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Abstract

An extension of Shannon’s entropy power inequality when one of the summands is
Gaussian was provided by Costa in 1985, known as Costa’s concavity inequality. We
consider the additive Gaussian noise channel with a more realistic assumption, i.e. the
input and noise components are not independent and their dependence structure fol-
lows the well-known multivariate Gaussian copula. Two generalizations for the first- and
second-order derivatives of the differential entropy of the output signal for dependent
multivariate random variables are derived. It is shown that some previous results in the
literature are particular versions of our results. Using these derivatives, concavity of the
entropy power, under certain mild conditions, is proved. Finally, special one-dimensional
versions of our general results are described which indeed reveal an extension of the one-
dimensional case of Costa’s concavity inequality to the dependent case. An illustrative
example is also presented.
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1. Introduction

Let h(Y) = − ∫
Rm fY(y; t) log fY(y; t) dy denote the differential entropy of a random vector

Y with probability density function (PDF) fY(y; t) depending on a real parameter t. The entropy
power of an m-variate random vector Y is defined by

N(Y) = e(2/m)h(Y)

2πe
,

which was first introduced by Shannon [13]. One of the most important inequalities in informa-
tion theory is the entropy power inequality (EPI), which gives a lower bound for the differential
entropy of the sum of the independent random vectors X and Y as N(X + Y) ≥ N(X) + N(Y).
The first complete proof of the EPI was given in [15]; in its development, [15] proved an
equality called de Bruijn’s identity. This identity links Fisher information with Shannon’s
differential entropy (see [5]). Consider the additive Gaussian noise channel model

Y = X + Wt, (1)
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Costa’s concavity inequality for dependent variables 1137

in which the input signal X = (X1, . . . , Xm)� and the additive noise Wt = (Wt,1, . . . ,Wt,m)�
are two m-variate random vectors and Wt is normally distributed with mean vector 0 and
covariance matrix

�Wt =

⎛
⎜⎜⎜⎜⎝

t σ12 . . . σ1m

σ21 t . . . σ2m

...
...

. . .
...

σm1 σm2 . . . t

⎞
⎟⎟⎟⎟⎠ , (2)

where the σij, i, j = 1, 2, . . . ,m, are real numbers. De Bruijn’s identity, generalized by Costa
[7] to multivariate random variables, is given by

∂

∂t
h(Y) = 1

2
J(Y), (3)

in which X and Wt are independent random vectors and J(Y) stands for the Fisher information
of fY(y; t), defined by

J(Y) =
∫
Rm

fY(y; t)‖∇ log fY(y; t)‖2 dy,

=
∫
Rm

‖∇fY(y; t)‖2

fY(y; t)
dy. (4)

There are several applications of the EPI, such as in bounding the capacity of certain kinds
of channels and proving converses of channel or source coding theorems; see, e.g., [6, 18].
Considering the channel model (1), [7] presented an extension of the EPI for the case in which
Wt is independent of X with �Wt = tIm, where Im is the m × m identity matrix. That is,

N(X + Wt) ≥ (1 − t)N(X) + tN(X + W1),

or, equivalently, N(X + Wt) is concave in t, i.e.

∂2

∂t2
N(X + Wt) ≤ 0. (5)

Later, [8] provided another simple proof for the Costa’s concavity inequality (5) via the Stam
Fisher information inequality [15] defined by

1

J(X + W)
≥ 1

J(X)
+ 1

J(W)
,

where X and W are independent random variables. Also, [17] used some advanced methods to
simplify Costa’s proof of the inequality (5).

As mentioned before, in all of the above results the assumption of independence between
the input signal X and the additive noise Wt has been required. However, there are several real
situations, such as in radar and sonar systems, in which the noise is highly dependent on the
transmitted signal [11]. It was illustrated in [16] that, under some assumptions, Shannon’s EPI
can hold for weakly dependent random variables; [3] extended the EPI to dependent random
variables with arbitrary distibutions; and [10] provided certain conditions under which the
conditional EPI can hold for dependent summands as well.
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1138 F. ASGARI AND M. H. ALAMATSAZ

One of the best methods for describing the dependency structure among random variables
is by copula functions. Copula theory was first introduced in [14] in order to achieve the con-
nection between a joint PDF and its marginals. In [4], the authors extended two inequalities
based on the Fisher information when the input signal and noise components are dependent
and their dependence structure is modeled by several well-known copulas. There are several
families of copulas with different dependence structures. The Gaussian copula is one of the
most usable, and describes different levels of dependence between marginal components. In
the present paper, by considering the additive Gaussian noise channel model (1) where the
input signal X and noise Wt are dependent random vectors obeying the multivariate Gaussian
copula, first, an extension of de Bruijn’s identity (3) is derived, and then Costa’s concavity
inequality (5) is proved, under some mild conditions.

The rest of the paper is organized as follows. In Section 2 we recall the copula theory con-
cept and the basic definition of the multivariate Gaussian copula function, along with one of its
particular cases. In Section 3 we provide a generalization of the first-order derivatives of the
differential entropy and Fisher information, provided that the input signal and noise compo-
nents are dependent variables. Thus, based on these derivatives, Costa’s concavity inequality
for the case that the random vector X is composed of independent coordinates is extended.
Finally, we illustrate the one-dimensional versions of our results in Section 4.

Let us first establish the fundamental definitions and notation used in this paper. Let φ(y)
andψ(y) be twice continuously differentiable functions on R

m, and V be any closed and simply
connected m-dimensional region in R

m bounded by a piecewise smooth, closed, and oriented
surface S. We recall Green’s identity [1], which is stated as∫

V
φ�ψ dV =

∫
S
φ∇ψ .nS dS −

∫
V

∇φ.∇ψ dV, (6)

in which ∇φ and ∇ψ are the gradients of φ and ψ , respectively, nS denotes the unit vector
normal to the surface S, and ∇ψ .nS is the inner product of the two vectors. Now, the m-
dimensional Stokes’ theorem is recalled: it states that if F : Rm →R

m is a vector field over
R

m, then ∫
V

∇.F dV =
∫
∂V

F.nS dS, (7)

where ∂V = S is the boundary of V .
We denote the PDF and cumulative distribution function (CDF) of a random variable X by

fX(x) and FX(x), respectively.

