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Abstract

We consider the sample paths of the order statistics of independent and identically
distributed random variables with common distribution function F . If F is strictly
increasing but possibly having discontinuities, we prove that the sample paths of the order
statistics satisfy the large deviation principle in the Skorokhod M1 topology. Sanov’s
theorem is deduced in the SkorokhodM ′

1 topology as a corollary to this result. A number
of illustrative examples are presented, including applications to the sample paths of
trimmed means and Hill plots.
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1. Introduction

Let {Xn : n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) real-valued
random variables with distribution function F(x) = P(X1 ≤ x) that is assumed to be strictly
increasing, but possibly having discontinuities. Define a := inf{x : F(x) > 0} ∈ [−∞,∞)

and b = inf{x : F(x) = 1} ∈ (−∞,∞]. For each n ≥ 1, let X1,n, . . . , Xn,n denote the
ascending order statistics of X1, . . . , Xn, so that X1,n ≤ X2,n ≤ · · · ≤ Xn,n, and define
X0,n := a and Xn+1,n := b. For each n ≥ 1, define the sample path of the order statistics by

Xn(t) := X[(n+1)t],n for all t ∈ [0, 1], (1)

where [x] is the greatest integer that is less than x.
The purpose of the present article is to prove the functional large deviation principle (LDP)

for order statistics in the sense of Varadhan [33]. We consider Xn(·) as a random element of
the space of nondecreasing càdlàg functions (i.e. those which are right continuous and have
left-hand limits) φ such that φ(0) ≥ a and φ(1) = b.

We equip this space with the SkorokhodM1 topology [30] everywhere, apart from for Sanov’s
theorem where we use the SkorokhodM ′

1 topology [24], [36]. We prove that the random paths
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{Xn(·)} satisfy the LDP. That is, for all Borel sets B,

− inf
φ∈B◦ J

F (φ) ≤ lim inf
n→∞

1

n
log P(Xn(·) ∈ B) ≤ lim sup

n→∞
1

n
log P(Xn(·) ∈ B) ≤ − inf

φ∈B̄
J F (φ),

(2)
where B◦ denotes the interior of B and B̄ denotes its closure. The rate function JF takes
values in [0,∞], is lower semicontinuous, and has compact level sets (i.e. it is a good rate
function—see, e.g. [7]).

The sequence of order statistics sample paths {Xn(·)} defined in (1) is closely related to the
sequence of empirical distribution functions {Fn} defined by

Fn(x) = 1

n

n∑
i=1

1{Xn≤x}

for all n ≥ 1. Indeed, the right-continuous generalized inverse ofXn(·) is approximately Fn(·)
(in a sense that is made precise in the proof of Corollary 2). This relationship suggests that
one way to prove that order statistics sample paths satisfy the LDP is to begin with Sanov’s
theorem [27], the LDP for empirical measures in the space of probability measures, and to
deduce the LDP for {Xn(·)} from it. In a recent article, this is the approach taken by Boistard [4]
in order to prove large deviation results for L-statistics such as the trimmed mean and Gini’s
mean difference. For distribution functions with lighter than exponential tails, she strengthened
the topology in Sanov’s theorem from the topology of weak convergence to the topology
generated by the L2-Wasserstein metric. This enabled her to deduce the LDP for L-statistics
of not necessarily bounded random variables by use of the contraction principle. The case of
L-statistics for exponentially distributed random variables falls outside the conditions of her
general approach, but is treated using alternate arguments.

The work in this article differs from [4] in two significant ways: (i) the method of proof and
(ii) the topology in which the result holds. We take a completely different approach to prove
the LDP for {Xn(·)}. We begin by proving that the sample paths of the order statistics for i.i.d.
uniformly distributed random variables satisfy the LDP. This is achieved by using an alternate
characterization of the distribution of the sample paths of the order statistics of uniformly
distributed random variables in terms of self-normalized sums of i.i.d. exponentially distributed
random variables. By recalling a version of Mogul’skiı̆’s theorem [19] due to Puhalskii [22] and
then applying Puhalskii’s extension of the contraction principle [22], [23] with a function that
embodies this representation, we obtain the LDP for the sample paths of the order statistics of
the i.i.d. uniformly distributed random variables. An additional application of the contraction
principle recovers the result for more general distributions than the uniform distribution. When
the underlying distribution function is strictly increasing (although possibly discontinuous),
this approach leads to the functional LDP holding in the Skorokhod M1 topology. From this
result we deduce the LDP for trimmed means for any strictly increasing distribution function.

We comment that the topology of uniform convergence would be too strong for these results
as even in the limit it is possible to have discontinuous sample paths. This is embodied by the
resultant rate functions being finite at discontinuous paths.

An expression for the rate function, JF in (2), is given in (6). If F(x) = ∫ x
a
f (y) dy, where

f (y) > 0 almost everywhere (a.e.), this reduces to the formula in (9). This functional LDP
enables not only the calculation of the exponential decay in the probability of seeing unlikely
sample paths of order statistics, but also the identification of the most likely paths of the order
statistics given that a rare event occurred.
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We illustrate the merits of this LDP by deducing the sample path LDP for the trimmed means
of any strictly increasing distribution function, even those with infinite mean. We also establish
the LDP for Hill plots, which enables estimates on the likelihood that Hill’s [13] widely used
methodology misclassifies a non-Pareto law as being a Pareto law.

This article is organized as follows. In Section 2 we introduce the basic setup and notation.
The functional LDP for order statistics is presented in Section 3. Applications of the results are
presented in Section 4.

2. Notation and terminology

We equip the real line R and its subsets with the Euclidean metric ρ1(x, y) = |x − y|, but
we equip the extensions of the real line (R ∪ {+∞}, R ∪ {−∞}, and R ∪ {−∞,+∞}) with an
alternate metric, ρ2(x, y) = |arctan(x)− arctan(y)|, to ensure that they are Polish spaces [9].
The metrics ρ1 and ρ2 are topologically equivalent when restricted to [0, 1]. The use of ρ1 or
ρ2 is solely a technicality with the usage being dependent on whether we are working with real-
or extended real-valued functions.

