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ASYMPTOTIC HITTING TIME
FOR A SIMPLE EVOLUTIONARY
MODEL OF PROTEIN FOLDING

VÉRONIQUE LADRET,∗ Université Claude Bernard Lyon 1

Abstract

We consider two versions of a simple evolutionary algorithm (EA) model for protein
folding at zero temperature, namely the (1+1)-EA on the LeadingOnes problem. In this
schematic model, the structure of the protein, which is encoded as a bit-string of length n,
is evolved to its native conformation through a stochastic pathway of sequential contact
bindings. We study the asymptotic behavior of the hitting time, in the mean case scenario,
under two different mutations: the one-flip, which flips a unique bit chosen uniformly
at random in the bit-string, and the Bernoulli-flip, which flips each bit in the bit-string
independently with probability c/n, for some c ∈ R

+ (0 ≤ c ≤ n). For each algorithm,
we prove a law of large numbers, a central limit theorem, and compare the performance
of the two models.
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1. Introduction

Evolutionary algorithms (EAs) are adaptive heuristic search algorithms. They are based
on the mechanisms of natural selection and are widely used in a great variety of problems,
for example population genetics, machine learning, and optimization. The task of the EA
is to search a fitness landscape for maximal values. A population of individuals, considered
as candidate solutions to the given problem, is evolved through steps of variation and steps
of selection. Each individual receives a numerical evaluation, called its fitness score. The
dynamics of the EA simulate, supposedly as in natural systems, the survival of the fittest
among the individuals. Thus, individuals of maximum fitness (in this sense) are sought.

Despite their numerous heuristic successes, mathematical results describing the behavior of
EAs are rather sparse. Among the exceptions are [4], [5], [7]–[9], [16], [18], and [19].

Since EAs usually exhibit complicated dynamics, complexity results are difficult to reach
and a common approach is to consider simplified cases. Among the simplified EAs are the
so-called (1 + 1)-EAs. These were studied in [2], [11]–[14], [17], and [19]. In this paper, we
study the time of convergence of two versions of a specific (1 + 1)-EA, namely the (1 + 1)-EA
on the LeadingOnes problem. One of the main motivations for studying these algorithms is that
they can be used as simple models for the protein-folding problem. Indeed, the (1 + 1)-EAs
we focus on apply directly to the model of protein-structure prediction at zero temperature that
has been proposed by the biophysicists Bakk et al. [3].
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40 V. LADRET

1.1. The physical model

Proteins typically fold to a unique native or biologically active conformation on time-scales
from 10−3 s to 1s. However, if the dynamics of the folding process were to follow a random
search in the conformation space it would result in astronomical folding time-scales; this is
known as Levinthal’s paradox [15]. So, how do proteins fold to their native state? This is one
of the intriguing problems of biophysics. Anfinsen [1] showed that the native state is genetically,
as well as thermodynamically, determined, i.e. it corresponds to the conformation in which the
Gibbs free energy of the whole system is lowest.

There are many hypotheses concerning the transition state. One of the views is that the
transition-state dynamics consists of a stochastic pathway that carries the polypeptide (protein)
to the native state through a guided descent within the Gibbs-free-energy landscape (see [10]
and [20]).

The protein-like model proposed by Bakk et al. [3] can be described as follows. The
polypeptide chain is equipped with n contact points c1, . . . , cn that we will call nodes. For
i from 1 to n, ci is assigned a binary contact variable φi that indicates whether it is folded
(φi = 1) or unfolded (φi = 0). In consequence, the conformation of the protein is entirely
determined by the bit-string of length n, φ = (φ1, φ2, . . . , φn) (there is a bijective mapping
from the conformation space onto {0, 1}n), and the native state corresponds to the bit-string for
which φi = 1 for all i, 1 ≤ i ≤ n, i.e. (1, . . . , 1).

Let i0 denote the smallest i ∈ {1, . . . , n} for which ci is unfolded, i.e. for which φi = 0.
We refer to the set of contact points {ci0 , ci0+1, . . . , cn} as the open part of the protein. An
assumption made about the dynamics of the folding process is that each individual node is
assigned an energy of −ε0 if i < i0, and 0 otherwise. This can be implemented through the
Hamiltonian

H = −ε0(φ1 + φ1φ2 + · · · + φ1 · · · φn).