2. Copula background

Copula theory is popular in multivariate distribution analysis as copulas allow easy mod-
eling of the distribution of a random vector by its marginals. A copula is a multivariate CDF
with standard uniform marginal distributions which couples univariate distribution functions
to generate a multivariate CDF and indicates the dependency structure of the random vari-
ables. Copulas are important parts of the study of dependency between variables since they
allow us to separate the effect of dependency from the effects of the marginal distributions
[9]. In recent years, there has been a revival of copulas in applications where the matter of
dependency between random variables is of great importance [2].

The fundamental theorem for copulas was introduced by Sklar [14] and illustrates the role
that copulas play in the relationship between multivariate CDFs and their univariate marginals.
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Costa’s concavity inequality for dependent variables 1139

In an n-dimensional multivariate case, Sklar’s theorem states that if FT1,T2,...,Tn is an n-
dimensional CDF with marginals FT1 , FT2 , . . . , FTn , then there exists an n-copula C : In −→ I
such that

FT1,T2,...,Tn (t1, t2, . . . , tn) = C(FT1 (t1), FT2 (t2), . . . , FTn (tn)), (8)

where I = [0, 1]. If FT1, FT2 , . . . , FTn are continuous, the n-copula C is unique; otherwise,
C is uniquely determined on the range of FT1 × the range of FT2 × · · · × the range of FTn .
Conversely, if C is an n-copula and FT1 , FT2 , . . . , FTn are univariate distribution functions,
then FT1,T2,...,Tn is a joint CDF with marginals FT1 , FT2, . . . , FTn .

For any n-copula function C, there exists a corresponding copula density function c:

c(u1, u2, . . . , un) = ∂n

∂u1∂u2 · · · ∂un
C(u1, u2, . . . , un). (9)

Therefore, if fT1,T2,...,Tn , fT1, fT2, . . . fTn , and c are the density functions of FT1,T2,...,Tn ,
FT1 , FT2 , . . . FTn , and C, respectively, the relation in (8) yields

fT1,T2,...,Tn (t1, t2, . . . , tn) = c(u1, u2, . . . , un)fT1 (t1)fT2 (t2) · · · fTn (tn), (10)

where u1, u2, . . . , un are related to t1, t2, . . . , tn through the marginal distribution functions
u1 = FT1 (t1), u2 = FT2 (t2), . . ., un = FTn (tn).

Let us recall the definition of one of the most popular copulas, the multivariate Gaussian
copula, which we consider here.

Definition 1. The n-dimensional Gaussian copula with covariance matrix � is defined by

C�(u1, u2, . . . , un) =	�(	−1(u1), 	−1(u2), . . . , 	−1(un)), (11)

where 	� denotes the CDF of the n-variate normal random vector with mean vector 0
and covariance matrix �, 	−1 is the inverse of the univariate standard Gaussian CDF, and
0 ≤ u1, u2, . . . , un ≤ 1.

In this paper we consider the special version of the n-dimensional Gaussian copula with

� =

⎛
⎜⎜⎜⎜⎝

1 ρ . . . ρ

ρ 1 . . . ρ

...
...

. . .
...

ρ ρ . . . 1

⎞
⎟⎟⎟⎟⎠= (1 − ρ)In + ρ1n1�

n ,

and −1/(n − 1)<ρ < 1 in which 1n = (1, 1, . . . , 1)�1×n. Thus, from (9), the n-dimensional
Gaussian copula density is given by

c�(u1, u2, . . . , un) =
n∏

i=1

∂

∂ui
	−1(ui)φ�(	−1(u1), 	−1(u2), . . . , 	−1(un))

= (2π )n/2 exp

[
1

2

n∑
i=1

z2
i

]
φ�(z1, z2, . . . , zn), (12)

where φ� is the PDF of the n-variate Gaussian distribution, and zi =	−1(ui), i = 1, 2, . . . , n.
Since

|�| = (1 + (n − 1)ρ)(1 − ρ)n−1, �−1 = 1

1 − ρ

(
In − ρ

1 + (n − 1)ρ
1n1�

n

)
,
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we have

φ�(z1, z2, . . . , zn) = (2π )−n/2√
(1 + (n − 1)ρ)(1 − ρ)n−1

× exp

{
−1

2(1 − ρ)

n∑
i=1

z2
i + ρ

2(1 + (n − 1)ρ)(1 − ρ)

(
n∑

i=1

zi

)2}
. (13)

Now, due to the fact that
(∑n

i=1 zi
)2 =∑n

i=1 z2
i +∑

i 	=j zizj, substituting (13) into (12) yields

c�(u1, u2, . . . , un) = α(ρ, n)

× exp

{
β(ρ, n)

(
n∑

i=1

[	−1(ui)]
2 − 1

(n − 1)ρ

∑
i 	=j

	−1(ui)	
−1(uj)

)}
,

(14)

where

α(ρ, n) = 1√
(1 + (n − 1)ρ)(1 − ρ)n−1

, β(ρ, n) = −(n − 1)ρ2

2(1 − ρ)(1 + (n − 1)ρ)
.

Remark 1. Note that setting � = In, i.e. ρ = 0, in (11) leads to the independent copula
CIn (u1, u2, . . . , un) = u1u2 · · · un, which is equivalent to the random variables T1, T2, . . . , Tn

being independent.

A particular case of the n-dimensional Gaussian copula is the bivariate Gaussian copula. If
we put n = 2 and

� =
(

1 ρ

ρ 1

)
,

with −1<ρ < 1, then the bivariate Gaussian copula is defined by

Cρ(u1, u2) =	2(	−1(u1), 	−1(u2);ρ),

where ρ ∈ (− 1, 1) is the Gaussian copula parameter and	2 is the bivariate standard Gaussian
CDF. The Gaussian copula density for −1<ρ < 1 is obtained as

cρ(u1, u2) = 1√
1 − ρ2

exp

{
− ρ2

2(1 − ρ2)

(
[	−1(u1)]2 − 2

ρ
	−1(u1)	−1(u2) + [	−1(u2)]2

)}
.

(15)

3. The general case

Consider the additive Gaussian noise channel model (1). Let X and Wt be two dependent
random vectors with a differentiable joint PDF fX,Wt (x,wt). Then, for the PDF of Y, we obtain

fY(y; t) =
∫
Rm

fX(x)fY|X(y | x; t) dx =
∫
Rm

fX,Wt (x, y − x) dx, (16)
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Costa’s concavity inequality for dependent variables 1141

where

fY|X(y | x; t) = fX,Wt (x, y − x)

fX(x)
.