Let D[0, 1] denote the space of real-valued (or extended real-valued) càdlàg functions on
the closed interval [0, 1] equipped with the Skorokhod M1 topology [30], [36] induced by the
metric

dM1(φ1, φ2) = inf
(uj ,rj )∈�(φj ), j=1,2

max{‖u1 − u2‖∞, ‖r1 − r2‖∞},

where ‖u‖∞ = sups∈[0,1] |u(s)| and �(φ) is the set of all parametric representations (u, r)
of φ. A parametric representation (u, r) is a continuous nondecreasing function of the interval
[0, 1] onto the completed graph �φ of φ, where the function u gives the spatial component,
while the function r gives the time component. In this context a completed graph of φ means
that

�φ = {(u, t) ∈ R × (0,∞) : u ∈ [min{φ(t−), φ(t)},max{φ(t−), φ(t)}]} ∪ {(φ(0), 0)},
where φ(t−) denotes the left limit of φ at t and we define an order on �φ by saying that
(u1, t1) ≤ (u2, t2) if either (i) t1 < t2 or (ii) t1 = t2 and |φ(t1−) − u1| ≤ |φ(t2−) − u2|. In
Corollary 2 below we shall also considerD[0, 1] equipped with the weakerM ′

1 topology [24],
[36] which is defined in the same way as M1 except that we change �φ to

�′
φ = {(u, t) ∈ R × (0,∞) : u ∈ [min{φ(t−), φ(t)},max{φ(t−), φ(t)}]},

where φ(0−) = 0.
For each −∞ ≤ a < b ≤ ∞, let V+

a,b ⊂ D[0, 1] denote the closed set of nondecreasing
functions φ such that φ(t) ≥ a for all t ∈ [0, 1], and φ(1) = b. We will equip each V+

a,b with
the SkorokhodM1 topology, apart from for Sanov’s theorem, where we will use theM ′

1 variant.
For both topologies, the space is metrizable as a separable metric space.

For each functionφ ∈ D[0, 1], we use the following notation for its Lebesgue decomposition
with respect to Lebesgue measure:

φ(t) = φ(a)(t)+ φ(s)(t) =
∫ t

0
φ̇(a)(s) ds + φ(s)(t).

Here φ(a) is its absolutely continuous component with φ(a)(0) := 0 and φ(s) is its singular
component.
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The quantile function F−1 : [0, 1] �→ [a, b], defined by

F−1(u) := inf{x : F(x) > u} if u ∈ [0, 1) and F−1(1) := b, (3)

is the right-continuous generalized inverse of F .

3. Functional LDP for order statistics

Theorem 3 below is the cornerstone result. It proves the functional LDP in the Skorokhod
M1 topology for the sample paths of order statistics where the distribution function F is strictly
increasing, but possibly discontinuous. In order to establish the result, we shall appeal to
the following version of Mogul’skiı̆’s theorem. The version of Mogul’skiı̆’s theorem reported
in Theorem 5.1.2 of [7] is insufficient for our needs, as it does not encompass the case of
exponentially distributed random variables. See also [17], [20], [21], and [25].

Theorem 1. ([22].) If {Yi} is i.i.d. with P(Yi > 0) = 1 and E(exp(θY1)) < ∞ for some θ > 0,
then the sample paths

Sn(t) := 1

n

[(n+1)t]∑
i=1

Yi (4)

satisfy the LDP inD[0, 1], equipped with the SkorokhodM1 topology, with a rate function that
is finite only for functions, φ, that are nondecreasing and of finite variation. For such a φ, the
rate function is

I (φ) =
∫ 1

0
Il(φ̇

(a)(t)) dt + φ(s)(1), (5)

where Il(x) is the rate function for the partial sums {n−1 ∑n
i=1 Yi}.

This is a deduction from Lemma 3.2 of [22]. Under the conditions of Theorem 1, it proves
that the LDP holds for {Sn} in the space of divergent càdlàg functions on the interval [0,∞)

equipped with the topology of weak convergence. We first restrict the argument to [0, 1] by the
contraction principle, which gives the rate function in (5). To obtain the final result, we note
equivalence between the topology of weak convergence and the Skorokhod M1 topology for
monotone functions (see, for example, Corollary 12.5.1 of [36]).

We shall also make extensive use of Puhalskii’s extension of the contraction principle [22].
In particular, we have the following result.

Theorem 2. ([23, Corollary 3.1.15].) Assume that {Xn} satisfies the LDP in a Hausdorff
topological space E with rate function IE . If f : E �→ E′, where E′ is a Tychonoff space,
is continuous at all x such that IE(x) < ∞, then {f (Xn)} satisfies the LDP in E′ with rate
function IE′(y) = inf{IE(x) : f (x) = y}.

All of the spaces we consider are metric spaces, so the topological conditions of this theorem
are met.

Armed with Theorems 1 and 2, we now prove our cornerstone result.

Theorem 3. (LDP for order statistics.) The sample paths {Xn(·)} satisfy the LDP in V+
a,b

equipped with the Skorokhod M1 topology with rate function

JF (χ) = inf
φ∈V+

0,1

{
−

∫ 1

0
log(φ̇(a)(t)) dt : F−1(φ(t)) = χ(t) for all t ∈ [0, 1]

}
. (6)

Note that JF (χ) = 0 if χ(t) = F−1(t).
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Proof. Begin by considering {Un : n ≥ 1}, a sequence of i.i.d. random variables that are
uniformly distributed on [0, 1]. For each n ≥ 1, let U1,n, . . . , Un,n be the order statistics of
U1, . . . , Un, with U0,n := 0 and Un+1,n := 1. For each n ≥ 1, define the sample path of the
order statistics by Un(t) := U[(n+1)t],n for all t ∈ [0, 1].