This Hamiltonian can be rewritten in terms of the LeadingOnes function L, defined on the space
of conformations {0, 1}n, which counts the length of the longest prefix of ones in the bit-string:

L(x) = max{k ≥ 1 : for all i, 1 ≤ i ≤ k, xi = 1} ∪ {0}.

Indeed,

H = −ε0L(φ) = −ε0(i0 − 1). (1.1)

In this model, which is also known as the ‘zipper-model’, there is no energy associated with
the open part of the protein. In fact, a descent through the energy landscape proceeds via the
folding of the left-most incorrectly folded substructure, i.e. node ci0 , while the correctly folded
substructures preceding it, i.e. nodes ci for i < i0, remain unchanged. This means that the
folding events occur in a specific order: they behave like the individual locks in a zipper. In
the bit-string framework, lowering the Gibbs free energy is exactly equivalent to increasing the
size of the longest prefix of ones.

The algorithm proposed by Bakk et al. [3] to search the state space {0, 1}n for the confor-
mations of lowest energy, i.e. the native state, is based on the Monte Carlo Metropolis method
[6]. Let T denote the temperature of the whole system, k the usual Boltzmann constant, and let
β = 1/kT . The algorithm proceeds iteratively, as follows. The individual (i.e. the bit-string)
at time k, Xk , which determines the protein conformation φ at time k, undergoes a mutation to
a new conformation X′

k through a stochastic process that will be described later. Then X′
k is
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selected to form the new individual Xk+1, at time k + 1, with probability

Paccept = min(1, exp(−β�H)), where

�H = H(X′
k) − H(Xk).

Otherwise, Xk+1 is taken to be the same as the old configuration Xk .
In this paper, we concentrate on the Monte Carlo Metropolis model considered at zero

temperature. This algorithm is directly related to the (1 + 1)-EA on the LeadingOnes problem.
We recall that the dynamics of (1 + 1)-EAs can be formalized through discrete Markov chains
as follows.

1.2. The (1 + 1)-EA approach to native conformation prediction

In the protein model, we wish to minimize the Hamiltonian H , which is equivalent, according
to (1.1), to maximizing the LeadingOnes function. More generally, the goal of (1+1)-EAs is to
optimize some fitness function f : {0, 1}n → R. The algorithm proceeds as follows: a unique
individual, or bit-string, is evolved according to the following two-step iterative process.

Step 1. Mutation. As in the Monte Carlo Metropolis method, at every evolutionary step (or
generation), the individual chosen from the population at time k, Xk , undergoes a random walk
to a new individual X′

k .

Step 2. Selection. The fitness values of Xk and X′
k are evaluated. The individual with the

highest fitness value f (·) is selected to form the generation Xk+1 at time k + 1. That is,

if f (X′
k) > f (Xk) then Xk+1 = X′

k; otherwise Xk+1 = Xk. (1.2)

The notation (1 + 1)-EA accounts for the fact that we select between one ‘parent’ and one
‘child’. Here, as in the protein-folding dynamics of Bakk et al. [3], we focus on the mean case
scenario, in which the first individual X0 is chosen uniformly, and at random, from {0, 1}n.
When the fitness function is precisely L, this algorithm will be denoted by (1 + 1)L-EA. We
remark that, in the case of a fitness landscape with local maxima, the (1 + 1)-EA method could
end in a suboptimal search. However, we will only consider the LeadingOnes problem whose
fitness landscape has no local maxima, and neglect this possibility.

In the literature, there is no actual consensus, in the definition of (1+1)-EAs, on the selection
rule. It is sometimes taken to be the following slightly different one.

