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Abstract

New data on the complete mitochondrial genome of Azygia robusta (Azygiidae) were obtained
by the next-generation sequencing (NGS) approach. The mitochondrial DNA (mtDNA) of
A. robusta had a length of 13 857 bp and included 12 protein-coding genes, two ribosomal genes,
22 transfer RNA genes, and two non-coding regions. The nucleotide sequences of the complete
mitochondrial genomes of two A. robusta specimens differed from each other by 0.12 ± 0.03%.
Six of 12 protein-coding genes demonstrated intraspecific variation. The difference between the
nucleotide sequences of the complete mitochondrial genomes of A. robusta and Azygia hwangt-
siyui was 26.95 ± 0.35%; the interspecific variation of protein-coding genes between A. robusta
and A. hwangtsiyui ranged from 20.5 ± 0.9% (cox1) to 30.7 ± 1.2% (nad5). The observed gene
arrangement in the mtDNA sequence of A. robusta was identical to that of A. hwangtsiyui.
Codon usage and amino acid frequencies were highly similar between A. robusta and
A. hwangtsiyui. The results of phylogenetic analyses based on mtDNA protein-coding regions
showed that A. robusta is closely related to A. hwangtsiyui (belonging to the same suborder,
Azygiida) that formed a distinct early-diverging branch relative to all other Digenea. A
preliminary morphological analysis of paratypes of the two azygiid specimens studied showed
visible morphological differences between them. The specimen extracted from Sakhalin taimen
(Parahucho perryi) wasmost similar toA. robusta.Thus, we here provide the first record of a new
definitive host, P. perryi, for A. robusta and also molecular characteristics of the trematode
specimens.

Introduction

Trematodes of the family Azygiidae Lühe, 1909 parasitise stomachs or body cavities in elasmo-
branchs and stomachs in freshwater teleosts and holosteans (Gibson 2002). Representatives of the
type genus of this family, Azygia Looss, 1899, possess a characteristic medium- or large-sized,
elongated body, a small oral sucker, a large ventral sucker, and two large tandem testes. In the
Russian Far East, these worms are known to infect mainly freshwater fishes, including such species
as Esox reicherti Dybowski, 1869, Perccottus glenii Dybowski, 1877, Hucho taimen (Pallas 1773),
and Channa argus (Cantor, 1842) (Mamaev, Oshmarin, 1971; Dvoryadkin 1977; Ermolenko et al.
1998; Besprozvannykh 2005; Vainutis et al. 2023). The phylogenetic position of Azygiidae among
othermembers of theHemiurata is currently under debate. As a consequence, the taxonomic status
of this family still remains unresolved. Taxonomists previously considered this group of trematodes
as a separate suborder, Azygiata La Rue, 1957, or the order Azygiida Odening, 1963 (La Rue 1957;
Skrjabin & Guschanskaya 1958; Nagasawa et al. 1987; Littlewood 2008; Sokolov & Zhukov 2016).
At present, most authors, based on the results of molecular phylogenetic analyses using ribosomal
DNA gene sequence data (Olson et al. 2003; Pérez-Ponce de León & Hernández-Mena 2019),
recognize the status of this trematode group as a separate superfamily, Azygioidea Lühe, 1909
(Gibson 2002; Olson et al. 2003; Kostadinova & Pérez-del-Olmo 2014; Pérez-Ponce de León &
Hernández-Mena 2019), and as a member of the suborder Hemiurata Skrjabin & Guschanskaja,
1954. A phylogenetic analysis of Digenea based on complete mitochondrial sequence data and also
using the whole mitochondrial DNA (mtDNA) genome of an azygiid representative,
A. hwangtsiyui Tsin, 1933, obtained for the first time, has shown that Azygiidae represents a
distinct branch, basal for most of trematode groups except Schistosomatidae Stiles & Hassall, 1898
(Wu et al. 2020). In our opinion, these results provide sufficient grounds for revising the taxonomic
status of Azygiidae through further phylogenetic studies usingmtDNA complete sequence data for
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different azygiid species. In our present study, we provide new data
on the complete mtDNA sequence, inferred by the next-generation
sequencing (NGS) approach, from two adult specimens of the
trematode Azygia robusta Odhner, 1911 extracted from two sal-
monid species, the taimens Hucho taimen and Parahucho perryi,
which were caught in two rivers of Primorsky Krai, Russia. This
trematode species was earlier characterised morphologically by
Besprozvannykh (2005), who provided a detailed description of its
life cycle. Our study aimed mainly to compare the structures and
variations in the complete mitochondrial genomes of two azygiid
species, analyse phylogenetic relationships using the new complete
mtDNA sequence data on A. robusta, and interpret the obtained
results to clarify the Azygiidae systematics.

