
Glasgow Math. J. 46 (2004) 217–225. C© 2004 Glasgow Mathematical Journal Trust.
DOI: 10.1017/S0017089504001715. Printed in the United Kingdom

ON (a, b)-DICHOTOMY FOR EVOLUTIONARY PROCESSES
ON A HALF-LINE

PETRE PREDA, ALIN POGAN and CIPRIAN PREDA
Department of Mathematics, West University of Timişoara, Bd. V. Pârvan,
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Abstract. In this paper we investigate the most general dichotomy concept of
evolutionary processes. This dichotomy concept includes many interesting situations,
among them we note the nonuniform dichotomy. We characterize the (a, b)-dichotomy
in terms of the admissibility of the pair (L1

a, L∞
b ). Also, generalizations of the results

of [20], [23] are obtained.
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1. Introduction. In his famous paper [17], Perron gave a characterization of
exponential dichotomy of the solutions to the linear differential equations

dx
dt

= A(t)x, t ∈ [0,+∞), x ∈ �n,

where A(t) is a matrix bounded continuous function, in terms of the existence of
bounded solutions of the equations dx

dt = A(t)x + f (t), where f is a continuous bounded
function on �+.

This result serves as a starting point for numerous works on the qualitative theory
of solutions of differential equations. We refer the reader to the book of Massera-
Schäffer [11] and Daleckij-Krein [4].

The more general case of evolutionary processes has been studied in [5] by
R. Datko for exponential stability and by D. L. Lovelady [9], P. Preda and M. Megan in
[12, 21] for exponential dichotomy. In last few years, several results about exponential
stability and exponential dichotomy for the case of exponentially bounded and strongly
continuous evolution families were obtained by N. van Minh [13, 14], F. Räbiger [13],
Y. Latushkin [2, 6, 7, 8], M. Pinto [1, 18], T. Randolph [7, 8], R.Rau [22], R. Sacker
[24], G. Sell [24] and R. Schnaubelt [8, 13, 25], W. Zhang [26]. All these results are given
for the uniform case.

For the first time, J. L. Massera and J. J. Schäffer have obtained in [10] results
for the behaviour of solutions of the homogenous differential equations imitating a
nonuniform exponential dichotomy, and later this case has been studied by M. Reghiş
[23], J. S. Muldowney [15], V. A. Pliss [19], P. Preda [20, 21], M. Pinto [16] and others.

The concept of (a, b)-dichotomy is very general one and it is a natural extension
of stability. This concept was introduced with the intention of obtaining results
concerning stability for a weakly stable system (at least, weaker than those given by
exponential stability). It covers many interesting situations in the asymptotic behavior
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of evolutionary processes, including the most general concept of uniform dichotomy,
the so-called ordinary dichotomy.

The first aim of this paper is to establish the connections between (a, b)-dichotomy
and the admissibility of the (a, b)- weighted spaces (L1

a), L∞
b , for the general abstract

evolutionary processes. Also, the results obtained extend the theorems proved in [20],
[23].

2. Preliminaries. Let X be a real or complex Banach space and B(X) the Banach
algebra of all bounded linear operators from X into itself.

Also, we denote by M(I, X) the space of all strongly measurable functions f : I →
X , where I is a real interval, and by

L1
loc(�+, X) =

{
f ∈ M(�+, X) :

∫ α

0
‖f (s)‖ ds < ∞, for all α ≥ 0

}
;

L1([t,∞), X) =
{

f ∈ M([t,∞), X) :
∫ ∞

t
‖f (s)‖ ds < ∞

}
;

L1
a(�+, X) =

{
f ∈ L1

loc(�+, X) :
∫ ∞

0
a(s)‖f (s)‖ ds < ∞

}
;

L∞
b (�+, X) =

{
f ∈ L1

loc(�+, X) : ess sup
s≥0

b(s)‖f (s)‖ < ∞
}
,

where a, b : �+ → �∗
+ are two continuous functions and t ≥ 0.

We note that L1([t,∞), X), L1
a(�+, X), L∞

b (�+, X) are Banach spaces endowed
with the norms

‖f ‖1 =
∫ ∞

t
‖f (s)‖ ds,

‖f ‖1,a =
∫ ∞

0
a(s)‖f (s)‖ ds,

‖f ‖∞,b = ess sup
s≥0

b(s)‖f (s)‖,

respectively.