Step 2∗. Selection. The inequality in (1.2) is weakened. That is,

if f (X′
k) ≥ f (Xk) then Xk+1 = X′

k; otherwise Xk+1 = Xk. (1.3)

For example, Garnier et al. [13] considered the first version of the selection rule (1.2),
whereas Droste et al. [11], [12] focused on the second version (1.3). In the LeadingOnes
framework, in order to discriminate between the two versions we will denote by (1 + 1)∗L-EA
the analog of (1+1)L-EA that uses selection rule (1.3). The only difference between these two
very similar algorithms is that (1 + 1)∗L-EA accepts candidates X′

k whose energy (fitness) is
the same as that of Xk , whereas (1 + 1)L-EA does not. We point out that this seemingly small
difference may result in significant changes in the behavior of the (1+1)-EA: see, for example,
[14], where Jansen and Wegener exhibit two fitness functions such that the first (1 + 1) version
(with selection rule (1.2)) maximizes one function in polynomial time and takes exponential
time to maximize the other, while the second version (using selection rule (1.3)) has the opposite
behavior.
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1.3. Statement of the results

Let Tn and T̂n respectively denote the hitting times before some optimal conformation or in-
dividual (with respect to the fitness function) is sampled by the (1+1)-EA and the (1 + 1)∗L-EA.
We focus on both the (1 + 1)∗L-EA and the (1 + 1)L-EA in the mean case scenario, under two
different kinds of mutation: the one-flip, which flips a unique bit chosen uniformly at random
in the bit-string, and the Bernoulli-flip, which flips each bit in the bit-string independently with
probability c/n.

As was briefly mentioned in the introduction, there has already been some work on the
complexity of some (1 + 1)-EAs. From [11], E(T̂n) = �(n ln n) for the Bernoulli-flip applied
to a linear fitness function on {0, 1}n (i.e. for some positive constants a1 and a2 and some
n0 ∈ N, a1n ln n ≤ T̂n ≤ a2n ln n for all n ≥ n0). From [12], the LeadingOnes function in
the Bernoulli-flip scenario is solvable in mean time �(n2), and there are constants C1, C2 > 0
such that the probability that T̂n is outside the interval [C1n

2, C2n
2] is exponentially small.

Garnier et al. [13] studied the OneMax function | · |, which counts the number of ones in the
bit-string in the one-flip and the Bernoulli-flip frameworks, i.e.

|x| =
n∑

i=1

xi, with x = (x1, . . . , xn) ∈ {0, 1}n.

In the one-flip case, (Tn −n ln n)/n converges in distribution to −ln 2 − ln Z. In the Bernoulli-
flip case, (Tn − c−1ecn ln n)/n converges in distribution to −c−1ec ln Z +C(c), where the law
of Z is exponential with parameter 1 and C(c) is some c-dependent constant.

Here, we prove the analog of the result of [13] for the LeadingOnes problem. This improves
on the result of [12]. We prove a law of large numbers, a central limit theorem, and we compare
the performance of the two models. Finally, we prove that the distribution of the hitting time
of the (1 + 1)∗L-EA, T̂n, is the same as that of Tn in both the one-flip and the Bernoulli-flip
scenarios.

Theorem 1.1. (The one-flip case.)

(i) For n ≥ 1, E(Tn) = 1
2n2;

(ii) As n → ∞, Tn/E(Tn) converges in probability to 1.

(iii) As n → ∞, (Tn − E(Tn))/n3/2 converges in distribution to a centered Gaussian random
variable of variance 3

4 .

Theorem 1.2. (The Bernoulli-flip case.)

(i) As n → ∞, E(Tn) ∼ m(c) n2, with

m(c) := ec − 1

2c2 .

(ii) As n → ∞, Tn/E(Tn) converges in probability to 1.

(iii) Furthermore, (Tn − m(c) n2)/n3/2 converges in distribution to a centered Gaussian
random variable of variance σ 2(c), with

σ 2(c) := 3(e2c − 1)

8c3 .

Note that m(c) > 1
2 for every c > 0.
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Corollary 1.1. As n → ∞, E(Tn) in the Bernoulli-flip case is greater than E(Tn) in the one-flip
case, for any value of c.

Theorem 1.3. In both the one-flip and the Bernoulli-flip cases, Tn and T̂n have the same
distribution.

2. Proof of Theorem 1.1

The law of Tn, conditioned by |X0|, is the law of a sum of geometric random variables – see
Lemma 2.1, below. This yields part (i) of the theorem. Since the central limit theorem implies
the law of large numbers, we then prove the central limit theorem of part (iii).