Material and methods

Sample collection and DNA extraction

Adult worms were collected from the intestines of two naturally
infected salmonids, a common taimen (H. taimen) caught in the
Armu River (Besprozvannykh 2005) and a Sakhalin taimen
(P. perryi (Brevoort, 1856)) caught in the Samarga River (unpub-
lished, collected in 1987) (Table 1). The trematodes were killed with
hot water and then fixed in 96% ethanol. Total DNA was extracted
from the two specimens separately using a Qiamp Investigator kit
(Qiagen, Germantown, MD, USA) according to the manufacturer’s
protocol. Amount of total DNA was measured on a Qubit 3.0
fluorometer (Invitrogen, Waltham, MA, USA) and then used for
NGS sequencing in a final amount of 100 ng.

Preparation of genome library for NGS

Libraries were prepared using an Ion Plus Fragment Library kit and
unique adapters from an Ion Xpress Barcode Adaptors kit
(ThermoFisher Scientific, Waltham, MA, USA) with pre-
fragmentation on a Covaris M220 Focused-ultrasonicator (Covaris,
LLC, Woburn, MA, USA). The preparation of polymerase chain
reaction (PCR) emulsion and templates was done on an Ion One
Touch 2 System (ThermoFisher Scientific) followed by sequencing
on an Ion S5 sequencing platform using an Ion 540 chip.

The sequence quality and length distribution of raw reads were
checked using FastQC 0.11.9 (Babraham Bioinformatics) and then
the readswere assembled using SPAdes 3.14.1 (Nurk et al. 2013) with
correction of IonTorrent data using the IonHammer tool available in
the SPAdes software. The scaffolds containing mtDNA data were
manually assembled in the MEGA X software (Kumar et al. 2018).

Mitochondrial genome annotation was performed using the
MITOS2 on-line software (Donath et al., 2009, available at http://
mitos2.bioinf.uni-leipzig.de), and then the mitochondrial genome
was manually assembled and aligned with that of A. hwangtsiyui
(Wu et al. 2020) in MEGA X. Tandem repeats were searched using
the Tandem Repeat Finders software (https://tandem.bu.edu/trf/
trf.html). Search and analysis of the transfer RNA (tRNA) gene
structure were performed in the ARWEN software (http://130.235.
244.92/ARWEN/).

Codon usage, gene variations, and phylogenetic analyses

Alignments of nucleotide and amino acid sequences were per-
formed by the ClustalW algorithm in MEGA X. Poorly aligned
regions were removed using the Gblocks Server (http://phylogen
y.lirmm.fr/phylo_cgi/one_task.cgi?task_type=gblocks).