DEFINITION 2.1. A family of bounded linear operators acting on X , denoted by
U = {U(t, s)}t≥s≥0 is called an evolutionary process if

u1) U(t, t) = I (where I is the identity operator on X), for all t ≥ 0;
u2) U(t, s)U(s, r) = U(t, r), for all t ≥ s ≥ r ≥ 0;
u3) U(·, s)x is continuous on [s,∞) for all (s, x) ∈ �+ × X ;

U(t, ·)x is continuous on [0, t] for all (t, x) ∈ �+ × X ;
u4) there exist M, ω > 0 such that

‖U(t, s)‖ ≤ Meω(t−s), for all t ≥ s ≥ 0

DEFINITION 2.2. An application P : �+ → B(X) is said to be a dichotomy projection
family if

i) P2(t) = P(t), for all t ≥ 0;
ii) P(·)x is a bounded continuous function for all x ∈ X .

We set Q(t) = I − P(t), t ≥ 0.
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REMARK 2.1. The family {Q(t)}t≥0 is also a dichotomy projection family. For
continuous functions a, b : �+ → �∗

+, we give the following definition.

DEFINITION 2.3. An evolutionary process U is said to be (a, b)-dichotomic if there
exist P a dichotomy projection family and N1, N2 > 0 such that

d1) U(t, s)P(s) = P(t)U(t, s), for all t ≥ s ≥ 0;
d2) U(t, s) : Ker P(s) → Ker P(t) is an isomorphism for all t ≥ s ≥ 0;
d3) ‖U(t, s)x‖ ≤ N1

a(s)
b(t) ‖x‖, for all t ≥ s ≥ 0 and all x ∈ Im P(s);

d4) ‖U(t, s)x‖ ≥ N2
b(s)
a(t) ‖x‖, for all t ≥ s ≥ 0 and all x ∈ Ker P(s).

In what follows we will consider the evolutionary processes U for which there exists
a dichotomy projection family P such that the conditions d1) and d2) are satisfied. In
that case we will use the notation

U1(t, s) = U(t, s)|ImP(s), U2(t, s) = U(t, s)|KerP(s).

We note that, in the area of differential equations, there is an extensive literature
concerning the subject related to the dichotomy of evolutionary processes, provided
by differential systems or otherwise. Most of the concepts, presented some decades
ago, (see for instance [3, 4, 11], or more recently [2]) are of the uniform type. It is well-
known that the most general concept of uniform dichotomy is the so-called ordinary
dichotomy, which goes back to the book due to J. L. Massera and J. J. Schäffer [11]. In
our case it can be obtained by taking a(t) = b(t) = 1 in Definition 2.3.

In order to show the consistency of our results and the connection with the cited
papers we will present an example of evolutionary process, provided by a differential
system, which is (a, b)-dichotomic, but is not ordinary dichotomic.

EXAMPLE 2.1. Let X = � and consider the differential equation

x′(t) = A(t)x(t)

where

A(t) = e−π + 1 + sin ln(t + 1) − cos ln(t + 1).

We can associate the evolutionary process:

U(t, s) = V (t)V−1(s)

where

V (t)x = ee−π −(t+1)(e−π +1−cos ln(t+1))x

A simple computation shows that:

‖U(t, t0)‖ ≤ e−e−π t+2t0+2+e−π t0 , for all t ≥ t0 ≥ 0

and hence U is (a, b)-dichotomic where:

a(t) = e(2+e−π )t+2, b(t) = ee−π t, P(t)x = x.

We claim that U is not ordinary dichotomic. Assuming for a contradiction that U
is ordinary dichotomic we have that there exist {Q(t)}t≥0 a dichotomy projection family

https://doi.org/10.1017/S0017089504001715 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001715


220 PETRE PREDA, ALIN POGAN AND CIPRIAN PREDA

and two constants N1, N2 such that the conditions d1) − d4) (from Definition 2.3) holds.
Having in mind that X = � it follows that there exists q : �+ → �, a bounded and
continuous function such that Q(t)x = q(t)x. It is easy to observe that

q(t) ∈ {0, 1}, for all t ≥ 0 (∗)

On the other hand, it is easy to check that

‖U(t, 0)‖ = ‖V (t)‖ ≤ e−e−π t, for all t ≥ 0,

and so it results that Im Q(0) = � which implies that q(0) = 1. Using (∗) and the fact
that q is continuous we obtain that q(t) = 1, for all t ≥ 0. It follows that

‖U(t, s)‖ ≤ N1, for all t ≥ s ≥ 0.