The distribution of the sample path Un(·) is equal to a distribution that can be constructed
from a sequence of i.i.d. exponentially distributed random variables. Let the {Yn} be i.i.d.
exponentially distributed random variables with mean 1. Define the self-normalized random
functions {Nn} by

Nn(t) :=
([(n+1)t]∑

i=1

Yi

)/(n+1∑
j=1

Yj

)
if
n+1∑
j=1

Yj > 0. (7)

As a consequence of Proposition 8.2.1 of [29], Nn(·) is equal in distribution to Un(·). As an
application of Theorem 1, the sample paths

Sn(t) := 1

n

[(n+1)t]∑
i=1

Yi

satisfy the LDP in D[0, 1] with rate function that is finite only for functions φ that are
nondecreasing and of finite variation, I (φ) = ∫ 1

0 Il(φ̇
(a)(t)) dt + φ(s)(1), where Il(x) = x −

log(x) − 1 is the rate function for the partial sums of i.i.d. exponentially distributed random
variables {n−1 ∑n

i=1 Yi}.
Define g : {φ ∈ D[0, 1] : φ(1) 
= 0} �→ D[0, 1] by g(φ)(t) = φ(t)/φ(1). Note that if

Sn(1) 
= 0 then g(Sn) = Nn, where Sn(·) is defined in (4) and Nn(·) is defined in (7). The
map g is continuous at all φ such that φ(1) > 0, as if φn → φ in D[0, 1] equipped with the
Skorokhod M1 topology then φn(1) → φ(1). As Il(0) = −log(0) − 1 = ∞, I (φ) < ∞
only if φ(1) > 0. Puhalskii’s extension of the contraction principle, Theorem 2, requires only
that g be continuous at all limit points where the rate function is finite in order for the usual
contraction principle result to hold (see, e.g. Theorem 4.2.1 of [7]). Thus, as g is continuous at
all φ such that I (φ) < ∞, we deduce that {Nn(·)} satisfies the LDP in V+

0,1 with the following
rate function:

JU(ψ) = inf{I (φ) : g(φ) = ψ}
= inf

{
I (φ) : φ(t)

φ(1)
= ψ(t) for all t ∈ [0, 1]

}
= inf
φ(1)>0

I (φ(1)ψ)

= inf
z>0

I (zψ).

For fixed z > 0 and ψ ∈ V+
0,1, we have

I (zψ) =
∫ 1

0
Il(zψ̇

(a)(t)) dt + zψ(s)(1)

=
∫ 1

0
(zψ̇(a)(t)− log(z)− log(ψ̇(a)(t))− 1) dt + zψ(s)(1)

= z(1 − ψ(s)(1))− log(z)−
∫ 1

0
log(ψ̇(a)(t)) dt − 1 + zψ(s)(1)

= z− log(z)− 1 −
∫ 1

0
log(ψ̇(a)(t)) dt,
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where we have used the fact that ψ(1) = 1 to deduce that
∫ 1

0 ψ̇
(a)(t) dt = 1 − ψ(s)(1).

However, infz>0(z− log(z)− 1) = 0 and is attained at z = 1; thus,

JU(ψ) = inf
z>0

I (zψ) = −
∫ 1

0
log(ψ̇(a)(t)) dt. (8)

As the order statistics sample pathUn(·) has the same distribution as the self-normalized sample
path Nn(·), the sample paths of the order statistics of uniformly distributed random variables
{Un(·)} satisfy the LDP in V+

0,1 with the rate function given in (8). Since log(0) = −∞,
JU(ψ) = ∞ unless the absolutely continuous component of ψ’s Lebesgue decomposition is
strictly increasing a.e. with respect to the Lebesgue measure.

Consider a sequence of i.i.d. random variables {Xn} with common distribution functionF(·).
As is well known (see, e.g. Theorem 14.1 of [3]), with the quantile function F−1(u) defined
in (3) and the {Un} being i.i.d. random variables distributed uniformly on [0, 1], then {F−1(Un)}
is an i.i.d. sequence of random variables with distribution function F(·). With a slight abuse
of notation, define the map F−1 : V+

0,1 �→ V+
a,b by F−1(φ)(t) = F−1(φ(t)) for all t ∈ [0, 1].

As F−1(u) is a nondecreasing function of u, F−1(Un(·)) is exactly the sample path of the
order statistics of F−1(U1), . . . , F

−1(Un). As we have proved that {Un(·)} satisfies the LDP, to
deduce the LDP for the sample paths {Xn(·)} of the order statistics of {Xn}, it suffices to show
that the map F−1 : V+

0,1 �→ V+
a,b is sufficiently well behaved that the contraction principle (see,

e.g. Theorem 4.2.1 of [7]) can be applied.
As F is assumed to be strictly increasing (although it can have discontinuities), F−1 is

continuous on [0, 1] (see, e.g. Lemma 13.6.4 of [36]). Note that F−1(φ) := F−1 ◦ φ and
Theorem 13.2.3 of [36] proves that composition on D[0, 1] × D[0, 1] is continuous at all
(F−1, φ) such that F−1 is continuous and φ is nondecreasing. Thus, F−1 : V+

0,1 �→ V+
a,b is

continuous and Theorem 3 follows from an application of the contraction principle (see, e.g.
Theorem 4.2.1 of [7]).

We now state a corollary of Theorem 3 that follows from the chain rule [34].

Corollary 1. (Distribution functions with positive densities a.e.) If F(x) = ∫ x
a
f (y) dy and

f is continuous and positive a.e., so that F(x) is strictly increasing and continuous, then
JF (χ) = ∞ unless χ ∈ V+

a,b (or, equivalently, F ◦ χ ∈ V+
0,1) is strictly increasing, in which

case

JF (χ) = −
∫ 1

0
(log(f (χ(t)))+ log(χ̇ (a)(t))) dt. (9)

In the next subsection we present some illustrative examples based on Theorem 3 and
Corollary 1, which, inter alia, demonstrate that the rate functions defined in (6) and (9) are not
convex in general.

3.1. Examples

Example 1 below demonstrates why JF (·) is finite at paths with discontinuities: they
correspond to ranges where no sample has been observed. It also illustrates how the functional
LDP enables the deduction of conditional laws of large numbers. We say that the order statistics
of random variables with distribution function F can or cannot emulate the order statistics
of random variables with distribution function G if JF (G−1) < ∞ or JF (G−1) = ∞,
respectively. Examples 2 to 5 below concern order statistics of given laws that can or cannot
emulate the order statistics of other distributions. In particular, Example 4 shows that the order
statistics of Pareto distributions, even those with finite mean, can emulate those with infinite
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mean. Example 5 shows that the order statistics of Pareto distributions can emulate those of
any exponential distribution, but the order statistics of exponential distributions cannot emulate
the order statistics of Pareto distributions with infinite mean. We return to this final point in
Example 6 in Section 4.2 when we consider trimmed means.