The distribution of Tn can be deduced from a simple observation. In the (1 + 1)-EA on
the LeadingOnes problem, a mutation is accepted if and only if it adds one to the number of
leading 1s. As a consequence, in the one-flip framework, the Markov chain (Xk)k≥0 jumps
(i.e. accepts a transition to a new conformation) when the left-most 0 is flipped – the other flips
leave the chain unchanged. Thus, the 0s in X0 are successively flipped, from left to right, until
the algorithm hits the optimal individual (1, 1, . . . , 1).

Henceforth, ε = 1/n when we deal with algorithms on strings of length n; |x| is the number
of 1s in x = (x1, . . . , xn) ∈ {0, 1}n; the geometric law G(p) of parameter p is defined by

G(p) =
∑
n≥1

p(1 − p)n−1δn,

where δn is the Kronecker delta; and the negative binomial law of parameter (k0, p), N B(k0, p),
puts the following mass on k ≥ k0:(

k − 1

k − k0

)
pk0(1 − p)k−k0 .

Lemma 2.1. If |X0| = n − k0 then Tn is the sum of k0 independent, identically distributed
G(ε)-random variables. Thus, the law of Tn is negative binomial of parameter (k0, ε).

Proof. Let τ0 = 0 and, for every k ≥ 0, let

τk+1 = inf{i ≥ τk : Xi 
= Xτk
}, σk+1 = τk+1 − τk, X̃k = Xτk

.

In words, X̃k denotes the position of the chain after its kth jump, and |X̃k| = n − k0 + k. The
left-most 0 of X̃k is flipped once the chain’s position has remained X̃k for a time σk+1. Thus,
(σk)k is independent and identically distributed, and has law G(ε). It remains to note that

Tn = σ1 + · · · + σk0 ,

which completes the proof.

Proof of Theorem 1.1(iii). Let Ek denote expectation under conditioning on {|X0| = n−k}.
Since X0 is uniform, the law µ of |X0| is binomial of parameter (n, 1

2 ). From Lemma 2.1, under
Pk , Tn is the sum of k independent and identically distributed geometric random variables of
parameter ε. Thus,

Ek(e
−αTn) = e−αkεk[1 − (1 − ε) e−α]−k. (2.1)

Let �n = (Tn − n2/2)/n3/2 and compute the decomposition of its Laplace transform along
the values of |X0|. Recall that, here, we consider the mean-case scenario, in which the initial
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conformation X0 is chosen uniformly at random in {0, 1}n; thus, we compute the Laplace
transform by using (2.1) and by conditioning on the different values taken by |X0|, i.e. the
events {|X0| = n − k}, k = 0, . . . , n. This decomposition, the explicit form of µ, and (2.1)
together yield

E(e−α�n) = e
√

nα/22−n
n∑

k=0

(
n

k

)
e−αk/n3/2

εk[1 − (1 − ε) e−α/n3/2 ]−k.

This can be rewritten as
E(e−α�n) = e

√
nα/22−n(1 + βn)

n,

with
βn = ε e−α/n3/2 [1 − (1 − ε) e−α/n3/2 ]−1.

Recall that ε = 1/n. The expansion of βn reads

βn = 1 − α√
n

+ α2

n
+ o

(
1

n

)
,

which implies that

E(e−α�n) → e3α2/8

as n → ∞. This concludes the proof.

3. Proof of Theorem 1.2

We first describe the law of Tn conditioned on the values taken by L along the path of (Xk)k
up to time Tn, that is, until the optimal individual (1, 1, . . . , 1) is hit. This law is the law of
a sum of independent geometric random variables – see Lemma 3.3, below. We deduce the
overall law of Tn and state it in Proposition 3.1, yielding part (i) of Theorem 1.2. As in the
previous section, since the central limit theorem implies the law of large numbers, we then
prove the central limit theorem of part (iii).

We recall that the (1+1)-EA, in the LeadingOnes framework, accepts a mutation if and only
if the number of leading 1s is increased. Hence, the dynamics of the Bernoulli-flip algorithm
proceeds as follows: the chain jumps to a new individual at time k + 1 if and only if the leading
1s of Xk are left unchanged and its left-most 0 is flipped, no matter which values are taken by
the other bits.

Henceforth, ε = c/n when we deal with algorithms on strings of length n. For all i ≥ 0, let
p(n, i) = ε(1 − ε)i . As in the one-flip framework, X̃k denotes the position of the chain after
its kth jump. We also keep the same definitions for σk and τk .