Also one can easily verify that

lim
k→∞

‖U(e2kπ − 1, e2kπ−π − 1)‖ = ∞,

which is a contradiction.

DEFINITION 2.4. The pair (L1
a(�+, X), L∞

b (�+, X)) is said to be admissible for U if
for all f ∈ L1

a(�+, X) we have:
i) U−1

2 (·, t)Q(·)f ∈ L1([t,∞), X), for all t ≥ 0;
ii) xf : �+ → X, xf (t) = ∫ t

0 U1(t, s)P(s)f (s) ds − ∫ ∞
t U−1

2 (s, t)Q(s)f (s) ds lies in
L∞

b (�+, X).

LEMMA 2.1. With our assumption we have that U−1
2 (·, t0)Q(·)x is continuous on

[t0,∞), for all (t0, x) ∈ �+ × X.

Proof. Let t ≥ t0 ≥ 0, h ∈ (0, 1), x ∈ X . Then

U2(t + 1, t0) = U2(t + 1, r)U2(r, t0), for all r ∈ [t, t + 1] and so

U−1
2 (t + h, t0) = U−1

2 (t + 1, t0)U2(t + 1, t + h)

U−1
2 (t, t0) = U−1

2 (t + 1, t0)U2(t + 1, t)

It follows that∥∥U−1
2 (t + h, t0)Q(t + h)x − U−1

2 (t, t0)Q(t)x
∥∥

= ∥∥U−1
2 (t + 1, t0)[U2(t + 1, t + h)Q(t + h)x − U2(t + 1, t)Q(t)x]

∥∥
≤ ∥∥U−1

2 (t + 1, t0)
∥∥ ‖U2(t + 1, t + h)Q(t + h)x − U2(t + 1, t)Q(t)x‖

= ∥∥U−1
2 (t + 1, t0)

∥∥ ‖U(t + 1, t + h)Q(t + h)x − U2(t + 1, t)Q(t)x‖
≤ ∥∥U−1

2 (t + 1, t0)
∥∥ ‖U(t + 1, t + h)(Q(t + h)x − Q(t)x)‖

+ ∥∥U−1
2 (t + 1, t0)

∥∥ ‖U(t + 1, t + h)Q(t)x − U(t + 1, t)Q(t)x‖
≤ ∥∥U−1

2 (t + 1, t0)
∥∥Meω(1−h)‖Q(t + h)x − Q(t)x‖

+ ∥∥U−1
2 (t + 1, t0)

∥∥ ‖U(t + 1, t + h)Q(t)x − U(t + 1, t)Q(t)x‖

It is easy to see that U−1
2 (·, t0)Q(·)x is right-handed continuous on [t0,∞), for all x in X .
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Consider now t > t0 ≥ 0, h ∈ (0, t − t0), x ∈ X . Then

U2(t, t0) = U2(t, t − h)U2(t − h, t0)

and so

U−1
2 (t − h, t0) = U−1

2 (t, t0)U2(t, t − h)

It follows that∥∥U−1
2 (t − h, t0)Q(t − h)x − U−1

2 (t, t0)Q(t)x
∥∥

= ∥∥U−1
2 (t, t0)U2(t, t − h)Q(t − h)x − U−1

2 (t, t0)Q(t)x
∥∥

≤ ∥∥U−1
2 (t, t0)

∥∥ ‖U2(t, t − h)Q(t − h)x − Q(t)x‖
= ∥∥U−1

2 (t, t0)
∥∥ ‖U(t, t − h)Q(t − h)x − Q(t)x‖

≤ ∥∥U−1
2 (t, t0)

∥∥ [‖U(t, t − h)Q(t − h)x − U(t, t − h)Q(t)x‖
+‖U(t, t − h)Q(t)x − Q(t)x‖]