Example 1. (Discontinuous paths.) If X1 is uniformly distributed on [0, 1], denoted F = U ,
then F(x) = ∫ x

0 dx. Thus, F−1(u) = u, so that

JU(χ) = −
∫ 1

0
log(χ̇ (a)(t)) dt

for anyχ ∈ V+
0,1. As x �→ −log(x) is a strictly convex function, note that JU is a strictly convex

rate function. Define the set A := {φ : φ(t) ≤ 1
3 for all t ∈ [0, 1)}. Note that Xn(·) ∈ A if and

only if Xn,n ∈ [0, 1
3 ], i.e. Xi ∈ [0, 1

3 ] for all i ∈ {1, . . . , n}, and, therefore, P(Xn(·) ∈ A) =
( 1

3 )
n. The exponent in the decay of this probability is −log( 1

3 ). This can also be calculated
from the LDP by considering the sample path large deviations for P(Xn(·) ∈ A) and, in
particular, by determining inf{JU(χ) : χ ∈ A}. As −log(u) is a convex function for u > 0,
we can use Jensen’s inequality to show that the infimum inf{JU(χ) : χ ∈ A} is attained at
χ̂(t) = t/3 for t ∈ [0, 1) and χ̂(1) = 1. For this path, JU(χ̂) = −log( 1

3 ) and, therefore,
lim n−1 log P(Xn(·) ∈ A) = − log( 1

3 ).
The sample path LDP gives more information than the direct calculation. It shows that the

most likely path to this event is that X1,n, . . . , Xn,n be spread uniformly over [0, 1
3 ], in the

following sense. By, for example, Theorem 3.1(b) of [16], for any ε > 0,

lim
n→∞ P(Xn(·) /∈ Bε(χ̂) | Xn(·) ∈ A) = 0,

where Bε(χ̂) is the open ball of radius ε around χ̂ ∈ V+
0,1. That is, conditioned on Xn,n ≤ 1

3 ,
the sample paths of the order statistics {Xn(·)} satisfy a weak law of large numbers at χ̂ , the
path where the samples are uniformly distributed in [0, 1

3 ].
Example 2. (Rate function for the beta distribution.) Assume that X1 is distributed as a
Beta(α, β) distribution, so that X1 takes values in [0, 1] with a strictly increasing continuous
distribution function F(x;α, β) with density

f (x;α, β) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1,

where �(z) = ∫ ∞
0 tz−1e−t dt and α, β > 0. By Corollary 1, {Xn(·)} satisfies the LDP in V+

0,1
with rate function

JBeta(α,β)(χ) = −log

(
�(α + β)

�(α)�(β)

)
− (α − 1)

∫ 1

0
log(χ(t)) dt

− (β − 1)
∫ 1

0
log(1 − χ(t)) dt −

∫ 1

0
log(χ̇ (a)(t)) dt

for any χ ∈ V+
0,1. Considering JBeta(α,β)(χ̂), where χ̂(t) := t for t ∈ [0, 1], we are evaluating

the large deviations rate of seeing the quantile function of a uniform law given that the underlying
distribution is actually a Beta(α, β) distribution. We obtain

JBeta(α,β)(χ̂) = −log

(
�(α + β)

�(α)�(β)

)
+ α + β − 2.
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This function has its minimum, JBeta(α,β)(χ̂) = 0, when the random variables {Xn} have a
uniform distribution, α = β = 1. Note that if α = 1 then, as �(1 + β) = β�(β),
JBeta(α,β)(χ̂) = β − log(β)− 1. This is the rate function evaluated at β for the partial sums
{n−1 ∑n

i=1 Yi} of i.i.d. exponentially distributed random variables {Yi} with mean 1. By
symmetry, the same result holds if β = 1 and α is varied.

Example 3. (Rate function for the exponential distribution.) If F(x) = 1 − exp(−λx) for all
x ≥ 0 so that a = 0 and b = +∞, then F−1(u) = −log(1 − u)/λ. Thus, by Corollary 1,

J Exp(λ)(χ) = −log(λ)+ λ

∫ 1

0
χ(t) dt −

∫ 1

0
log(χ̇ (a)(t)) dt, (10)

which can be readily seen to be strictly convex. For example, if χ̂(t) = F−1(t) = −log(1−t)/λ
then J Exp(λ)(χ̂) = 0. That is, if the sample path is the quantile function of an exponential
distribution with rate λ then the rate function is 0. If, for some K > 0, χ̂K(t) = Kt for
t ∈ [0, 1) and χ̂K(1) = ∞, then J Exp(λ)(χ̂K) = −log(λ)+ λK/2 − log(K). Thus, the most
likely λ to give rise to the quantile function of a uniform law on [0,K) is when λK = 2/K and
the mean of the exponential distribution corresponds to the mean of the corresponding uniform
distribution. For λK = 2/K , J Exp(λK)(χ̂K) = −log(2)+ 1 ≈ 0.307, irrespective of K .

Example 4. (Rate function for the Pareto distribution.) If F(x) = 1 − x−α for α > 0 so that
a = 1 and b = +∞, then F−1(u) = (1 − u)−1/α . Thus, by Corollary 1,

J Pareto(α)(χ) = −log(α)+ (α + 1)
∫ 1

0
log(χ(t)) dt −

∫ 1

0
log(χ̇ (a)(t)) dt,

which is an example of a nonconvex rate function. To see this, consider, for k = 1, 2 and
ρ ∈ (0, 1), the functions

χk,ε(t) =
{
t + k for t ∈ [0, 1 − ε),

exp((1 − t)−ρ) for t ∈ [1 − ε, 1).

Then, for any γ ∈ (0, 1),

lim
ε→0

J Pareto(α)(γ χ1,ε + (1 − γ )χ2,ε)

= −log(α)+ (α + 1)
∫ 1

0
log(γ (t + 1)+ (1 − γ )(t + 2)) dt

> −log(α)+ (α + 1)
∫ 1

0
(γ log(t + 1)+ (1 − γ ) log(t + 2)) dt,

= lim
ε→0

(γ J Pareto(α)(χ1,ε)+ (1 − γ )J Pareto(α)(χ2,ε)),

by the strict concavity of x �→ log(x). Thus, for any sufficiently small ε, the lack of convexity
of J Pareto(α)(·) is demonstrated.