For all k ≥ 0, let

k = L(X̃k),

and let 1
0 and Y0 be bit-strings (1
0 a string of 
0 1s) such that

X0 = (1
0 , 0, Y0).

For k ≥ 1, define further bit strings Yk and Wk in such a way that

X̃k = (1
k−1 , 1, Wk) = (1
k , 0, Yk).

Lemmas 3.1 and 3.2 are needed in Lemma 3.3 to compute the law of Tn conditioned on (
j ).
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Lemma 3.1. (i) For all k ≥ 0, σk depends on the past only through the last score 
k−1. That
is, the law of σk conditioned on (Xt )t<τk

is the law of σk conditioned on 
k−1.

(ii) For all k ≥ 0, given that {
k−1 = i} occurs, the law of σk is G(p(n, i)).

Proof. The sojourn time σk is the time the algorithm takes to jump from X̃k−1 to X̃k . The
left-most 0 of X̃k−1 is in position 
k−1 + 1. Thus, we need to flip the (
k−1 + 1)th bit while
leaving the first 
k−1 bits unchanged. Hence,

P(σk = t | X̃0, . . . , X̃k−1) = ε(1 − ε)
k−1 [1 − ε(1 − ε)
k−1 ](t−1).

Lemma 3.2. For all k ≥ 1, let F̂k = σ {σi, 
j : i ≤ k, j ≤ k − 1}. Then, the law of 
k

conditioned on F̂k is the law of 
k conditioned on 
k−1.

Proof. Let Pi denote probability, conditioned on the event {
0 = i}. Using the strong
Markov property,

P(
k = ik | σk = tk, 
k−1 = ik−1, . . . , σ1 = i1, 
0 = i0) = P(
1 = ik | σ1 = tk, 
0 = ik−1).

(3.1)
Since {
1 = i1, σ1 = t, 
0 = i0} = {L(Xt) = i1, L(Xt−1) = · · · = L(X0) = i0} and
{σ1 = t, 
0 = i0} = {L(Xt) 
= i0, L(Xt−1) = · · · = L(X0) = i0}, by using the Markov
property on (L(Xt )t ) we derive the following expression:

P(
1 = ik | σ1 = tk, 
0 = ik−1) = P(L(X1) = ik | L(X0) = ik−1)

P(L(X1) 
= ik−1 | L(X0) = ik−1)
.

This quantity is independent of tk; hence, if we reconsider (3.1), we find that

P(
k = ik | σk = tk, 
k−1 = ik−1, . . . , σ1 = i1, 
0 = i0) = P(
k = ik | 
k−1 = ik−1).

Lemma 3.3. Conditioned on {
0 = i0, . . . , 
J−1 = iJ−1, 
J = n}, Tn is the sum of J

independent geometric random variables with respective parameters p(n, i0), . . . , p(n, iJ−1).

Proof. Given the successive LeadingOnes scores 
0 = i0, . . . , 
J = n until the optimal
individual is hit, Tn = ∑J

k=1 σk . Thus,

P(Tn = t | 
J = n, . . . , 
0 = i0) =
∑

t1+···+tk=t

P(σJ = tJ , . . . , σ1 = t1 | 
J = n, . . . , 
0 = i0).

(3.2)
Using Lemmas 3.2 and 3.1 we can derive the following, by induction:

P(
J = n, σJ = tJ , . . . , σ1 = t1, 
0 = i0)

=
J∏

k=1

P(
k = ik | 
k−1 = ik−1)P(σk = tk | 
k−1 = ik−1).

Hence, since
∏J

k=1 P(
k = ik | 
k−1 = ik−1) = P(
J = n, . . . , 
0 = i0),

P(σ1 = t1, . . . , σJ = tJ | 
J = n, . . . , 
0 = i0) =
J∏

k=1

P(σk = tk | 
k−1 = ik−1).
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We can substitute this equation into (3.2), to obtain

P(Tn = t | 
J = n, . . . , 
0 = i0) =
∑

t1+···+tk=t

J∏
k=1

P(σk = tk | 
k−1 = ik−1).