≤ ∥∥U−1
2 (t, t0)

∥∥ [‖U(t, t − h)‖ ‖Q(t − h)x − Q(t)x‖
+‖U(t, t − h)Q(t)x − Q(t)x‖]

≤ ∥∥U−1
2 (t, t0)

∥∥ [Meωh‖Q(t − h)x − Q(t)x‖ + ‖U(t, t − h)Q(t)x − Q(t)x‖]

It then follows easily that U−1
2 (·, t0)Q(·)x is left-handed continuous on [t0,∞) and

finally we obtain that U−1
2 (·, t0)Q(·)x is continuous on [t0,∞), for all x in X . �

3. The main results.

THEOREM 3.1. If the pair (L1
a(�+, X), L∞

b (�+, X)) is admissible to U then there
exists K > 0 such that

‖xf ‖∞,b ≤ K‖f ‖1,a, for all f ∈ L1
a(�+, X).

Proof. Let us define ∧t : L1
a(�+, X) → L1([t,∞), X) by

∧t f = U−1
2 (·, t)Q(·)f

for any t ≥ 0. It is obvious that ∧t is a linear operator for all t ≥ 0.
Consider t ≥ 0, { fn}n≥1 ⊂ L1

a(�+, X), f ∈ L1
a(�+, X), g ∈ L1([t,∞), X) such that

fn
L1

a−→ f, ∧tfn
L1−→ g.

Then there exists a subsequence { fnk}k≥1 of { fn}n≥1 such that

fnk → f, ∧tfnk → g a.p.t.

But

‖(∧tfnk )(s) − (∧tf )(s)‖ ≤ ∥∥U−1
2 (s, t)Q(s)

∥∥ ‖fnk (s) − f (s)‖
for all k ≥ 1 and all s ≥ t.

It follows easily that ∧t is a bounded operator for any t ≥ 0.
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Let T : L1
a(�+, X) → L∞

b (�+, X) the linear operator defined by

(Tf )(t) =
∫ t

0
U1(t, s)P(s)f (s) ds −

∫ ∞

t
U−1

2 (s, t)Q(s)f (s) ds.

If {gn}n≥1 ⊂ L1
a(�+, X), g ∈ L1

a(�+, X), h ∈ L∞
b (�+, X) and gn

L1
a−→ g, Tgn

L∞
b−→ h

then,

‖(Tgn)(t) − (Tg)(t)‖ ≤
∥∥∥∥
∫ t

0
U1(t, s)P(s)(gn(s) − g(s)) ds

∥∥∥∥
+

∥∥∥∥
∫ ∞

t
U−1

2 (s, t)Q(s)(gn(s) − g(s)) ds
∥∥∥∥

≤
∫ t

0
‖U1(t, s)P(s)(gn(s) − g(s))‖ ds + ‖ ∧t (gn − g)‖1

≤ tMeωt sup
s≥0

‖P(s)‖
∫ t

0
‖gn(s) − g(s)‖ ds + ‖ ∧t (gn − g)‖

= tMeωt sup
s≥0

‖P(s)‖
∫ t

0

1
a(s)

a(s)‖gn(s) − g(s)‖ ds + ‖ ∧t (gn − g)‖1

≤ tMeωt sup
s≥0

‖P(s)‖ sup
s∈[0,t]

1
a(s)

‖gn − g‖1,a + ‖ ∧t (gn − g)‖1,

for all t ≥ 0 and all n ∈ N.
It follows that Tg = h, hence T is bounded.
So

‖xf ‖∞,b = ‖Tf ‖∞,b ≤ ‖T‖ ‖f ‖1,a, for all f ∈ L1
a(�+, X). �

THEOREM 3.2. The evolutionary process U is (a, b)-dichotomic if and only if the pair
(L1

a(�+, X), L∞
b (�+, X)) is admissible to U .

Proof. Necessity. It follows easily from Lemma 2.1 that U−1
2 (·, t)Q(·)f is strongly

measurable on [t,∞), for all f ∈ L1
a(�+, X) and all t ≥ 0.