Table 1. List of Digenea sequences from GenBank used in phylogenetic
analysis

Species
GenBank
accession number Reference

Xiphidiata

Brachycladium goliath KR703278 Briscoe et al. 2016

Carassotrema koreanum ON59838 Ivashko et al. 2022

Dicroroelium chinensis KF318786 Liu et al. 2014a

Dicrocoelium dendriticum KF318787 Liu et al. 2014a

Eurytrema pancreaticum KP241855 Chang et al. 2016

Paragonimus heterotremus MH059809 Qian et al. 2018

Paragonimus kellicotti MH322000 Wang et al. 2018

Paragonimus ohirai KX765277 Le et al. 2019

Paragonimus westermani KX943544 Biswal et al. 2014

Parasaccocoelium mugili MW846232 Atopkin et al. 2021

Plagiorchis maculosus MK641809 Suleman et al. 2019

Prosthogonimus cuneatus MT586127 Guo et al. 2020

Echinostomata

Artyfechinostomum
sufrartyfex

KX943545 Biswal et al. 2016,
unpublished

Echinostoma caproni AP017706 Holroyd et al. 2016,
unpublished

Echinostoma hortense KR062182 Liu et al. 2016

Echinostoma miyagawai MH393928 Fu et al. 2019a

Echinostoma revolutum MN116706 Ran et al. 2020

Echinochasmus japonicus KP844722 Le et al. 2016

Fasciola hepatica AF216697 Le et al. 2000

Fasciola gigantica KF543342 Liu et al. 2014b

Fasciola sp. KF543343 Liu et al. 2014b

Fasciolopsis buski KX169163 Ma et al. 2016,
unpublished

Fascioloides magna KU060148 Ma et al. 2016,
unpublished

Hypoderaeum conoideum KM111525 Yang et al. 2015

Tamerlania zarudnyi MW334947 Suleman et al. 2021

Pronocephalata

Acanthoparyphium sp. MG792058 Kandari et al. 2018,
unpublished

Tracheophilus cymbius MK355447 Li et al. 2019

Uvitellina sp. MK227160 Suleman et al. 2019

Calicophoron
microbothrioides

KR337555 Ma et al. 2015,
unpublished

Explanatum explanatum KT198989 Ma et al. 2015,
unpublished

Fischoederius cobboldi KX169164 Ma et al. 2016,
unpublished

Fischoederius elongatus KM397348 Fang, 2014,
Unpublished

(Continued)
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Phylogenetic analysis was performed on the basis of concaten-
ated amino acid sequences by the Maximum likelihood
(ML) algorithm available in the PhyML 3.1 software (Guindon &
Gascuel 2003) and by the Bayesian Inference (BI) method available
in the MrBayes 3.2.6 software (Ronquist et al. 2012). The ML
algorithm was performed using an LG evolutionary model (Lee &
Gascuel 2008), Subtree Pruning and Regrafting (SPR) tree topology
search, and random sequence addition. The BI algorithm was
performed using a protein model, a mixed set of substitution types,
a mixed amino acid model, and uninformative amino acid substi-
tution rates. The Monte Carlo Markov chains algorithm was per-
formed with 1 000 000 generations during two independent runs,
with sampling each 1000th generation and burning the first 25% of
all generations. The average standard deviation of split frequencies
was 0.000865, and that was enough for phylogenetic reconstruc-
tion. Significance of phylogenetic relationships was estimated with
a posteriori probabilities (Huelsenbeck et al. 2001) for the BI
algorithm and an approximate likelihood-ratio test (Anisimova &
Gascuel 2006) for the ML algorithm. Codon usage statistics was
calculated for concatenated protein-coding gene sequence data in
MEGA X. Analysis of correlation between the number of variable
sites and the gene length was performed using Pearson’s correlation
coefficient in Statistica 13 software (TIBCO Software Inc. 2017).

Phylogenetic relationships were inferred using sequences of our
samples and other trematode species accessed from the NCBI
GenBank database (Table 1). The two annotated mitochondrial
genomes have been deposited in GenBank under accession num-
bers OR350239 and OR350240, while raw Sequence Read Archive
(SRA) sequencing data are available under accession numbers
SAMN36469092–SAMN36469093.

Results

Brief visual morphological identification of the species

In this study we first performed a brief visual morphological
analysis of the paratypes of trematodes used for the NGS analysis.
The general view of the azygiid worms fromH. taimen caught in the
Armu River and from P. perryi caught in the Samarga River can be
seen in Figures 1 and 2, respectively. Both specimens possess the
main diagnostic characteristics of A. robusta, including the round
pharynx and vitellaria extending beyond the posterior end of the
second testis to half the distance between the second testis and the
posterior end of the body (Skrjabin & Guschanskaja 1958; Bauer
1987). Thesemorphological characteristics were observed clearly in
both specimens (Figures 5, 6). For the NGS analysis, we used the
mature trematode specimens that had been found in H. taimen
from the Armu River cultivated from cercariae, identified as
A. robusta, and published in the study of Besprozvannykh (2005),
who described the life cycle of this trematode species. Thus, we keep
the nameAzygia robusta for both trematode specimens used for the
NGS analysis.

