial FK module F such that Fp is finitely generated for all p � n. This
resolution can be used to compute the homology of K and, therefore, bp(K; F) <∞ for all p � n.

In view of Theorem 6.7, to prove the converse it suffices to show that bDFG
p (G) = 0 for all

p � n. By multiplicativity of DFG-Betti numbers (Lemma 6.3), we may assume that H1 = G.
Let K = kerϕ1 and write F[Z] for the group algebra F[G/K]. Moreover, note that Hp(K; F) ∼=
Hp(G; F[Z]) for all p. Let

· · · → FGdp → · · · → FGd0 → F → 0

be a free resolution of the trivial FG-module F, where dp is some cardinal for each p and dp is
finite for each p � n, and we use the (non-standard) notation FGdp to denote the dp-fold direct
sum of FG, as opposed to the dp-fold direct product. The quotient map G→ Z induces a chain
map

where the boundary maps are viewed as matrices and ∂Z
p is obtained by applying the map

G→ Z to each entry of the matrix ∂p. Note that the homology of the bottom chain complex is
H•(G; Q[Z]).

To apply Jaikin-Zapirain’s results on rank functions, we will need the boundary maps to
be between finitely generated free modules. However, dn+1 is not finite in general, so we must
modify the chain complexes as follows. Since F[Z] is Noetherian and F[Z]dn is finitely gener-
ated, im ∂Z

n+1 is a finitely generated submodule of F[Z]dn . The preimage of a finite generating
set of im ∂Z

n+1 is contained in a finitely generated free summand F of F[Z]dn+1 . Note that the
homology of

F → F[Z]dn → · · · → F[Z]d0 → 0

is still Hp(G; F[Z]) for p � n. The preimage of F in FGdn+1 is again a finitely generated free
summand F̂ of FGdn+1 . Note that it suffices to show that the homology of

DFG ⊗QG F̂ → DFG ⊗FG FGdn → · · · → DFG ⊗FG FGd0 → 0

vanishes in degrees � n to show that bDFG
p (G) = 0 for all p � n.

We assume that dn+1 is finite and that F = F[Z]dn+1 and F̂ = FGdn+1 . Since, for every p � n,
the homology Hp(G; F[Z]) is finite-dimensional as an F-vector space, it must be torsion as an
F[Z]-module. Therefore, rkZ ∂

Z
p+1 = dim ker ∂Z

p for every p � n. Now, for each p � n, we have
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short exact sequences

0 → ker ∂Z
p → FGdp → im ∂Z

p → 0,

which implies that dp = dim ker ∂Z
p + rkZ ∂

Z
p = rkZ ∂

Z
p+1 + rkZ ∂

Z
p . Hence,

dp − rkG ∂p = dimDFG
ker(Ddp

FG

∂p−→ Ddp−1

FG )

� rkG ∂p+1

� rkZ ∂
Z
p+1

= dp − rkZ ∂
Z
p

� dp − rkG ∂p,

where we have used Corollary 6.13. Thus,

rkG ∂p+1 = dimDFG
ker(Ddp

FG

∂p−→ Ddp−1

FG ),

and therefore bDFG
p (G) = 0 for all p � n. �

Corollary 6.15. Let G be a virtually RFRS group and let n ∈ N.

(1) If F and F′ are skew-fields of the same characteristic, then G virtually algebraically fibres
with kernel of type FPn(F) if and only if it virtually algebraically fibres with kernel of type
FPn(F′).

(2) If p is a prime such that G algebraically fibres with kernel of type FPn(Fp), then it fibres
with kernel of type FPn(Q).

Proof. Item (1) follows from the fact that the Betti numbers of a group with trivial skew-field
coefficients depend only on the characteristic of the skew-field. Item (2) follows from the fact that
bk(G; Fp) � bk(G; Q) for any group G and any prime p (this is a consequence of the universal
coefficient theorem). �

7. Applications

7.1 Amenable RFRS groups
Definition 7.1. A group G is amenable if for every continuous G-action on a compact,
Hausdorff space X, there is a G-invariant probability measure on X.

Definition 7.2 (Elementary amenable groups). The class E of elementary amenable groups is
the smallest class such that:

• E contains all finite groups and all Abelian groups;
• if G ∈ E then the entire isomorphism class of G is contained in E ;
• E is closed under taking subgroups, quotients, extensions, and directed unions.

All elementary amenable groups are amenable, however there are many examples of amenable
groups that are not elementary amenable, the earliest being Grigorchuk’s group of intermediate
growth [Gri80]. For a discussion of more examples, we refer the reader to the introduction
of Juschenko’s paper [Jus18]. The known examples of non-elementary amenable groups all
have infinite cohomological dimension over any field. Moreover, elementary amenable groups
of finite cohomological dimension over Z are virtually solvable by [Hil91, Lemma 2] and [HL92,
Corollary 1]. We are led to the following question, which was stated in the introduction.

Question 7.3. Are amenable groups of finite cohomological dimension over Z virtually solvable?
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We obtain a partial answer in the positive direction as an application of Theorem 6.11,
and extends the well-known fact that nilpotent RFRS groups are Abelian. The author thanks
Sami Douba for pointing out the fact (and the proof) that polycyclic RFRS groups are virtually
Abelian, which allows us to strengthen the following theorem.

Theorem 7.4. If G is an amenable RFRS group of type FP(Q), then G is virtually Abelian.