First, recall that assuming X and Wt are independent random vectors and �Wt = tIm, [7,
17] used the heat equation given by

∂

∂t
fY(y; t) = 1

2

m∑
j=1

∂2

∂y2
j

fY(y; t)

in their proofs. We now need to generalize this heat equation to the case of multivariate random
vectors, as below.

Lemma 1. Suppose that Wt in channel model (1) has the covariance matrix (2), and let X
and Wt be two dependent random vectors whose dependence structure is modeled by the
multivariate Gaussian copula (14). Then, we have

fX,Wt (x, y − x)

= α(ρ, 2m)

(2π t)m/2
exp

{
γ (ρ,m)

‖y − x‖2

t
+ β(ρ, 2m)

[
m∑

i=1

[	−1(FXi (xi))]
2

− 2

(2m − 1)ρ

(∑
i<j

	−1(FXi(xi))	
−1(FXj(xj)) +

∑
k<l

(yk − xk)(yl − xl)

t

+
∑
i,k

	−1(FXi(xi))
(yk − xk)√

t

)]}
m∏

i=1

fXi(xi), (17)

where

γ (ρ,m) = 2(1 − m)ρ − 1

2(1 − ρ)(1 + (2m − 1)ρ)
.

Proof. Using (10) and (14), by setting T = (X,Wt) and n = 2m, we have

fX,Wt (x,w) = c�(FX1 (x1), . . . , FXm (xm), FWt,1 (w1), . . . , FWt,m(wm))
m∏

i=1

fXi(xi)
m∏

k=1

fWt,k (wk),

where

c�(FX1 (x1), . . . , FXm (xm), FWt,1 (w1), . . . , FWt,m(wm))

= α(ρ, 2m) exp

{
β(ρ, 2m)

[
m∑

i=1

z2
xi

+
m∑

k=1

z2
wk

− 2

(2m − 1)ρ(∑
i<j

zxi zxj +
∑
k<l

zwk zwl +
∑
i,k

zxi zwk

)]}
,

in which

zxi =	−1(FXi(xi)), zwk =	−1(FWt,k (wk)) =	−1
(
	

(
wk√

t

))
= wk√

t
,
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because Wt,k, k = 1, 2, . . . ,m, are normally distributed with zero mean and variance t. Thus,

fX,Wt (x,w)

= α(ρ, 2m)

(2π t)
m
2

exp

{
β(ρ, 2m)

[
m∑

i=1

[	−1(FXi (xi))]
2 + ‖w‖2

t

− 2

(2m − 1)ρ

(∑
i<j

	−1(FXi (xi))	
−1(FXj (xj)) +

∑
k<l

wkwl

t

+
∑
i,k

	−1(FXi(xi))
wk√

t

)]
− ‖w‖2

2t

}
m∏

i=1

fXi(xi).

By some easy calculations, this expression can be rewritten as (17). �

Lemma 2. Based on the same assumptions as in Lemma 1, we have

∂

∂t
fY(y; t) = δ(ρ,m)�fY(y; t) − λ(ρ,m)∇.q(y; t), (18)

in which q(y; t) = (q1(y; t), q2(y; t), . . . , qm(y; t)) and

δ(ρ,m) = [(1 − ρ)(1 + (2m − 1)ρ)]

2(1 − 2(1 − m)ρ)
, λ(ρ,m) = ρ

2
√

t(1 − 2(1 − m)ρ)
,

�fY(y; t) =
m∑

j=1

∂2

∂y2
j

fY(y; t),

qj(y; t) =
∫
Rm

[
m∑

i=1

	−1(FXi (xi)) + 1√
t

∑
k 	=j

(yk − xk)

]
fX,Wt (x,wt) dx

= pj(y; t)fY(y; t), j = 1, 2, . . . ,m,

where pj(y; t) = EX|Y
[∑m

i=1 	
−1(FXi (Xi)) + (1/

√
t)
∑

k 	=j (Yk − Xk) | Y = y
]
.

Proof. According to Lemma 1, differentiating (17) with respect to t and yj yields

∂

∂t
fX,Wt (x, y − x) =

[
−γ (ρ,m)

t2
‖y − x‖2 + β(ρ, 2m)

(2m − 1)ρt2

(∑
k 	=l

(yk − xk)(yl − xl)

+ √
t
∑
i,k

	−1(FXi(xi))(yk − xk)

)
− m

2t

]
fX,Wt (x, y − x) (19)

∂

∂yj
fX,Wt (x, y − x) =

[
2γ (ρ,m)

t
(yj − xj) − 2β(ρ, 2m)

(2m − 1)ρt

(∑
k 	=j

(yk − xk)

+ √
t

m∑
i=1

	−1(FXi(xi))

)]
fX,Wt (x, y − x), j = 1, 2, . . . ,m, (20)
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respectively. Thus, for the second-order derivative of (17) with respect to yj, we obtain

∂2

∂y2
j

fX,Wt (x, y − x) =
[

2γ (ρ,m)

t
+
[

2γ (ρ,m)

t
(yj − xj) − 2β(ρ, 2m)

(2m − 1)ρt

(∑
k 	=j

(yk − xk)

+ √
t

m∑
i=1

	−1(FXi(xi))

)]2]
fX,Wt (x, y − x). (21)

Now, according to (16) and (19), we have

∂

∂t
fY(y; t) =

∫
Rm

∂

∂t
fX,Wt (x, y − x) dx

= −m

2t
fY(y; t) − γ (ρ,m)

t2

∫
Rm

‖y − x‖2fX,Wt (x, y − x) dx

+ β(ρ, 2m)

(2m − 1)ρt2

∫
Rm

(∑
k 	=l

(yk − xk)(yl − xl)

+ √
t
∑
i,k

	−1(FXi(xi))(yk − xk)

)
fX,Wt (x, y − x) dx, (22)

∂2

∂y2
j

fY(y; t) =
∫
Rm

∂2

∂y2
j

fX,Wt (x, y − x) dx

= 2γ (ρ,m)

t
fY(y; t) + 4γ 2(ρ,m)

t2

∫
Rm

(yj − xj)
2fX,Wt (x, y − x) dx

+ 4β2(ρ, 2m)