Sequence quality and coverage

We obtained 3.5–4.5 million reads for two specimens of A. robusta.
The sequence quality after FastQC was acceptable. Phred 33 values
were 20–30 (mode 26) and decreased slightly in long reads. The
sequence length was 25–449 bp; for most reads, the length was 120–
240 bp. The GC content and numbers of duplications and adapters

Table 1. (Continued)

Species
GenBank
accession number Reference

Gastrothylax crumenifer KM400624 Yang et al. 2016

Homalogaster paloniae KX169165 Ma et al. 2016,
unpublished

Ogmocotyle sikae KR006934 Ma et al. 2015,
unpublished

Orthocoelium streptocoelium KM659177 Yang, 2014,
Unpublished

Notocotylus intestinalis MT560390 Xu et al. 2021

Paramphistomum cervi KF475773 Yan et al. 2013

Hemiurata

Azygia robusta OR350239 This study

A. robusta OR350240 This study

Azygia hwangtsiyui MN844889 Wu et al. 2020

Opisthorchiata

Amphimerus sp. MK238506 Ma et al. 2019

Clonorchis sinensis FJ381664 Shekhovtsov et al.
2010

Haplorchis taichui KF214770 Lee et al. 2013

Metagonimus yokogawai KC330755 Jeon et al. 2012,
unpublished

Metorchis orientalis KT239342 Na et al. 2016

Opisthorchis felineus EU921260 Shekhovtsov et al.
2010

Diplostomata

Clinostomum complanatum KM923964 Chen, 2015,
Unpublished

Cyathocotyle prussica MH536510 Locke et al. 2018

Orientobilharzia
turkestanicum

HQ283100 Wang et al. 2011

Postharmostomum
commutatum

MN200359 Fu et al. 2019b

Schistosoma bovis CM014335 Oey et al. 2019

Schistosoma curassoni AP017708 Kikuchi et al. 2019,
unpublished

Schistosoma haematobium DQ157222 Littlewood et al.
2006

Schistosoma indicum AF215860 Le et al. 2000

Schistosoma japonicum MN637821 Jones et al. 2020

Schistosoma mansoni HE601612 Protasio et al. 2012

Schistosoma mekongi AF217449 Le et al. 2000

Schistosoma spindale DQ157223 Littlewood et al.
2006

Trichobilharzia regenti DQ859919 Webster et al. 2007

Trichobilharzia szidati MF136777 Semyenova et al.
2017

Outgroup (Cestoda)

Diphyllobothrium latum DQ985706 Park et al. 2007
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did not exceed the norm. The mean coverage across the mitochon-
drial DNAwas 103X and 204X for the two specimens ofA. robusta.

General characteristics of the Azygia robusta mitochondrial
genome

The mitochondrial genome of A. robusta had a length of 13 857 bp
and contained 12 protein-coding genes, two ribosomal genes,
22 tRNA genes, and two non-coding regions: short (SNCR) and
long (LNCR) (Figure 3, Table 2). Alternative read variants were
absent from the NGS raw data, and no intraspecific variable posi-
tions were observed. The nucleotide composition in the A. robusta
mitochondrial genome was as follows: A, 16.5%; T (U), 40.9%; C,
14.4%; and G, 28.2%. The nucleotide pair frequency was 57.4% for
the AT-content and 42.6% for the GC-content, showing a bias
towards T over A (AT skew = -0.43) and G over C (CG skew =
0.32), respectively.

Protein-coding genes of mitochondrial genome

The total length of the sequences of 12 protein-coding genes in the
complete mitochondrial genome was 10 110 bp. The arrangement of
protein-coding genes was as follows: cox3–cytb–nad4L–nad4–atp6–
nad2–nad1–nad3–cox1–cox2–nad6–nad5. The start-codons for

Figure 1. General view of Azygia robusta extracted from Hucho taimen inhabiting the
Armu River (the microscope slide and the photograph were kindly provided by
V.V. Besprozvannykh).