Let q(n, ik) denote the probability distribution of G(p(n, ik)). Then, as we recognize a
product of convolution in the last equation, using Lemma 3.1 we can write

P(Tn = t | 
J = n, . . . , 
0 = i0) = q(n, iJ−1) ∗ · · · ∗ q(n, i0)(t).

Thus, given that the search jumps J times before the target (1, 1, . . . , 1) is hit, and given that
{
0 = i0, . . . , 
J = n} occurs, Tn follows the same distribution as the sum of J independent
random variables respectively distributed as G(p(n, i0)), . . . , G(p(n, iJ−1)).

Now, let us focus on P(
0 = i0, . . . , 
J−1 = iJ−1, 
J = n). In order to compute this
quantity, we need the following lemma.

Lemma 3.4. Let k ≥ 1. If X0 is chosen uniformly in {0, 1}n then, given that {
k−1 = i} occurs,
Wk follows the uniform distribution on {0, 1}n−i−1, i.e.

L(Wk | 
k−1 = i) = U({0, 1}n−i−1),

where L(Wk | 
k−1 = i) denotes the law of Wk conditioned on the event {
k−1 = i} and
U({0, 1}n−i−1) denotes the uniform distribution on {0, 1}n−i−1.

Proof. Let us focus on the case in which k = 1 and let µ denote the probability distribution
of Y0 given {
0 = i}. As X0 is chosen uniformly in {0, 1}n, µ is the uniform distribution on
{0, 1}n−i−1. Now,

Pi (W1 = w) =
∑
t≥1

Pi (X̃1 = (1i , 1, w), σ1 = t) (3.3)

and, since {Xσ1 = (1i , 1, w), σ1 = t, L(X0) = i} = {Xt = (1i , 1, w), L(Xt−1) = · · · =
L(X0) = i}, by using the Markov property, (3.3) can be rewritten as

Pi (W1 = w) =
∑
t≥1

Pi (X1 = (1i , 1, w)) Pi (L(X1) = L(X0))
t−1.

Hence,

Pi (W1 = w) = Pi (X1 = (1i , 1, w))

Pi (L(X1) > L(X0))
. (3.4)

We recall that the Markov chain jumps from X0 to a conformation of higher fitness at time 1
if none of the first 
0 1s of X0 are flipped while its left-most 0 is. Hence,

Pi (L(X1) > L(X0)) = ε(1 − ε)i . (3.5)

On the other hand, as Pi (Y0 = u) = µ(u) = 1/2n−i−1,

Pi (X1 = (1i , 1, w)) = 1

2n−i−1

∑
u∈{0,1}n−i−1

P(X1 = (1i , 1, w) | X0 = (1i , 0, u)). (3.6)
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If d(w, u) denotes the Hamming distance between w and u, then we can write

P(X1 = (1i , 1, w) | X0 = (1i , 0, u)) = ε(1 − ε)iεd(w,u)(1 − ε)n−i−1−d(w,u). (3.7)

Finally, (3.4), (3.5), (3.6), and (3.7), together with∑
u∈{0,1}n−i−1

εd(w,u)(1 − ε)n−i−1−d(w,u) = 1,

yield Pi (W1 = w) = 1/2n−i−1.

Now, using the strong Markov property, we can derive the proof for any k ≥ 2.

Lemma 3.5. If X0 is chosen uniformly and at random in the state space, then, for all k ≥ 1,
the conditional distribution of 
k , given {
k−1 = jk−1}, satisfies

P(
k = jk | 
k−1 = jk−1) =
{

2−(jk−jk−1) if jk−1 + 1 ≤ jk < n,

2−(n−jk−1−1) if jk = n.

Proof. This is a direct consequence of Lemma 3.4.

Now that we know the probability distribution of the sequence of successive LeadingOnes
scores until the target individual is hit, as well as the distribution of Tn conditioned on the
values taken by these LeadingOnes scores, we can compute the probability distribution of Tn

as follows.

Proposition 3.1. If X0 is chosen uniformly at random in {0, 1}n, then the probability distribu-
tion of Tn satisfies

P(Tn = t) = 1

2n

∑
J

∑
o≤i0≤i1≤···≤iJ =n

q(n, iJ−1) ∗ · · · ∗ q(n, i0)(t). (3.8)

Proof. That X0 is chosen uniformly and at random in the search space implies that
P(
0 = i0) = 1/2i0+1. Thus, applying Lemma 3.5,

P(
0 = i0, . . . , 
J = n) = 1

2n
.