(2m − 1)2ρ2t2

∫
Rm

(∑
k 	=j

(yk − xk) + √
t

m∑
i=1

	−1(FXi(xi))

)2

fX,Wt (x, y − x) dx

− 8γ (ρ,m)β(ρ, 2m)

(2m − 1)ρt2

∫
Rm

(yj − xj)

(∑
k 	=j

(yk − xk)

+ √
t

m∑
i=1

	−1(FXi(xi))

)
fX,Wt (x, y − x) dx. (23)

Thus, due to (19), by combining (22) with (23), we obtain

∂

∂t
fY(y; t) = −1

4γ (ρ,m)

m∑
j=1

∂2

∂y2
j

fY(y; t)

− β(ρ, 2m)

2γ (ρ,m)(2m − 1)ρ
√

t

m∑
j=1

∫
Rm

[
m∑

i=1

	−1(FXi(xi))

+ 1√
t

∑
k 	=j

(yk − xk)

]
∂

∂yj
fX,Wt (x, y − x) dx,
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where −1

4γ (ρ,m)
= δ(ρ,m),

β(ρ, 2m)

2γ (ρ,m)(2m − 1)ρ
√

t
= λ(ρ,m).

Therefore, using (20), the proof is complete. �

Now, we need to derive the first- and second-order derivatives of the differential entropy
h(Y) that are key instruments in establishing our main result.

Theorem 1. Based on Lemma 2, the first-order derivative of the entropy h(Y) is derived as

∂

∂t
h(Y) = δ(ρ,m)J(Y) + At, (24)

where

At = −λ(ρ,m)
m∑

j=1

EY

[
pj(Y; t)

∂

∂Yj
log fY(Y; t)

]
.

Proof. Using (18), we obtain

∂

∂t
h(Y) = −

∫
Rm

fY(y; t)
∂

∂t
log fY(y; t) dy −

∫
Rm

log fY(y; t)
∂

∂t
fY(y; t) dy,

= 0 − δ(ρ,m)
∫
Rm
�fY(y; t) log fY(y; t) dy + λ(ρ,m)

∫
Rm

∇.q(y; t) log fY(y; t) dy.

(25)

To apply Green’s identity (6) to the second term in (25), we assume that Vr is the m−sphere
of radius r centered at the origin with boundary Sr = ∂Vr. Now, we apply Green’s identity to
the second term in (25) with φ(y) = log fY(y; t) and ψ(y) = fY(y; t), and then take the limit on
both sides as r → +∞. Thus,∫

Rm
∇.(∇fY(y; t)) log fY(y; t) dy = lim

r→+∞

∫
Sr

log fY(y; t)∇fY(y; t).nSr (y) dSr

−
∫
Rm

∇fY(y; t).∇ log fY(y; t) dy,

= 0 −
∫
Rm

‖∇fY(y; t)‖2

fY(y; t)
dy, (26)

where nSr is the unit vector normal in the surface Sr. Consider the identity

∇.(φF) = ∇φ.F + φ∇.F, (27)

where F : Rm →R
m. We set F(y) = q(y; t) and φ(y) = log fY(y; t), and then, using Stokes’

theorem (8) and taking limits on both sides as r → +∞, we get∫
Rm

∇.q(y; t) log fY(y; t) dy = lim
r→+∞

∫
Sr

fY(y; t) log fY(y; t)q(y; t).nSr (y) dSr

−
∫
Rm

q(y; t).∇ log fY(y; t) dy,

= 0 −
m∑

j=1

EY

[
pj(Y; t)

∂

∂Yj
log fY(Y; t)

]
. (28)
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In Appendix A, the surface integrals in (26) and (28) over the surface Sr are shown to van-
ish as r approaches +∞. Therefore, by substituting (26) and (28) into (25), the theorem is
proved. �

Remark 2. Note that, in Theorem 1, from (24) with ρ = 0, we obtain

∂

∂t
h(Y) = 1

2

∫
Rm

‖∇fY(y; t)‖2

fY(y; t)
dy.

That is, the first-order derivative of the entropy h(Y) reduces to the case when X and Wt are
independent random vectors with �Wt = tIm as in [7].

According to Theorem 1, to provide the second-order derivative of h(Y), it is sufficient to
derive the first-order derivative of the Fisher information J(Y). First, we need the following
lemma.

Lemma 3. According to Lemma 2, the following two equations hold:

∂

∂t
‖∇ log fY(y; t)‖2 = 2δ(ρ,m)∇ log fY(y; t).∇

(
�fY(y; t)

fY(y; t)

)

− 2λ(ρ,m)∇ log fY(y; t).∇
(∇.q(y; t)

fY(y; t)

)
, (29)

where
�fY(y; t)

fY(y; t)
=� log fY(y; t) + ‖∇ log fY(y; t)‖2, (30)

∇
(∇.q(y; t)

fY(y; t)

)
= ∇(∇.q(y; t))

fY(y; t)
− ∇.q(y; t)

fY(y; t)
∇ log fY(y; t), (31)

and

2∇ log fY(y; t).∇(� log fY(y; t)) −�‖∇ log fY(y; t)‖2 = −2
∑
i,j

(
∂2

∂yi∂yj
log fY(y; t)

)2

. (32)

Proof. Simply, we know that

∂

∂t
‖∇ log fY(y; t)‖2 = 2

m∑
j=1

∂

∂yj
log fY(y, t)

∂2

∂yj∂t
log fY(y; t).