Figure 2.General view of Azygia robusta extracted from Parahucho perryi inhabiting the
Samarga River (the microscope slide and the photograph were kindly provided by
V.V. Besprozvannykh).

Figure 3. Organization of the complete mitochondrial genome in Azygia robusta.
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protein-coding genes were ATG or GTG, except the cox1 gene that
startedwith TTG codon, aswell as those forA. hwangtsiyui and nad3
gene that started with GGT codon (Table 2). The nucleotide com-
position of the assembled protein-coding part of the mitochondrial

genome sequence was as follows: A, 14.5%; T (U), 43.3%; C, 14.0%;
and G, 28.2%. The nucleotide pair frequency was 57.8% for the
AT-content and 42.2% for the GC-content, showing a bias towards
T over A (AT skew = -0.5) and G over C (CG skew = 0.34).

Table 2. The organization of mitochondrial genome of Azygia robusta

Gene Position 5' to 3' Length (bp) Initiation codons Termination codons Anti-codons (tRNA)

cox3 1–660 660 GTG TAG

tRNA-His (H) 665–730 66 GTG

cytb 732–1841 1110 ATG TAG

nad4L 1849–2109 261 GTG TAG

nad4 2070–3344 1275 GTG TAG

tRNA-Gln (Q) 3353–3415 63 TTG

tRNA-Phe (F) 3420–3488 69 GAA

tRNA-Met (M) 3488–3556 69 CAT

atp6 3557–4060 504 GTG TAG

nad2 4067–4924 858 GTG TAA

tRNA-Val (V) 4933–4999 67 TAC

tRNA-Ala (A) 5011–5075 65 TGC

tRNA-Asp (D) 5082–5150 69 GTC

nad1 5153–6055 903 ATG TAG

tRNA-Asn (N) 6057–6122 66 GTT

tRNA-Pro (P) 6133–6199 67 TGG

tRNA-Ile (I) 6205–6268 64 GAT

tRNA-Lys (K) 6269–6339 71 CTT

nad3 6340–6699 360 GTG TAG

*tRNA-Ser (S1) 6706–6768 63 GCT

tRNA-Trp (W) 6778–6841 64 TCA

cox1 6842–8389 1548 TTG TAG

**tRNA-Thr (T) 8405–8467 63 TGT

rrnL 8473–9441 969

*tRNA-Cys (C) 9442–9501 60 GCA

rrnS 9502–10 247 746

cox2 10 248–10 829 582 GTG TAG

nad6 10 834–11 283 450 GTG TAG

tRNA-Tyr (Y) 11 290–11 354 65 GTA

tRNA-Leu (L1) 11 355–11 421 67 TAG

tRNA-Ser (S2) 11 433–11 494 62 TGA

tRNA-Leu (L2) 11 496–11 563 68 TAA

tRNA-Arg (R) 11 567–11 631 65 TCG

nad5 11 638–13 236 1598 GTG TAG

tRNA-Glu (E) 13 238–13 295 58 TTC

SNCR 13 296–13 422 127

tRNA-Gly (G) 13 423–13 487 65 TCC

LNCR 13 488–13 857 370

LNCR, long non-coding region; SNCR, short non-coding region.
*tRNA missed the DHU-arm
**tRNA missed the T-stem
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Codon usage statistics for A. robusta were consistent with the
proportions in the nucleotide composition: the most common
triplets contained T (U) and/or G bases, namely UUU (with a
frequency of 9.79%), UUG (5.99%), GUU (5.88%), GGG (4.4%),
UGU (3.82%), and GUG (3.39%).

A total of 3 386 amino acidswere encoded by themitochondrial
protein-coding genes inA. robusta.Of these, a maximal frequency
was observed for leucine (15.0%), valine (12.2%), and phenylalan-
ine (11.7%); the frequencies for lysine (1.18%) and glutamine
(1.21%) were minimal compared to other amino acids. The amino
acid frequencies of the mitochondrial protein sequences of
A. hwangtsiyuiwere similar to those ofA. robusta, with nomarked
differences observed (Table 3).