If χ̂ corresponds to the quantile function of the Pareto(α), χ̂(t) = (1 − t)−1/α , then
J Pareto(α)(χ̂) = 0. IfK > 0 and χ̂(t) = 1+Kt for t < 1 and χ̂(1) = ∞, corresponding to the
quantile function of a uniform distribution on [1, 1 + K), then J Pareto(α)(χ̂) = −log(αK) +
(α + 1)((K + 1)K−1 log(K + 1) − 1). The minimum over α is attained at αK = K/((K +
1) log(K + 1)−K) for which

J Pareto(αK)(χ̂) = −2 log(K)+ log((K + 1) log(K + 1)−K)+ (K + 1)K−1 log(K + 1).
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This has its infimum as K → 0, so that αK → ∞ and J Pareto(αK)(χ̂) tends to −log(2)+ 1 ≈
0.307. If χ̂(t) = (1 − t)−1/β for any β > 0 then

J Pareto(α)(χ̂) = α

β
− log

(
α

β

)
− 1.

The order statistics path φ̂ of the uniformly distributed random variables on [0, 1] that attains
this is φ̂(t) = F ◦ χ̂(t) = 1 − (1 − t)α/β . Thus, it is possible on the scale of large deviations
for the sample path of the order statistics of any Pareto law to emulate that of any other.

Example 5. (Exponential and Pareto distributions.) If χ̂(t) = −log(1− t)/λ+1, correspond-
ing to a quantile function of an exponential law on [1,∞), then

J Pareto(α)(χ̂) = log

(
λ

α

)
− 1 − exp(λ)(α + 1)Ei(−λ),

where Ei(−λ) = − ∫ ∞
λ
(exp(−t)/t) dt . Thus, in the large deviations limit with a finite rate,

the order statistics of any i.i.d. Pareto-distributed random variables can emulate the quantile
function of any i.i.d. exponentially distributed random variables. On the other hand, if χ̂(t) =
(1 − t)−1/α − 1, corresponding to the quantile function of a Pareto distribution on [0,∞), then
J Exp(λ)(χ̂) = +∞ if α ≤ 1, and J Exp(λ)(χ̂) = log(α/λ) + (λα + 1 − α2)/(α(α − 1)) < ∞
if α > 1. That is, in the large deviations limit, the order statistics of exponentially distributed
random variables cannot emulate the order statistics of Pareto distributed random variables
with infinite mean. We return to this point in Section 4.2, Example 6.

3.2. Comment on Sanov’s theorem

Sanov’s theorem (see, e.g. [7, Section 6.2]) considers the empirical laws of a process of i.i.d.
random variables. With the laws considered as random elements of the space of probability
measures equipped with either the topology of weak convergence or the τ topology, Sanov’s
theorem proves that the empirical laws satisfy the LDP with relative entropy as the rate function.
For some modern developments, see, for example, [15] and the references therein.

As stated in the introduction, the empirical laws and the sample paths of order statistics
are closely related. The following corollary shows that a version of Sanov’s theorem for the
empirical distribution functions can be recovered from the sample path LDP for the order
statistics. For the sequence {Xn}, the empirical distribution functions Fn ∈ D[0, 1] are
defined by

Fn(x) = 1

n

n∑
i=1

1{Xi≤x}

for all n ≥ 1.
For −∞ ≤ a < b ≤ ∞ and each χ ∈ V+

a,b, define the right inverse χ−1 by χ−1(t) :=
inf{s : χ(s) > t} for all t ∈ [a, b), χ−1(1) := b. Thus, χ−1 is an element of V+

0,1[a, b], the
set of nondecreasing elements in the space of càdlàg functions on [a, b] with χ−1(a) ≥ 0 and
χ−1(b) = 1. For our purposes, it suffices to equip V+

0,1[a, b] with the SkorokhodM ′
1 topology,

which is finer than the M1 topology and, thus, than the topology of weak convergence.

Corollary 2. (Sanov’s theorem.) Assume that F(x) = ∫ x
a
f (y) dy, where f (y) > 0 a.e. and

−∞ ≤ a < b ≤ ∞. Then {Fn} satisfies the LDP in V+
0,1[a, b] equipped with the Skorokhod
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M ′
1 topology with rate function HF (η) = ∞ unless η is absolutely continuous, in which case

HF (η) =
∫ b

a

η̇(s) log

(
η̇(s)

f (s)

)
ds.

Proof. For any x ∈ (a, b],

Fn(x) = 1

n
(inf{m ∈ {0, 1, . . . , n+ 1} : Xm,n > x} − 1)

= 1

n

(
(n+ 1) inf

{
r ∈

{
0,

1

n+ 1
, . . . ,

n+ 1

n+ 1

}
: X(n+1)r,n > x

}
− 1

)

=
(

1 + 1

n

)
inf{s ∈ [0, 1] : X[(n+1)s],n > x} − 1

n

=
(

1 + 1

n

)
X−1
n (x)− 1

n
,

where we have used the definition of pseudo-inverse above in our identification of X−1
n (x).

Hence, supx∈[a,b] |Fn(x)−X−1
n (x)| ≤ 2/n, and the sequences {Fn} and {X−1

n (·)} are exponen-
tially equivalent (see, e.g. Definition 4.2.10 of [7]) in the uniform topology. Thus, to prove that
{Fn} satisfies the LDP, it suffices to show that {X−1

n (·)} does. By Theorem 13.6.2 of [36] (with
straightforward modifications if b < ∞), the function V+

a,b �→ V+
0,1[a, b] such that φ �→ φ−1

can be seen to be continuous from the M1 to M ′
1 topologies at all strictly increasing φ. It is

necessary to move to the M ′
1 topology as, in general, inversion is not continuous in the M1

topology. As JF (φ) = ∞ unless φ is strictly increasing, the LDP for {X−1
n (·)} follows from

an application of Theorem 2. Take η ∈ V+
0,1[a, b] so that η−1 is strictly increasing (i.e. η is

absolutely continuous), and let � = �1 + �2 be the Lebesgue decomposition of the Lebesgue
measure �with respect to the measure �◦η, i.e. the image measure of � under η−1. By Lemma 3.6
of [22] we have

.

(η−1)(a)(t) = d�1

dη
(η−1(t)) �-a.e.

So, by Corollary 1 we deduce that

HF (η) = JF (η−1)

= −
∫ 1

0
(log(f (η−1(t)))+ log

.