Also, from (18), we can write

∂2

∂yj∂t
log fY(y; t) = ∂

∂yj

(δ(ρ,m)�fY(y; t) − λ(ρ,m)
∑m

j=1
∂
∂yj

qj(y; t)

fY(y; t)

)
,

which implies (29). To prove (30), we have

� log fY(y; t) =
m∑

j=1

∂2

∂y2
j

log fY(y; t)

=
m∑

j=1

[ ∂2

∂y2
j
fY(y; t)

fY(y; t)
−
( ∂
∂yj

fY(y; t)

fY(y; t)

)2]
= �fY(y; t)

fY(y; t)
− ‖∇ log fY(y; t)‖2.
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Also, since ∇.q(y; t) =∑m
j=1 (∂/∂yj)qj(y; t), (31) is obtained. Now, to prove (32), we obtain

�‖∇ log fY(y; t)‖2 =
m∑

i=1

∂2

∂y2
i

m∑
j=1

(
∂

∂yi
log fY(y; t)

)2

= 2
∑
i,j

(
∂2

∂yi∂yj
log fY(y; t)

)2

+ 2
∑
i,j

∂

∂yi
log fY(y; t)

∂3

∂yi∂y2
j

log fY(y; t),

(33)

where

2
∑
i,j

∂

∂yi
log fY(y; t)

∂3

∂yi∂y2
j

log fY(y; t) = 2
m∑

i=1

∂

∂yi
log fY(y; t)

∂

∂yi

m∑
j=1

∂2

∂y2
j

log fY(y; t)

= 2∇ log fY(y; t).∇(� log fY(y; t));

together with (33), this completes the proof. �

Theorem 2. Under the conditions of Lemma 2, the first-order derivative of the Fisher
information J(Y) is as follows:

∂

∂t
J(Y) = −2δ(ρ,m)

∑
i,j

EY

[
∂2

∂Yi∂Yj
log fY(Y; t)

]2

+ 2λ(ρ,m)Dt, (34)

where

Dt =
m∑

j=1

EY

[
∂

∂Yj
pj(Y; t)� log fY(Y; t)

]

+
∑
i 	=j

EY

[
pj(Y; t)

∂

∂Yj
log fY(Y; t)

(
∂2

∂Y2
i

log fY(Y; t) − ∂2

∂Yi∂Yj
log fY(Y; t)

)]
.

Proof. According to the Fisher information (4), we know that

∂

∂t
J(Y) =

∫
Rm

∂

∂t
fY(y; t)‖∇ log fY(y; t)‖2 dy +

∫
Rm

fY(y; t)
∂

∂t
‖∇ log fY(y; t)‖2 dy. (35)

Based on Lemma 2, the first term in (35) is expressed as∫
Rm

∂

∂t
fY(y; t)‖∇ log fY(y; t)‖2 dy = δ(ρ,m)

∫
Rm
�fY(y; t)‖∇ log fY(y; t)‖2 dy

− λ(ρ,m)
m∑

j=1

∫
Rm

∂

∂yj
qj(y; t)‖∇ log fY(y; t)‖2 dy.

(36)

By applying Green’s identity (6) to the first term in (36) and taking the limit as r tends to +∞,
we obtain∫

Rm
�fY(y; t)‖∇ log fY(y; t)‖2 dy = lim

r→+∞

∫
Sr

‖∇ log fY(y; t)‖2∇fY(y; t).nSr (y) dSr

−
∫
Rm

∇fY(y; t).∇‖∇ log fY(y; t)‖2 dy. (37)
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Similarly, using Green’s identity for the second term in (37) and taking the limit, we have

−
∫
Rm

∇fY(y; t).∇‖∇ log fY(y; t)‖2 dy = − lim
r→+∞

∫
Sr

fY(y; t)∇‖∇ log fY(y; t)‖2.nSr (y) dSr

+
∫
Rm

fY(y; t)�‖∇ log fY(y; t)‖2 dy. (38)

The first terms in (37) and (38) can be shown to vanish (see Appendix B), and therefore, by
comparing (37) with (38), we can write∫

Rm
�fY(y; t)‖∇ log fY(y; t)‖2 dy =

∫
Rm

fY(y; t)�‖∇ log fY(y; t)‖2 dy.

Substituting this into (36) yields∫
Rm

∂

∂t
fY(y; t)‖∇ log fY(y; t)‖2 dy = δ(ρ,m)

∫
Rm

fY(y; t)�‖∇ log fY(y; t)‖2 dy

− λ(ρ,m)
∫
Rm

∇.q(y; t)‖∇ log fY(y; t)‖2 dy. (39)

Also, by using (29) in Lemma 3, the second term in (35) can be rewritten as∫
Rm

fY(y; t)
∂

∂t
‖∇ log fY(y; t)‖2 dy = 2δ(ρ,m)

∫
Rm

fY(y; t)∇ log fY(y; t).∇
(
�fY(y; t)

fY(y; t)

)
dy

− 2λ(ρ,m)
∫
Rm

fY(y; t)∇ log fY(y; t).∇
(∇.q(y; t)

fY(y; t)

)
dy.

(40)

Now, according to (30), we obtain∫
Rm

fY(y; t)∇ log fY(y; t).∇
(
�fY(y; t)

fY(y; t)

)
dy =

∫
Rm

∇fY(y; t).∇(� log fY(y; t)) dy

+
∫
Rm

∇fY(y; t).∇‖∇ log fY(y; t)‖2 dy.

Therefore, from this and (38), we have∫
Rm

fY(y; t)∇ log fY(y; t).∇
(
�fY(y; t)

fY(y; t)

)
dy =

∫
Rm

∇fY(y; t).∇(� log fY(y; t)) dy

−
∫
Rm

fY(y; t)�‖∇ log fY(y; t)‖2 dy. (41)

Thanks to the identity (31), for the second term in (40) we obtain∫
Rm

fY(y; t)∇ log fY(y; t).∇
(∇.q(y; t)

fY(y; t)

)
dy =

∫
Rm

∇ log fY(y; t).∇(∇.q(y; t)) dy

−
∫
Rm

∇.q(y; t)‖∇ log fY(y; t)‖2 dy. (42)
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Using Green’s identity, we arrive at∫
Rm

∇ log fY(y; t).∇(∇.q(y; t)) dy = lim
r→+∞

∫
Sr

∇.q(y; t)∇ log fY(y; t).nSr (y) dSr

−
∫
Rm
� log fY(y; t)∇.q(y; t) dy, (43)

whose first term becomes zero (see Appendix B). Using the identity

∇.q(y; t) =
m∑

j=1

pj(y; t)
∂

∂yj
fY(y; t) + fY(y; t)

m∑
j=1

∂

∂yj
pj(y; t),

the second term in (43) is rewritten as

−
∫
Rm
� log fY(y; t)∇.q(y; t) dy = −

m∑
j=1

∫
Rm

fY(y; t)pj(y; t)
∂

∂yj
log fY(y; t)� log fY(y; t) dy

−
m∑

j=1

∫
Rm

fY(y; t)
∂

∂yj
pj(y; t)� log fY(y; t) dy.