Intra- and interspecific variation of completemtDNA sequences

Overall, the nucleotide sequences of the complete mitochondrial
genomes, including all genes and non-coding fragments, of the
two A. robusta specimens differed from each other by 0.12 ±
0.03%. The concatenated protein-coding gene sequences between
these two specimens differed by 0.11 ± 0.03%, and amino acid
sequences by 0.06 ± 0.05%. Six of 12 protein-coding genes dem-
onstrated intraspecific variation in A. robusta (Table 4); a total of
12 substitutions were revealed, with each gene containing from
one to three variable sites, transitions T/C (67%) or A/G (25%),
and a single transversion T/G in nad6 gene.

The difference between the nucleotide sequences of the com-
plete mitochondrial genomes of A. robusta and A. hwangtsiyui
was 26.95 ± 0.35%; between the concatenated protein-coding
nucleotide sequences, 26.00 ± 0.43%; and between the amino acid
sequences, 30.15 ± 0.82%. The interspecific variation of protein-
coding genes betweenA. robusta andA. hwangtsiyui ranged from
20.5 ± 0.9% (cox1) to 30.7 ± 1.2% (nad5) (Table 4). The results of
correlation analysis using Pearson’s correlation coefficient
showed a high positive correlation (r = 0.95) between the number
of variable sites and the gene length for interspecific comparison
of protein-coding gene variations in the two Azygia species
(Figure 4).

Phylogenetic analysis

The maximum likelihood (ML) and Bayesian Inference
(BI) algorithms were based on alignment of 2 280 amino acids
available after Gblocks processing. Overall, mitochondrial gen-
omes of 62 species, including 61 digenean and one cestode species,
Diphpyllobothrium latum (Linnaeus, 1758) Lühe, 1899, were
incorporated into the phylogenetic analysis. As the BI tree top-
ology showed, the digeneans could be subdivided into three highly
supported clades (Figure 5). The first clade was early divergent and
consisted of three Azygia specimens: one A. hwangtsiyui
(GenBank accession no. MN844889) and two A. robusta (our
material). The second clade represented the order Diplostomida,
including species of the families Schistosomatidae Stiles & Hassal,
1898, Clinostomidae Lühe, 1901, Cyathocotylidae Mühling, 1898,
and Brachylaimidae Joyeux & Foley, 1930. The third clade com-
prised 47 species from 18 families, representing seven suborders.
The topology of this subclade completely agreed with the previous
phylogenetic reconstructions of Digenea (Ivashko et al. 2022). The
suborder Xiphidiata Olson, Cribb, Tkach, Bray& Littlewood, 2003
was polyphyletic and appeared as two independent groups. The
first group consisted of Brachycladium goliath (van Beneden,
1858) and species of the genus Paragonimus Braun, 1988 Ta
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(Xiphidiata). This group was closely related to Opisthorchiata.
Plagiorchis maculosus (Rudolphi, 1802) appeared as sister to the
above-mentioned Xiphidiata and Opisthorchiata species. The sec-
ond group of Xiphidiata included representatives of Dicrocoeliidae
Odhner, 1911 (Dicrocoelium dendriticum (Rudolphi, 1819),
D. chinensis (Sudarikov and Ryjikov, 1951) Tang and Tang, 1978,
and Eurytrema pancreaticum (Janson, 1899)), Eucotylidae Skrja-
bin, 1924 (Tamerlania zarudnyi Skrjabin, 1924), and Prosthogoni-
midae Lühe, 1909 (Prosthogonimus cuneatus (Rudolphi, 1802)

Braun, 1901). This group appeared as sister to the subclade that
contained species of the suborder Pronocephalata Olson, Cribb,
Tkach, Bray, Littlewood, 2003. The suborder Haploporata Pérez-
Ponce de León & Hernández-Mena, 2019, represented by Para-
saccocoelium mugili Zhukov, 1971 and Carassotrema koreanum
Park, 1938, formed a basal branch within the third clade.

In general, theML tree topologywas similar to that of the BI tree,
demonstrating three main clades within Digenea (Figure 6). The
marked differences from the BI tree topology were as follows:

Table 4. Variation of mitochondrial protein-coding genes of Azygia robusta and between A. robusta and A. hwangtsiyui.