(η−1)(a)(t)) dt

= −
∫ 1

0
log

(
f (η−1(t))

d�1

dη
(η−1(t))

)
dt

= −
∫ b

η−1(0)
log

(
f (s)

d�1

dη
(s)

)
η̇(s) ds

= −
∫ b

η−1(0)
log

(
f (s)

d�

dη
(s)

)
η̇(s) ds (11)

=
∫ b

a

η̇(s) log

(
η̇(s)

f (s)

)
ds; (12)

indeed, equality (11) follows by the absolute continuity of η (which implies that � = �1),
and (12) follows from the facts that η̇(s) = 0 for s ∈ [a, η−1(0)) and 0 log(0) := 0.
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4. Applications

4.1. Sample path large deviations for L-statistics

Let K : [0, 1] �→ R, and consider the sequence of random variables called L-statistics:

Tn := 1

n+ 1

n∑
i=1

K

(
i

n+ 1

)
Xi,n for n ≥ 1.

Much is known regarding the large-n behaviour of the sequence of random variables {Tn} and,
in particular, its central limit behaviour; see, e.g. [2], [5], [31], and [32]. Large deviation results
for L-statistics can be found in [4], [10], and [11].

Consider the measure on [0, 1] defined by

µn(ds) := 1

n+ 1

n∑
i=1

δi/(n+1)(ds),

where δx is the Dirac delta measure at x, and set

Vn(t) :=
∫ t

0
K(s)X[(n+1)s],nµn(ds), t ∈ [0, 1].

Clearly, Tn = Vn(1). For large values of n, approximating the empirical measure with the
Lebesgue measure on [0,1], we are led to consider the following sample paths:

Tn(t) :=
∫ t

0
K(s)X[(n+1)s],n ds, t ∈ [0, 1].

The sample paths {Vn(·)} and {Tn(·)} record the shape of the L-statistics for the complete range
of quantile values, while Tn records it only over the whole range.

4.2. Trimmed means

The function K can be chosen to remove outliers. When

K(u) =
{

1/(1 − 2γ ) if u ∈ [γ, 1 − γ ],
0 otherwise,

(13)

for γ ∈ (0, 1
2 ), Tn is called the trimmed mean and is a robust statistic. It provides an average

value of the observations after the exclusion of large and small observations. It is used, for
example, in scoring at the Olympic Games. In the case where γ = 1

4 , it is called the interquartile
mean.

In this case the sample paths Tn(·) are given by

Tn(t) = (1 − 2γ )−1
∫ t

γ

X[(n+1)s],n ds for t ∈ [γ, 1 − γ ].

Theorem 4. (Trimmed means.) Assume that F is strictly increasing. If K is of the form
in (13) with γ ∈ (0, 1

2 ) then {Tn(·)} satisfies the LDP in C[γ, 1 − γ ], the space of continuous
functions on [γ, 1 − γ ] with φ(γ ) = 0, equipped with the topology induced by the uniform
norm ||φ|| := supt∈[γ,1−γ ] |φ(t)| and with rate function

Hγ (χ) = inf
φ∈V+

a,b

{
JF (φ) : (1 − 2γ )−1

∫ t

γ

φ(s) ds = χ(t) for all t ∈ [γ, 1 − γ ]
}
,
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where JF (·) is defined in (6). Note that Hγ (χ) = 0 if χ(t) = (1 − 2γ )−1
∫ t
γ
F−1(u) du for

all t ∈ [γ, 1 − γ ].
Proof. Consider the map gγ : D[0, 1] �→ C[γ, 1 − γ ] defined by

gγ (φ)(t) = 1

1 − 2γ

∫ t

γ

φ(s) ds for t ∈ [γ, 1 − γ ],

and note that gγ (X[(n+1)·],n) = Tn(·). As Theorem 3 proves that {Xn(·)} satisfies the LDP in
V+
a,b, in order to deduce the LDP by invoking the extended contraction principle, Theorem 2,

we must check that gγ is continuous at all φ such that JF (φ) < ∞. When C[γ, 1 − γ ] is
equipped with the topology of uniform convergence, gγ is continuous (see, e.g. Theorem 11.5.1
of [36]) at all φ taking values in R. Thus, concern only arises if a = −∞ or b = +∞. This
causes no difficulty as JF (φ) < ∞ only if a < φ(γ ) < φ(1 − γ ) < b. To see this, consider
(for example) φ(1 − γ ) = b. Then, using (6),

JF (φ) ≥ inf
ψ∈V+

0,1

{
−

∫ 1

0
log(ψ̇(a)(t)) dt : F−1(ψ(1 − γ )) = φ(1 − γ )

}

≥ inf
ψ∈V+

0,1

{
−

∫ 1

0
log(ψ̇(a)(t)) dt : ψ(1 − γ ) = 1

}
.

As ψ(1 − γ ) = 1, ψ(1) = 1 and ψ is nondecreasing, ψ̇(a)(t) = 0 for t ∈ (1 − γ, 1],
−log(0) = ∞, and, thus, JF (φ) = ∞. Hence, the LDP follows from Theorem 3 and an
application of Theorem 2.

In contrast to Example 5, the following example shows that, for trimmed means, exponential
laws can emulate Pareto laws with finite rate, even Pareto laws with infinite mean.

Example 6. (Exponential emulating Pareto.) If F(x) = 1 − exp(−λx) for all x ≥ 0 so that
a = 0 and b = +∞, then F−1(u) = −log(1 − u)/λ and J Exp(λ)(χ) is given in (10). Consider
the test function χ(t) = (1 − 2γ )−1

∫ t
γ
((1 − s)−1/α − 1) ds for t ∈ [γ, 1 − γ ], corresponding

to the trimmed mean of a Pareto distribution on [0,∞) with parameter α (see Example 5).
Using the expression in Theorem 3,

Hγ (χ) = inf
φ∈V+

0,∞
{J Exp(λ)(φ) : φ(t) = (1 − t)−1/α − 1 for all t ∈ [γ, 1 − γ ]}

= inf
ψ∈V+

0,1

{JU(ψ) : ψ(t) = 1 − e−λ((1−t)−1/α−1) for all t ∈ [γ, 1 − γ ]}

= inf
ψ∈V+

0,1

{
−

∫ 1

0
log(ψ̇(a)(s)) ds : ψ(γ ) = 1 − e−λ((1−γ )−1/α−1),

ψ(1 − γ ) = 1 − e−λ(γ−1/α−1),

ψ̇(t) = λ

α
(1 − t)−(1+α)/αe−λ((1−t)−1/α−1) for all t ∈ [γ, 1 − γ ]

}
.