By Definition 2.3 we have that

∥∥U−1
2 (s, t)x

∥∥ ≤ 1
N2

a(s)
b(t)

‖x‖,

for all s ≥ t ≥ 0 and all x ∈ Ker P(s), which implies that

∥∥U−1
2 (s, t)Q(s)f (s)

∥∥ ≤ 1
N2

sup
s≥0

‖Q(s)‖ 1
b(t)

a(s)‖f (s)‖,

for all s ≥ t ≥ 0 and all f ∈ L1
a(�+, X) and hence U−1

2 (·, t)Q(·)f ∈ L1([t,∞), X), for all
t ≥ 0 and all f ∈ L1

a(�+, X)

‖xf (t)‖ ≤
∫ t

0
‖U1(t, s)P(s)f (s)‖ ds +

∫ ∞

t

∥∥U−1
2 (s, t)Q(s)f (s)

∥∥ ds

≤
∫ t

0
N1

a(s)
b(t)

‖P(s)f (s)‖ ds +
∫ ∞

t

1
N2

sup
s≥0

‖Q(s)‖a(s)
b(t)

‖f (s)‖ ds
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≤ N1

b(t)
sup
s≥0

‖P(s)‖
∫ t

0
a(s)‖f (s)‖ ds + 1

N2b(t)
sup
s≥0

‖Q(s)‖
∫ ∞

t
a(s)‖f (s)‖ ds

≤ 1
b(t)

(
N1 sup

s≥0
‖P(s)‖ + 1

N2
sup
s≥0

‖Q(s)‖
)

‖f ‖1,a,

for all t ≥ 0 and all f ∈ L1
a(�+, X). Now it is clear that xf ∈ L∞

b (�+, X), for all f ∈
L1

a(�+, X).
Sufficiency. Consider t0 ≥ 0, x ∈ X , δ > 0 and f : �+ → X

f (t) =
{

U(t, t0)x, t ∈ [t0, t0 + δ]

0, t �∈ [t0, t0 + δ].

We observe that f ∈ L1
a(�+, X) and

‖f ‖1,a =
∫ t0+δ

t0

a(s)‖U(s, t0)x‖ ds,

and

xf (t) =
∫ t

0
U1(t, s)P(s)f (s) ds −

∫ ∞

t
U−1

2 (s, t)Q(s)f (s) ds

=
{

δU1(t, t0)P(t0)x, t ≥ t0 + δ

−δU−1
2 (t0, t)Q(t0)x, t ≤ t0.

It follows that

δb(t)‖U1(t, t0)P(t0)x‖ ≤ b(t)‖xf (t)‖
≤ ‖xf ‖∞,b ≤ K‖f ‖1,a

≤ K
∫ t0+δ

t0

a(s)‖U(s, t0)x‖ ds,

for all t0 ≥ 0, δ > 0, x ∈ X , t ≥ t0 + δ.
If we make δ → 0 we obtain that

b(t)‖U1(t, t0)x‖ ≤ Ka(t0)‖x‖,
for all t ≥ t0 ≥ 0 and all x ∈ Im P(t0) and hence d3) is satisfied.

On the other hand

δb(t)
∥∥U−1

2 (t0, t)Q(t0)x
∥∥ ≤ b(t)‖xf (t)‖

≤ ‖xf ‖∞,b ≤ K‖f ‖1,a

≤ K
∫ t0+δ

t0

a(s)‖U(s, t0)x‖ ds,

for all t0 ≥ 0, δ > 0, x ∈ X , t ∈ [0, t0].
Again by making δ → 0 we have that

b(t)
∥∥U−1

2 (t0, t)x
∥∥ ≤ Ka(t0)‖x‖,
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for all t0 ≥ t ≥ 0 and all x ∈ Ker P(t0). Now it is clear that the condition d4) holds
too. �
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Ser. St. Mat. 17 (1979), 65–71.

21. P. Preda and M. Megan, Non-uniform dichotomy of evolutionary processes in Banach
space, Bull. Austral. Math. Soc. 27 (1983), 31–52.

22. R. Rau, Hyperbolic evolution groups and dichotomic of evolution families, J. Dynam.
Differential Equations 6 (1994), 107–118.

https://doi.org/10.1017/S0017089504001715 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001715


EVOLUTIONARY PROCESSES ON A HALF-LINE 225
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