Intraspecific values for A. robusta Interspecific values

Gene
Variable sites/Gene

length, bp Variation, %
Substitutions

(typesite number)
Variable sites/Gene

length, bp Variation, % ± std.err.

cox3 2/660 0.3 T/C85, C/T369 161 24.2 ± 1.5

cytb 0/1110 0 – 254 22.9 ± 1.2

nad4L 0/261 0 – 61 23.4 ± 2.6

nad4 0/1275 0 – 356 28.0 ± 1.2

atp6 0/504 0 – 150 30.1 ± 2.1

nad2 0/858 0 – 243 28.8 ± 1.5

nad1 3/903 0.33 C/T191, A/G556, T/C819 237 26.3 ± 1.4

nad3 1/360 0.28 A/G288 97 27.3 ± 2.4

cox1 1/1548 0.07 C/T582 318 20.5 ± 0.9

cox2 0/582 0 – 123 21.1 ± 1.7

nad6 2/450 0.44 T/G9, T/C255 129 29.4 ± 2.1

nad5 3/1599 0.19 T/C185, A/G1042, T/C1594 486 30.7 ± 1.2

Figure 4. Results of an analysis based on Pearson’s coefficient of correlation between gene length and number of variable sites with pairwise comparison ofmitochondrial protein-
coding genes of A. robusta and A. hwangtsiyui. r is the Pearson’s correlation coefficient.
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(1) Dicrocoeliidae (Xiphidiata) formed a separate basal subclade
within the third clade, creating polyphyly for Xiphidiata, and
(2) representatives of Haploporata, C. koreanum and P. mugili,
were within a single subclade with Plagiorchis maculosus, with this
subclade being sister to closely related representatives of Xiphidiata
(Paragonimus spp. and Brachycladium goliath) and Opisthorch-
iata. These differences between the BI and ML tree topologies were
also reported in previous studies (Atopkin et al. 2021; Ivashko et al.
2022).

Discussion

Mitochondrial genome variations in A. robusta and
A. hwangtsiyui

The complete mitochondrial genome structure of A. robusta was
highly similar to that of A. hwangtsiyui in gene arrangement, the
existence of two non-coding regions separated from each other by
tRNA-Gly (G) gene, and a higher level of AT content relative to GC
content for both mitochondrial genome sequences and protein-
coding genes. Also, the two azygiid species had the same most
frequent codons and the same start-codon (TTG) for the cox1 gene.
A difference was revealed in the start-codon of the nad3 gene, which
started with GGT in A. robusta vs. ATG in A. hwangtsiyui. There

were also differences in the lengths of some protein-coding genes
between A. robusta and A. hwangtsiyui: 1275 vs. 1272 bp, respect-
ively, for the nad4 gene; 504 vs. 513 bp for atp6; 903 vs. 906 bp for
nad1; 1548 vs. 1564 bp for cox1; 450 vs. 444 bp for nad6; and 1598
vs. 1600 bp for nad5.

New definitive host of Azygia robusta from the Russian Far East

To date, four species of definitive hosts for trematodes Azygia spp.
are known from the Russian Far East: the northern snakehead
Channa argus (Cantor, 1842) and the Amur pike Esox reicherti
Dybowski, which are freshwater fishes, and the common taimen
Hucho taimen (Pallas, 1773) and the Chinese sleeper Perccottus
glenii Dybowski, 1877, which are freshwater/brackish-water fishes
(Mamaev, Oshmarin, 1971; Dvoryadkin 1977; Ermolenko et al.
1998; Besprozvannykh 2005; Vainutis et al. 2023). In this study,
we have extended the list of definitive hosts for this region by
adding the Sakhalin taimen, Parahucho perryi (Brevoort, 1856).
This fish is one of the world’s largest salmonids, reaching maturity
at 6–8 years of age and living for more than 20 years. The species’
geographic range is confined to the Sea of Japan, from the southern
Kuril Islands and Primorsky Krai, Russia, to Hokkaido, Japan.
Parahucho perryi occupy a variety of habitats including upper
and lower reaches of rivers, lakes, brackish-water lagoons, estuaries,
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Figure 5. Phylogenetic relationships of Azygia robusta and other digenetic trematodes reconstructed by the Bayesian Inference (BI) algorithm on the basis of alignment of protein
sequences containing 2280 amino acids, available after Gblock processing. Nodal support is shown with a posteriori probabilities calculated using the BI algorithm.
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and coastal marine waters (Zolotukhin & Semenchenko 2008;
Fukushima et al. 2011). The ecological features of P. perryi are
favorable for the trematode A. robusta to infect this fish species.
Moreover, one of the azygiid species,A. perryi, has been reported as
a parasite for P. perryi from Japan (Nagasawa et al. 1987; Popiołek
et al. 2013), while A. robusta is known to parasitise salmonids
(Nikolić et al. 2018). Thus, we here provide the first record of a
new definitive host, Parahucho perryi, for the trematode Azygia
robusta from the Russian Far East.