Our aim is to show that the right-hand side of this expression is finite for allα > 0, demonstrating
that the trimmed means of exponentially distributed random variables can emulate those of
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Pareto distributed random variables with infinite mean. Consider the following function that is
defined by its derivative:

ψ̇(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − exp(−λ((1 − γ )−1/α − 1))

γ
if t ∈ [0, γ ),

λ

α
(1 − t)−(1+α)/α exp(−λ((1 − t)−1/α − 1)) if t ∈ [γ, 1 − γ ),

exp(−λ(γ−1/α − 1))

γ
if t ∈ [1 − γ, 1].

As ψ meets the constraints in the infimum, we can upper bound Hγ (χ) by evaluating JU(ψ).
If α 
= 1,

JU(ψ) = −
∫ 1

0
log(ψ̇(t)) dt

= 2γ log γ − γ log(1 − exp(−λ((1 − γ )−1/α − 1)))+ λγ (γ−1/α − 1)

− (1 − 2γ ) log

(
λ

α

)
+ α + 1

α
(2γ − 1 + (1 − γ ) log(1 − γ )− γ log γ )

− λ(1 − 2γ )+ λα

α − 1
((1 − γ )(α−1)/α − γ (α−1)/α).

If α = 1, the last term is replaced with λ(log(1 − γ ) − log(γ )). For any λ > 0 and any
γ ∈ (0, 1

2 ), this expression is finite for α ∈ (0, 1), although growing quickly as α → 0. Thus,
the paths of trimmed means of exponential distributions can mimic those of a Pareto distribution
with infinite mean, even though Example 5 shows that this is not possible for untrimmed means.

4.3. Hill plots

Consider a sequence of i.i.d. random variables {Xn} with common distribution function F
supported on [1,∞). Given a sample set of order statisticsX1,n, . . . , Xn,n, we wish to determine
if the original distribution is ultimately a Pareto(α) law on [1,∞), i.e. if the distribution function
is F(x) = 1 − x−α for sufficiently large x. Hill’s [13] widely used methodology to answer this
question employs the following empirical quantities: for each 1 ≤ k ≤ n, define

Hk,n := 1

k + 1

n∑
i=n−k+1

log(Xi,n)− k

k + 1
log(Xn−k,n).

The approach is based on the following observation: if it was indeed the case thatXi ultimately
behaves as a Pareto(α) law then log(Xi) is ultimately an exponentially distributed random
variable with mean 1/α. Thus, determining that the tail of F is a Pareto distribution function
is equivalent to determining that the tail of the distribution function of log(Xi) is exponential.
In Hill’s methodology, we create a Hill plot: for a contiguous range of small k, e.g. k ∈
{[n/100], [n/100] + 1, . . . , [n/10]}, we plot Hk,n versus k. If the resulting plot is almost a
straight line, we deduce that the tail of the distribution function of log(X1) is exponential and,
thus, F ultimately coincides with a Pareto law with a parameter given by 1 over the height of
the line.

Owing to its practical importance, much is known about the properties of Hill’s estimator
(see, e.g. [6], [8], [12], [26], [28], and the references therein). Here, as an application of
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Theorem 3, by considering the sample paths of Hill’s estimator, we prove the LDP for Hill plots
and use it to estimate the likelihood that a non-Pareto distribution is misidentified as being a
Pareto distribution.

Consider the sample paths of Hill’s estimator defined by Hn(0) := 0 and, for t ∈ (0, 1],

Hn(t) := 1

t

∫ 1

1−t
log(Xn(s)) ds − log(Xn(1 − t))

= 1

(n+ 1)t

n∑
i=[(n+1)(1−t)]+1

log(Xi,n)

− 1

(n+ 1)t
(n− [(n+ 1)(1 − t)]) log(X[(n+1)(1−t)],n).

For k ∈ {1, . . . , n}, we have

Hn

(
k + 1

n+ 1

)
= 1

k + 1

n∑
i=n−k+1

log(Xi,n)− k

k + 1
log(Xn−k,n) = Hk,n,

so that Hn(·) is, indeed, the sample path of Hill’s estimator with sample size n. That is, Hn(·)
is the Hill plot with a sample of size n.

The following theorem proves that Hill plots satisfy the LDP for i.i.d. random variables
with a continuous increasing distribution function F that have bounded support or satisfy tail
conditions. After the theorem, we will show that these conditions are verified, for example, for
any Weibull law, including those with heavier than exponential tails.

Theorem 5. (LDP for Hill plots.) Assume that the same hypotheses as in Theorem 3 with
a ≥ 1 hold. In addition, suppose that b < ∞, or, alternatively, F(x) is differentiable for all
sufficiently large x, there exists β ∈ (0, 1) such that

lim
ε→0

ε log(1 − F(exp(ε−β))) = −∞ (14)

and, defining the function xF (t) := F(exp((1 − t)−β) + 1), for all t sufficiently close to 1,
xF (t) > t and

d

dt
xF (t) ≥ xF (t)(1 − xF (t))

xF (t)− t
log

(
(1 − t)xF (t)

t (1 − xF (t))

)
. (15)

Then {Hn(·)} satisfies the LDP inD[0, 1], equipped with the SkorokhodM1 topology with rate
function

LF (χ) = inf
φ∈V+

a,b

{
JF (φ) : 1

t

∫ 1

1−t
log(φ(s)) ds − log(φ(1 − t)) = χ(t) for all t ∈ (0, 1]

}
.

Note that LF (χ) = 0 if χ(t) = t−1
∫ 1

1−t log(F−1(s)) ds − log(F−1(1 − t)).

Proof. Define the function h : V+
a,b �→ D[0, 1] by h(χ)(0) := 0 and

h(χ)(t) = 1

t

∫ 1

1−t
log(χ(s)) ds − log(χ(1 − t)).
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To prove the LDP for {h(Xn)(·)}, we apply extensions of the contraction principle with h after
noting the following. The function h can be written as h = h4 ◦ h3 ◦ h2 ◦ h1, where

h1(χ)(t) = (χ(t), χ(1 − t)), h2(χ, ψ)(t) = (logχ(t), logψ(t)),

h3(χ, ψ)(t) =
(∫ 1

1−t
χ(s) ds, ψ(t)

)
, and h4(χ, ψ)(t) = 1

t
χ(t)− ψ(t).