The result is then a direct consequence of Lemma 3.3.

Proof of Theorem 1.2(iii). Set �n = (Tn − n2(ec − 1)/2c2)/n3/2. Then,

E(exp(−α�n)) = exp

(
α

√
n

2c2 (ec − 1)

)
E

(
exp

(
−α

Tn

n3/2

))
(3.9)

and, according to the distribution of Tn given by (3.8),

E

(
exp

(
−α

Tn

n3/2

))
= 1

2n

∑
J

∑
i0<···<iJ−1

E

(
exp

(
− α

n3/2 [G(p(n, i0))+· · ·+G(p(n, iJ−1))]
))

.
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Since the variables (G(p(n, ik)))ik are independent,

E

(
exp

(
−α

Tn

n3/2

))
= 1

2n

∑
J

∑
i0<···<iJ−1

J−1∏
k=0

E

(
− α

n3/2 G(p(n, ik))

)

= 1

2n

n−1∏
k=0

(
1 + φk

(
α

n3/2

))
,

where φk(α) denotes the Laplace transform of G(p(n, k)):

φk(α) = e−αp(n, k)

1 − (1 − p(n, k))e−α
.

Recalling that p(n, i) = ε(1 − ε)i and ε = c/n, we find that, as n → ∞,

n−1∏
k=0

(
1 + φk

(
α

n3/2

))
� 2n exp

(
−α

√
n

2c2 (ec − 1)

)
exp

(
3α2

8c3

(e2c − 1)

2

)
.

Thus, substituting this into (3.9), we find that as n → ∞,

E(exp(−α�n)) � exp

(
3α2

8c3

(e2c − 1)

2

)
.

We recognize the Laplace transform of a centered Gaussian variable of variance 3(e2c −1)/8c3.
This observation completes the proof.

4. Proof of Theorem 1.3

In the (1 + 1)∗L-EA framework, the algorithm may visit several distinct protein conforma-
tions (individuals) of the same fitness value before it finally jumps to a new individual with a
higher fitness score. This is not allowed in the (1 + 1)L-EA, where the individual at time k,
Xk , is not allowed to jump to another individual Xk+1 with the same fitness score.

As in the previous sections, we denote by (X̃k)k the chain defined by the protein conforma-
tions taken at times of fitness jumps (τk)k; i.e. τ0 = 0 and, for every k ≥ 0,

τk+1 = inf{i ≥ τk : L(Xi) 
= L(Xτk
)}, σk+1 = τk+1 − τk, X̃k = Xτk

.

Now, we briefly sketch the proof of Theorem 1.3.

4.1. Proof in the one-flip case

Here, we put ε = 1/n and keep the definition for (Wk)k that was used in Section 3. In
the (1 + 1)L-EA framework, once X0 has been sampled, the path (X̃k)k becomes entirely
deterministic: going along it means flipping the 0s of X0 one at a time, from left to right. This
is not true in the case of the (1 + 1)∗L-EA, and we cannot directly adapt the proof of Theorem 1.1.
However, the method used in the proof of Theorem 1.2 is valid. First, we consider the law of
T̂n conditioned on the values taken by L, along the path (X̃k)k , until the target individual is
hit, and we give the analog of Lemma 3.3 (see Lemma 4.1). Then, we show that the other
key argument in the proof of Theorem 1.2, which is contained in Lemma 3.4 and its direct
application, Lemma 3.5, is still valid (see Lemma 4.2). That is, if X0 is chosen uniformly and
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at random in {0, 1}n then, at the time of each fitness jump τk , whatever the LeadingOnes score
at time τk−1 (say 
k−1 = i0), the result of the kth jump on block Yk−1, i.e. block Wk , remains
uniformly distributed in {0, 1}n−i0−1.

Lemma 4.1. Conditioned on {
0 = i0, . . . , 
J−1 = iJ−1, 
J = n}, T̂n is the sum of J

independent, identically distributed geometric random variables with parameter ε, i.e. T̂n is
negative binomial of parameter (J, ε).