Systematics and phylogenetic relationships of Azygiidae

The systematic position of Azygiidae is still unclear because of the
lack of molecular data for representatives of this group, and, as a
consequence, controversies arise between interpretations of mor-
phological andmolecular data. Most authors recognize the status of
this trematode group as a separate superfamily (Gibson 2002; Olson
et al. 2003; Kostadinova & Pérez-del-Olmo 2014; Pérez-Ponce de
León & Hernández-Mena 2019). However, viewpoints on the
membership of Azygioidea at a higher taxonomic level are different.

These worms were considered as a separate suborder, Azygiata
(La Rue 1957; Skrjabin & Guschanskaya 1958), or the order Azy-
giida Odening, 1963 (Littlewood 2008; Sokolov & Zhukov 2016). At
present, this superfamily is recognized as a member of the suborder
Hemiurata mainly on the basis of data inferred from molecular
phylogenetic analyses using ribosomal DNAgene sequences (Olson
et al. 2003; Pérez-Ponce de León & Hernández-Mena 2019). How-
ever, as the latest studies have shown, the Azygiida is a valid order
(Ramilo et al. 2023). The first complete mitochondrial genome
sequences for a representative of Azygiidae, Azygia hwangtsiyui,
were obtained by Wu et al. (2020). These data were applied to the
reconstruction of the phylogenetic position of Azygiidae within
Digenea using a dataset of concatenated amino acid sequences
representing 12 protein-coding genes. The position of
A. hwangtsiyui (Azygiidae) was considered the ‘most basal lineage
of the Digenea’; however, in that study, Schistosomatidae rather
than Azygiida was basal for Digenea (Wu et al. 2020). Nevertheless,
the authors did not provide any definitive conclusion about the
systematic position of Azygiidae and stated that ‘the family Azy-
giidae still awaits investigation of relationships based on a much
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wider taxon sampling and more mitogenome datasets’ (Wu et al.
2020). Our results clearly demonstrate that this statement is rele-
vant. The introduction of one new azygiid species into the phylo-
genetic analysis based on concatenated amino acid sequences of
12 protein-coding mitochondrial genes has considerably changed
the phylogenetic position of Azygiidae within Digenea. In contrast
to the results from previous studies, the present phylogenetic tree
consists of three main, highly supported digenean clades, including
the early diverging clade Azygiidae and two sister clades, Diplos-
tomida and other digeneans. On the one hand, this result supports
the taxonomic status of Azygiidae as a separate order within
Digenea, which largely agrees with the previous results by Wu
et al. (2020) that showed a basal position of Azygiidae relative to
other Digenea, except Schistosomatidae. On the other hand, our
results do not confirm the hypothesis, advanced in our previous
studies, about the consistency between phylogenetic relationships
and gene rearrangement within mitochondrial genomes of Schis-
tosomatidae and other trematodes (Atopkin et al. 2021; Ivashko
et al. 2022). In particular, the basal position of Azygiidae relative to
other trematodes and the emergence of Cyathocotyle prussica and
Clinostomum complanatum within a single clade with Schistoso-
matidae are evidence against this hypothesis. However, in this
respect, we agree with Wu et al. (2020), who indicated the need
for additional data, with complete mitochondrial genome
sequences obtained formore Azygiidae species and other unstudied
digenean taxa, to provide a sufficient basis for conclusions about the
systematics of this family.
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