By combining this with (42) and (43), we get∫
Rm

fY(y; t)∇ log fY(y; t).∇
(∇.q(y; t)

fY(y; t)

)
dy

= −
m∑

j=1

∫
Rm

fY(y; t)pj(y; t)
∂

∂yj
log fY(y; t)� log fY(y; t) dy

−
m∑

j=1

∫
Rm

fY(y; t)
∂

∂yj
pj(y; t)� log fY(y; t) dy −

∫
Rm

∇.q(y; t)‖∇ log fY(y; t)‖2 dy. (44)

Also, we have∫
Rm

∇.qj(y; t)‖∇ log fY(y; t)‖2 dy = lim
r→+∞

∫
Sr

‖∇ log fY(y; t)‖2q(y; t).nSr (y) dSr,

−
∫
Rm

fY(y; t)p(y; t).∇‖∇ log fY(y; t)‖2 dy, (45)

whose first term vanishes (see Appendix B), and p(y; t) = (p1(y; t), p2(y; t) . . . , pm(y; t)). From
(45), combining (35), (39), (40), (41), and (44), we obtain

∂

∂t
J(Y)

= δ(ρ,m)
∫
Rm

fY(y; t)[2∇ log fY(y; t).∇(� log fY(y; t)) −�‖∇ log fY(y; t)‖2] dy

+ 2λ(ρ,m)
m∑

j=1

EY

[
∂

∂Yj
pj(Y; t)� log fY(Y; t)

]

+ 2λ(ρ,m)
∑
i 	=j

EY

[
pj(Y; t)

∂

∂Yj
log fY(Y; t)

(
∂2

∂Y2
i

log fY(Y; t) − ∂2

∂Yi∂Yj
log fY(Y; t)

)]
.

Hence, based on the relation (32) in Lemma 3, the proof is complete. �
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Remark 3. It is interesting to see that, if we put ρ = 0 in (34), it reduces to

∂

∂t
J(Y) = −

∑
i,j

EY

[
∂2

∂Yi∂Yj
log fY(Y; t)

]2

.

That is, Theorem 2 results in the case where X and Wt are independent random variables as a
special case. Hence, Theorem 2 encompasses the result of [17] as a corollary.

Now, we can establish our main result of this manuscript.

Theorem 3. Let X and Wt in channel model (1) be two dependent random variables whose
dependence structure is modeled by the multivariate Gaussian copula. For any ρ >−1/(2m −
1), under the conditions

m
∂At

∂t
+ 2A2

t + 4δ(ρ,m)AtJ(Y) ≤ 0, (46a)

ρDt ≤ 0, (46b)

the entropy power N(X + Wt) is concave in t. i.e.

∂2

∂t2
N(X + Wt) ≤ 0.

Proof. Simply, we have

∂2

∂t2
N(Y) = 2

m
N(Y)

[
∂2

∂t2
h(Y) + 2

m

(
∂

∂t
h(Y)

)2]
.

Since the entropy power is nonnegative, to show that (∂2/∂t2)N(Y) ≤ 0, it is sufficient to prove
that

− ∂2

∂t2
h(Y) ≥ 2

m

(
∂

∂t
h(Y)

)2

.

Based on Theorem 1, this is equivalent to

−δ(ρ,m)
∂

∂t
J(Y) − ∂

∂t
At ≥ 2δ2(ρ,m)

m
J2(Y) + 4δ(ρ,m)

m
AtJ(Y) + 2

m
A2

t .

Thus, since ρ >−1/(2m − 1) and δ(ρ,m)> 0, due to the condition (46a), we must prove that

− ∂

∂t
J(Y) ≥ 2δ(ρ,m)

m
J2(Y).

According to proof of the proposition in [17, p. 3], we have

∑
i,j

EY

[
∂2

∂Yi∂Yj
log fY(Y; t)

]2

≥ J2(Y)

m
. (47)

Hence, according to Theorem 3, (47), and assumption (46b), the proof is complete. �

4. The one-dimensional case

In this section, by considering the channel model (1) with m = 1, we describe special
versions of our main results.
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Corollary 1. Let X and Wt in the channel model Y = X + Wt be dependent one-dimensional
random variables, and let Wt be normally distributed with mean zero and variance t. If their
dependence structure is modeled by the bivariate Gaussian copula (15), then

∂

∂t
h(Y) =

(
1 − ρ2

2

)
J(Y) + A′

t,

where

A′
t = − ρ

2
√

t
EY

[
p′(Y; t)

∂

∂Y
log fY (Y; t)

]
, (48)

in which p′(y; t) = EX|Y [	−1(FX(X)) | Y = y].

Proof. Since Wt is normally distributed with mean zero and variance t, from (15),

fX,Wt (x, y − x) = 1√
2π (1 − ρ2)

exp

{
− ρ2

2(1 − ρ2)

[
(	−1(FX(x)))2

− 2ρ√
t

(y − x)	−1(FX(x)) + (y − x)2

ρ2t

]}
fX(x).

Thus, by some simple calculations, we obtain

∂

∂t
fY (y; t) =

∫ +∞

−∞
∂

∂t
fX,Wt (x, y − x) dx

=
∫ +∞

−∞
1

2t

(
−ρ	

−1(FX(x))(y − x)√
t(1 − ρ2)

+ (y − x)2

t(1 − ρ2)
− 1

)
fX,Wt (x, y − x) dx, (49)

∂2

∂y2
fY (y; t) =

∫ +∞

−∞
∂2

∂y2
fX,Wt (x, y − x) dx,

=
∫ +∞

−∞
1

t(1 − ρ2)

[
ρ2(	−1(FX(x)))2

(1 − ρ2)
+ (y − x)2

t(1 − ρ2)

− 2ρ	−1(FX(x))(y − x)√
t(1 − ρ2)

− 1

]
fX,Wt (x, y − x) dx. (50)

Now, by comparing (49) with (50), we obtain

∂

∂t
fY (y; t) =

(
1 − ρ2

2

)
∂2

∂y2
fY (y; t) − ρ

2
√

t

∂

∂y
q′(y; t), (51)

in which

q′(y; t) =
∫ +∞

−∞
	−1(FX(x))fX,Wt (x, y − x) dx = p′(y; t)fY (y; t), (52)

where p′(y; t) = EX|Y [	−1(FX(X)) | Y = y]. Hence, qj(y; t) and pj(y; t) in Lemma 2 reduce to
q′(y; t) and p′(y; t), respectively. Now, since X and Wt are one-dimensional, it is sufficient to
set m = 1 and pj(y; t) = p′(y; t) in (24). Therefore, the proof is complete. �

Remark 4. Corollary 1 is equivalent to a result in [12].
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Now, under the same conditions as in Corollary 1, according to the relations (51) and (52),
the first-order derivative of the Fisher information,

∂

∂t
J(Y) = −(1 − ρ2)EY

(
∂2

∂Y2
log fY (Y; t)

)2

+ ρ√
t

EY

[
∂

∂Y
p′(Y; t)

∂2

∂Y2
log fY (Y; t)

]
, (53)

simply follows by setting m = 1 and pj(y; t) = p′(y; t) in (34). This coincides with the result in
[4], where a direct proof of (53) is provided.