Proof. Since G is amenable, bDQG
p (G) = 0 for all p by [Lüc02, Theorem 7.2(1)]. By Theorem 6.11

we obtain a finite index subgroup H � G and an epimorphism ϕ : H → Z such that N = kerϕ ∈
FPn(Q). It will be necessary to require that H be normal in G, which is not an issue since we can
replace H with its normal core. Since cdQN � cdQG � n, we also have N ∈ FP(Q) (see [Bro94,
Proposition VIII.6.1]). Because we have a short exact sequence

1 → N → H → Z → 1

with N ∈ FP(Q), a theorem of Fel’dman [Fel71, Theorem 2.4] (see also [Bie76, Proposition 2.5])
gives cdQN = cdQH − cdQ Z = n− 1.

Since subgroups of amenable RFRS groups are amenable and RFRS, we can repeat the
argument above with N instead of G. Iterating this process, we obtain a subnormal series

G0 � G1 � · · · � Gn−1 � Gn = G

of G such that cdQGj = j for each j (note that N = Gn−1 here). However, the only torsion-
free group of cohomological dimension 0 over Q is the trivial group, so we conclude that G is
polycyclic-by-finite.

Let G′ � G be a polycyclic group of finite index. We will show, by induction on the Hirsch
length of G′, that G′ must be virtually Abelian. Indeed, by induction we may assume that
G′ ∼= Zm �ψ Z. If ψ is of finite order, then G′ is virtually Abelian. If ψ is of infinite order,
then the argument of [BH99, Proposition 4.17] shows that Zm cannot be quasi-isometrically
embedded in G′. However, Proposition 2.7(2) implies that all Abelian subgroups of a finitely
generated RFRS group are undistorted, a contradiction. �
Remark 7.5. The assumption that G be RFRS is necessary. For example, the Baumslag–Solitar
group BS(1, n), with n > 1, is locally indicable, solvable, and of finite type, but it is not virtually
Abelian (nor is it polycyclic-by-finite). The assumption that G be (virtually) of type FP(Q) is
also necessary; for example, Z � Z is RFRS and amenable, yet it is not virtually Abelian.

Baer’s conjecture states that if G is a group with a Noetherian group ring ZG, then G is a
polycyclic-by-finite group. The author is grateful to Sam Hughes for pointing out the following
consequence of Theorem 7.4, which resolves a special case of Baer’s conjecture.

Corollary 7.6. Let G be a virtually RFRS group of type FP(Q). If ZG is Noetherian, then G
is virtually Abelian.

Proof. It is enough to prove the claim in the case that G is RFRS. In this case, ZG embeds
into the Linnell skew-field D(G), and therefore ZG is a domain. Since Noetherian domains are
Ore domains [MR01, p. 47], we have that ZG is an Ore domain. It then follows that QG is
an Ore domain, which implies that G is amenable by Kielak’s appendix to [Bar19]. Then G is
polycyclic-by-finite by Theorem 7.4. �

7.2 Arithmetic lattices and subgroups of hyperbolic groups
Recall that hyperbolic groups are always of type F∞ (and of type F if they are torsion-free).
However, their subgroups can exhibit many interesting finiteness properties. In [Rip82], Rips gave
the first example of an incoherent hyperbolic group; phrased in terms of finiteness properties,
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this gives an example of a hyperbolic group with a subgroup that is of type F1 but not F2. In
[Bra99], Brady constructed a type F2 subgroup of a hyperbolic group that is not of type F3; this
provided the first example of a finitely presented non-hyperbolic subgroup of a hyperbolic group.
In the same paper, Brady asked whether there are subgroups of hyperbolic groups that are of
type Fn but not Fn+1 for all n. More examples of F2-not-F3 subgroups of hyperbolic groups were
provided by Kropholler [Kro21] and Lodha [Lod18], and in [LMP21], Llosa Isenrich, Martelli
and Py constructed the first examples of F3-not-F4 subgroups of hyperbolic groups. This result
was extended in a subsequent paper [LP24], where Llosa Isenrich and Py completely answer
Brady’s question by exhibiting cocompact hyperbolic arithmetic lattices in PU(n, 1) with Fn−1-
not-Fn subgroups for all n. We also mention the related work of Italiano, Martelli and Migliorini,
who constructed the first example of a non-hyperbolic type F subgroup of a hyperbolic group
[IMM23].

In [LMP21], Llosa Isenrich, Martelli and Py remark that one can use Theorem 6.11 to show
that there are subgroups of hyperbolic lattices in PO(2n, 1) that are of type FPn−1(Q) but not
FPn(Q). We record their argument here, and also mention that the same line of reasoning shows
that there are many hyperbolic lattices in PO(2n+ 1, 1) that virtually fibre with kernel of type
FP(Q).

Proposition 7.7 [LMP21, Proposition 19]. Let Γ < PO(n, 1) be a cocompact cubulable lattice.
If n = 2k is even, then Γ virtually fibres with kernel of type FPk−1(Q) but not FPk(Q). If n is
odd, then Γ virtually fibres with kernel of type FP(Q).

Remark 7.8. In [BHW11], Bergeron, Haglund and Wise show that any standard arithmetic sub-
group of PO(n, 1) is cubulated, so Proposition 7.7 applies to a nonempty class of groups. We
refer the reader to their paper for the definition of standard.

Proof. By Agol’s theorem [Ago13, Theorem 1.1], Γ is virtually special and in particular virtually
RFRS. By, for instance, [Kam14, Theorem 3.3], the �2-Betti numbers of lattices in semisimple
Lie groups vanish except in the middle dimension, where they are nonzero. If n = 2k, then Γ
virtually fibres with kernel of type FPk−1(Q), but b(2)k (Γ) �= 0 so the kernel cannot be of type
FPn(Q) by Theorem 6.7. If n is odd, then Γ is �2-acyclic and, therefore, virtually fibres with
kernel of type FP(Q) in this case, where we have also used Corollary 6.8. �
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