Proof. This is a straightforward adaptation of the proof of Lemma 3.3. In the one-flip
case, Lemma 3.2 still holds and Lemma 3.1 is replaced by the fact that, conditioned on
{
0 = i0, . . . , 
J−1 = iJ−1, 
J = n}, the sequence {σk , k = 1, . . . , J } is independent,
identically distributed, and has law G(ε).

Lemma 4.2. Let k ≥ 1. If X0 is chosen uniformly in {0, 1}n then, given that {
k−1 = i} occurs,
Wk follows the uniform distribution on {0, 1}n−i−1, i.e.

L(Wk | 
k−1 = i) = U({0, 1}n−i−1).

Proof. The proof is identical to that of Lemma 3.4, up to (3.4):

Pi (W1 = w) = Pi (X1 = (1i , 1, w))

Pi (L(X1) > L(X0))
. (4.1)

In the one-flip scenario, a single unique bit is flipped during the mutation step. Therefore, in
order to sample (1i , 1, w) at time 1, we must sample (1i , 0, w) at time 0. Thus,

Pi (X1 = (1i , 1, w)) = P(X1 = (1i , 1, w) | X0 = (1i , 0, w)) Pi (Y0 = w) = 1/n2n−i−1.

(4.2)
On the other hand, as the fitness score is increased if the left-most 0 of the chain is flipped,

Pi (L(X1) > L(X0)) = 1/n. (4.3)

Hence, by applying (4.2) and (4.3) to (4.1), we recover the result for k = 1. Finally, the strong
Markov property gives the result for k > 1, completing the proof.

Now we can prove Theorem 1.3 in the one-flip scenario.

Proof of Theorem 1.3. The proof follows that of Theorem 1.2, in which Lemma 3.2 remains
valid but Lemmas 4.1 and 4.2 replace Lemmas 3.3 and Lemma 3.5. We have

P(T̂n = t) = 1

2n

∑
J

∑
o≤i0≤i1≤···≤iJ =n

NB(J, ε)(t)

=
∑
J

1

2n

(
n

J

)
NB(J, ε)(t).

On the other hand, we recall from Lemma 2.1 that, conditioned on |X0| = n−J , Tn is negative
binomial of parameter (J, ε). Thus, as X0 is chosen uniformly and at random in {0, 1}n, it
yields

P(Tn = T ) =
∑
J

P (Tn = t | |X0| = n − J )P (|X0| = n − J )

=
∑
J

NB(J, ε)(t)
1

2n

(
n

J

)
,
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and we find that
P(Tn = t) = P(T̂n = t),

for all t ≥ 0.

4.2. Proof in the Bernoulli-flip case

The dynamics of the (1 + 1)∗L-EA and the (1 + 1)L-EA differ slightly. Nevertheless, we
notice that in the (1 + 1)∗L-EA framework, the proofs of Lemmas 3.1, 3.2, 3.4, and 3.5 still
hold. Now, since the proof of Proposition 3.1 is entirely based on these lemmas, we conclude
that the probability distribution of the hitting time is the same in both the (1 + 1)∗L-EA and the
(1 + 1)L-EA scenarios.

5. Conclusion

After examining the two versions (one-flip and Bernoulli-flip) of the EAs on which we have
focused, we have found that, as (ec −1)/c2 > 1 for all c ∈ R

+, the expected value of the hitting
time is higher in the Bernoulli-flip case than it is in the one-flip case. Thus, we can conclude
that the one-flip performs better than any Bernoulli-flip, in terms of the expected hitting time.
The same conclusion has already been derived by Garnier et al. [13] for the OneMax problem.

The superior performance of the one-flip suggests that, in the LeadingOnes framework,
despite the ability of the Bernoulli-flip to jump from any region of the search space to any other
in a single iteration of the search process, the Bernoulli-flip results in a slower convergence to
a given individual.

In order to explain this phenomenon, as the Markov chain that models our (1 + 1) search
process accepts a mutation only in the case of an increase in the number of leading 1s, we
should point out the following facts. In the Bernoulli-flip framework, the closer the algorithm
gets to the target individual, the longer the algorithm waits until it jumps; on the other hand, in
the one-flip case, the number of leading 1s currently present in the bit-string does not affect the
distribution of the time taken for the search to jump. Also, this probability distribution remains
stable as the search converges on the optimal individual.
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