Using the first-order derivatives of the entropy and Fisher information of the output signal
Y , in what follows the concavity of Shannon’s entropy power for the special one-dimensional
case is obtained.

Corollary 2. Given the channel model (1), assume that X and Wt are dependent random
variables modeled by the bivariate Gaussian copula (14). Based on the assumptions

∂A′
t

∂t
+ 2A

′2
t + 2(1 − ρ2)J(Y)A′

t ≤ 0, (54a)

ρEY

[
∂

∂Y
p′(Y; t)

∂2

∂Y2
log fY (Y; t)

]
≤ 0, (54b)

the entropy power N(X + Wt) is concave in t.

Example 1. Consider the channel model Y = X + Wt with Wt = √
tW. Let X be standard

Gaussian and suppose that X and Wt are jointly distributed according to the bivariate Gaussian
copula, i.e. X and W are two dependent random variables distributed according to a bivariate
standard Gaussian distribution with the PDF

fX,W (x,w) = 1

2π
√

(1 − ρ2)
exp

{
− 1

2(1 − ρ2)
[x2 − 2ρxw + w2]

}
.

We know that Y is normally distributed with mean zero and variance 1 + t + 2
√

tρ. Thus, since
(X, Y) ∼ N2(0, �X,Y ) with

�X,Y =
(

1 1 + √
tρ

1 + √
tρ 1 + t + 2

√
tρ

)
,

we have

p′(y; t) = EX|Y (X | Y = y) = 1 + √
tρ

1 + t + 2
√

tρ
y.

Further, we observe that
∂

∂y
log fY (y; t) = − 1

1 + t + 2
√

tρ
y.

Thus, by (48), we can write

A′(t) = ρ(1 + √
tρ)

2
√

t(1 + t + 2ρ
√

t)
.

As we can see, both conditions (54a) and (54b) are satisfied when ρ > 0. Thus, based on
Corollary 2, N(X + Wt) is concave in t.
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5. Conclusions

In this paper, based on the multivariate Gaussian copula dependence structure, we have
derived the first- and second-order derivatives of differential entropy of the output signal in the
m-dimensional additive Gaussian noise channel model. Then, by using these derivatives, we
have generalized Costa’s concavity inequality for the particular case where the coordinates of
the input signal and noise are dependent according to a multivariate Gaussian copula model.
In particular, we have studied our results in the one-dimensional case and have provided an
illustrative example.

Appendix A. Vanishing surface integrals of Theorem 1

We need to prove that

lim
r→+∞

∫
Sr

log fY(y; t)∇fY(y; t).nSr (y) dSr = 0. (55)

We first assume that h(Y) is finite. Next, we integrate the surface integral in (55) over r ≥ 0
and then, by applying the identity (27) and Stokes’ theorem, we obtain∫ +∞

0

∫
Sr

log fY(y; t)∇fY(y; t).nSr (y) dSr =
∫ +∞

0

∫
Sr

∇fY(y; t).(log fY(y; t)nSr (y)) dSr dr

=
∫
Rm

∇fY(y; t).(log fY(y; t)nSr (y)) dy

= lim
r→+∞

∫
Sr

fY(y; t) log fY(y; t) dSr

−
∫
Rm

fY(y; t)∇.(log fY(y; t)nSr (y)) dy. (56)

Since the limit in the first part of (56) exists, due to∣∣∣∣
∫ +∞

0

∫
Sr

fY(y; t) log fY(y; t) dSr dr

∣∣∣∣= |h(Y)|<+∞,

the first term in (56) vanishes. Now, since

|∇.(log fY(y; t)nSr (y))| = |∇fY(y; t).nSr (y)|
fY(y; t)

≤ ‖∇fY(y; t)‖
fY(y; t)

,

for the second term in (56) we can write∣∣∣∣
∫
Rm

fY(y; t)∇.(log fY(y; t)nSr (y)) dy

∣∣∣∣≤
∫
Rm

fY(y; t)|∇.(log fY(y; t)nSr (y))| dy

≤ EY

(‖∇fY(Y; t)‖
fY(Y; t)

)
. (57)

Further, we know that

EY

(‖∇fY(Y; t)‖
fY(Y; t)

)
= EY

{[ m∑
j=1

( ∂
∂yj

fY(Y; t)

fY(Y; t)

)2] 1
2
}

≤
{ m∑

j=1

EY

( ∂
∂yj

fY(Y; t)

fY(Y; t)

)2} 1
2

. (58)
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On the other hand, from (20), we have

E(Wt,j | Y = y) = EX|Y[(Yj − Xj) | Y = y]

=
∫
Rm

(yj − xj)
fX,Wt (x, y − x)

fY(y; t)
dx

= −2δ(ρ,m)t

( ∂
∂Yj

fY(y; t)

fY(y; t)

)
+ 2tλ(ρ,m)pj(y; t). (59)

Now, since for all j = 1, 2, . . . ,m, |E(Wt,j | Y = y)|<+∞, the first and second terms in (59)
must be finite too. Therefore, we have

EY

( ∂
∂Yj

fY(Y; t)

fY(Y; t)

)2

<+∞, j = 1, 2, . . . ,m, (60)

and, due to (58), the right-hand side of inequality (57) is finite. Hence, the integral in (56) is
finite and, since the limit in (55) exists, the desired result (55) is proved.

Now, we need to prove that

lim
r→+∞

∫
Sr

fY(y; t) log fY(y; t)q(y; t).nSr (y) dSr = 0, (61)

in which the integral is taken from r = 0 to r = +∞ on the surface integral. Thus, we have∣∣∣∣
∫ +∞

0

∫
Sr

log fY(y; t)q(y; t).nSr (y) dSr dr

∣∣∣∣
≤
∫ +∞

0

∫
Sr

fY(y; t)| log fY(y; t)|‖p(y; t)‖‖nSr (y)‖ dSr dr

= √
m
∫
Rm

fY(y; t)| log fY(y; t)|‖p(y; t)‖ dy,

= √
mEY

∣∣ log fY(Y; t)‖p(Y; t)‖∣∣. (62)

Since fY(y; t) converges to zero as y approaches ±∞, we have fY(y; t) log fY(y; t) → 0 as
y → ±∞. Therefore, log fY(y; t) is finite and, due to (59), the right-hand side of (62) becomes
finite. Hence, since the limit in (61) exists, we can conclude the relation in (61).

Appendix B. Vanishing surface integrals of Theorem 2

We intend to prove that

u1 = lim
r→+∞

∫
Sr

‖∇ log fY(y; t)‖2∇fY(y; t).nSr (y) dSr = 0, (63)

u2 = lim
r→+∞

∫
Sr

fY(y; t)∇‖∇ log fY(y; t)‖2.nSr (y) dSr = 0,

u3 = lim
r→+∞

∫
Sr

∇.q(y; t)∇ log fY(y; t).nSr (y) dSr = 0, (64)

u4 = lim
r→+∞

∫
Sr

‖∇ log fY(y; t)‖2q(y; t).nSr (y) dSr = 0.
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First, we consider the integral of the surface integral in (63) over r ≥ 0;

∣∣∣∣
∫ +∞

0

∫
Sr

‖∇ log fY(y; t)‖2∇fY(y; t).nSr (y) dSr dr

∣∣∣∣
≤
∫ +∞

0

∫
Sr

‖∇ log fY(y; t)‖2∇‖fY(y; t)‖‖nSr (y)‖ dSr dr = EY

(‖∇fY(Y; t)‖
fY(Y; t)

)3

. (65)

Simply, based on (58) and (60), the right-hand side of (65) becomes finite and, since the limit
u1 exists, this proves that u1 = 0.

To show that u2 = 0, we write

∫ +∞

0

∫
Sr

fY(y; t)∇‖∇ log fY(y; t)‖2.nSr (y) dSr dr

=
∫ +∞

0

∫
Sr

∇‖∇ log fY(y; t)‖2.(fY(y; t)nSr (y)) dSr dr,

=
∫
Rm

∇‖∇ log fY(y; t)‖2.(fY(y; t)nSr (y)) dy,

= lim
r→+∞

∫
Sr

fY(y; t)‖∇ log fY(y; t)‖2 dSr −
∫
Rm

‖∇ log fY(y; t)‖2∇.(fY(y; t)nSr (y)) dy. (66)

Because
∣∣ ∫ +∞

0

∫
Sr

fY(y; t)‖∇ log fY(y; t)‖2 dSr dr
∣∣= |J(Y)|<+∞ and

∣∣∣∣
∫
Rm

‖∇ log fY(y; t)‖2∇.(fY(y; t)nSr (y)) dy

∣∣∣∣≤
∫
Rm

‖∇ log fY(y; t)‖2|∇.(fY(y; t)nSr (y))| dy

≤ EY

(‖∇fY(Y; t)‖
fY(Y; t)

)3

,

the first term in (66) becomes zero and the absolute value of the second term is finite. Thus,
since the limit u2 exists, we have u2 = 0.

In a similar way, we consider the integral from r = 0 to r = +∞ of the surface integral in
(64):

∣∣∣∣
∫ +∞

0

∫
Sr

∇.q(y; t)∇ log fY(y; t).nSr (y) dSr dr

∣∣∣∣
≤
∫ +∞

0

∫
Sr

|∇.q(y; t)|‖∇ log fY(y; t)‖‖nSr (y)‖ dSr dr

≤
m∑

j=1

EY

[∣∣∣∣ ∂∂Yj
qj(Y; t)

∣∣∣∣‖∇ log fY(Y; t)‖
]

. (67)
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Using (21), we have

E(W2
t,j | Y = y) = EX|Y[(Yj − Xj)

2 | Y = y]

=
∫
Rm

(yj − xj)
2 fX,Wt (x, y − x)

fY(y; t)
dx

= 4δ2(ρ,m)t2
( ∂2

∂y2
j
fY(y; t)

fY(y; t)

)
+ 2δ(ρ,m)t

− 4t2λ2(ρ,m)

fY(y; t)

∫
Rm

(
m∑

i=1

	−1(FXi (xi)) + 1√
t

∑
k 	=j

(yk − xk)

)2

fX,Wt (x, y − x) dx

− 2tλ(ρ,m)

fY(y; t)

∫
Rm

(yj − xj)

(
m∑

i=1

	−1(FXi(xi)) + 1√
t

∑
k 	=j

(yk − xk)

)
fX,Wt (x, y − x) dx.

(68)

Also, from (20), we obtain

∂

∂yj
qj(y; t)

= −1

2δ(ρ,m)t

{ ∫
Rm

(yj − xj)

(
m∑

i=1

	−1(FXi(xi)) + 1√
t

∑
k 	=j

(yk − xk)

)
fX,Wt (x, y − x) dx

− 2tλ(ρ,m)
∫
Rm

(
m∑

i=1

	−1(FXi(xi)) + 1√
t

∑
k 	=j

(yk − xk)

)2

fX,Wt (x, y − x) dx

}
. (69)

Since, for all j = 1, 2, . . . ,m, E(W2
t,j | Y = y)<+∞, the first, third, and fourth terms in (68)

are finite too and, due to (69), (∂/∂yj)qj(y; t) is finite as well. Therefore, from (59), the right-
hand side of (67) is finite and, together with the fact that the limit u3 exists, it follows that
u3 = 0.

Similarly, to show that u4 = 0, we find the sequence of relations∣∣∣∣
∫ +∞

0

∫
Sr

‖∇ log fY(y; t)‖2q(y; t).nSr (y) dSr dr

∣∣∣∣
≤
∫ +∞

0

∫
Sr

‖∇ log fY(y; t)‖2‖q(y; t)‖‖nSr (y)‖ dSr dr = √
mEY

[‖p(Y; t)‖‖∇ log fY(Y; t)‖2].
Using similar steps, we can see that u4 = 0.
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