The function h1 is continuous by arguments analogous to those in Theorem 8.1 of [35], while
h2, using the continuity of log(·), is continuous by Theorem 13.2.3 of [36]. For continuous χ ,
the function h4 is continuous by Corollary 12.7.1 of [36]. If b < ∞ then we can appeal to
Theorem 11.5.1 of [36] to deduce the continuity of h3 and the result follows from an application
of the contraction principle. However, if b = +∞, the function h3 is not continuous. In this
case, if the second set of additional conditions in the statement of the theorem holds, then we
will show that an approximate version of the contraction principle can be employed.

Consider the first component of the function h3 ◦ h2 ◦ h1. That is, g defined by

g(χ)(t) =
∫ 1

1−t
logχ(s) ds.

If χ(1) = +∞ then we cannot appeal to Theorem 11.5.1 of [36] to deduce the continuity of
g, as this theorem holds only if χ is real valued. Instead, we consider the family of functions
{gε : ε > 0} defined by

gε(χ)(t) =
∫ 1−ε

1−t
logχ(s) ds,

which approximate the behaviour of g(χ). By similar logic to that in Theorem 4, for any ε > 0,
the function gε is continuous at all χ such that JF (χ) < ∞, so that Theorem 2 can be applied,
obtaining the LDP for {gε(Xn)}.

We will thus show that {g(Xn)} satisfies the LDP by applying the approximate contraction
principle, Theorem 4.2.23 of [7]. This approach requires that the sequences {gε(Xn)} are
exponentially good approximations of {g(Xn)}, i.e.

lim
ε→0

lim sup
n→∞

1

n
log P

(∫ 1

1−ε
log(Xn(s)) ds ≥ δ

)
= −∞, (16)

as well as the verification of Equation (4.2.24) of [7] for which it suffices to prove that

lim sup
ε→0

sup
{χ∈V+

a,b : JF (χ)≤α}

∫ 1

1−ε
log(χ(s)) ds = 0 for every α ∈ (0,∞). (17)

Given δ > 0, recalling that β ∈ (0, 1), choose εδ > 0 such that ε1−β/(1 − β) + ε < δ for
all 0 < ε ≤ εδ . Then, with χ ∈ V+

a,b,{
χ :

∫ 1

1−ε
log(χ(s)) ds ≥ δ

}
⊂

{
χ :

∫ 1

1−ε
log(χ(s)) ds >

ε1−β

1 − β
+ ε

}

=
{
χ :

∫ 1

1−ε
log(χ(s)) ds>

∫ 1

1−ε
(log(exp((1 − s)−β))+ 1) ds

}

⊂
{
χ :

∫ 1

1−ε
log

(
χ(s)

exp((1 − s)−β)+ 1

)
ds > 0

}
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⊂
{
χ : sup

t∈[1−ε,1]
(χ(t)− exp((1 − t)−β)) ≥ 1

}
=: Aε.

We can apply the large deviations upper bound on the closure of Aε, Āε, to obtain, for any
ρ > ε,

lim sup
n→∞

1

n
log P

(∫ 1

1−ε
log(Xn(s)) ds ≥ δ

)

≤ lim sup
n→∞

1

n
log P(Xn ∈ Aε)

≤ − inf
χ∈V+

a,b

{JF (χ) : χ ∈ Āε}

≤ − inf
t∈[1−ρ,1] inf

χ∈V+
a,b

{JF (χ) : χ(t) ≥ exp((1 − t)−β)+ 1}

= − inf
t∈[1−ρ,1] inf

φ∈V+
0,1

{
−

∫ 1

0
log(φ̇(a)(s)) ds : φ(t) ≥ xF (t)

}
.

Using Jensen’s inequality, for x ≥ t , we have

inf
φ∈V+

0,1

{
−

∫ 1

0
log(φ̇(a)(s)) ds : φ(t) ≥ x

}
= −t log

(
x

t

)
− (1 − t) log

(
1 − x

1 − t

)
,

and this infimum is attained at φ(s) := sx/t if s < t and φ(s) := x + (s − t)(1 − x)/(1 − t)

if s ∈ [t, 1]. Let ρ ∈ (0, 1) be sufficiently small so that, for all t ∈ [1 − ρ, 1], xF (t) > t and
inequality (15) holds. Then the function

t → −t log

(
xF (t)

t

)
− (1 − t) log

(
1 − xF (t)

1 − t

)
, t ∈ [1 − ρ, 1],

is increasing. Thus, we have

inf{JF (χ) : χ ∈ Āε} ≥ inf
t∈[1−ρ,1] inf

φ∈V+
0,1

{
−

∫ 1

0
log(φ̇(a)(s)) ds : φ(t) ≥ xF (t)

}

= inf
t∈[1−ρ,1]

(
−t log

(
xF (t)

t

)
− (1 − t) log

(
1 − xF (t)

1 − t

))

≥−(1 − ρ) log

(
F(exp(ρ−β)+ 1)

1 − ρ

)
− ρ log

(
1 − F(exp(ρ−β)+ 1)

ρ

)
,

and this latter term tends to +∞ as ρ → 0 by assumption (14). So (16) is satisfied and the
sequences {gε(Xn)} are exponentially good approximations of {g(Xn)}.

To establish (17), reasoning by contradiction, assume that there exist a δ > 0 and a sequence
{εn} such that εn ↓ 0 and

sup
{χ∈V+

a,b : JF (χ)≤α}

∫ 1

1−εn
log(χ(s)) ds ≥ δ.
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The function χ → ∫ 1
1−ε log(χ(s)) ds is continuous for any ε > 0. Therefore, by the goodness

of JF , there exists χεn,α which attains the supremum and JF (χεn,α) ≤ α. Thus, we have a
contradiction because

α ≥ JF (χεn,α) ≥ −(1 − εn) log

(
F(exp(ε−βn )+ 1)

1 − εn

)
− εn log

(
1 − F(exp(ε−βn )+ 1)

εn

)
,

and, using the hypothesis in (14), this final term tends to +∞ as n → ∞.

Example 7. (Every law that is ultimately Weibull satisfies the conditions of Theorem 5.) Con-
sider a law that is ultimately Weibull, F(x) = 1 − e−xα for some α > 0 and all sufficiently
large x. For any β ∈ (0, 1),

lim
ε→0

ε log(1 − F(exp(ε−β))) = − lim
ε→0

ε exp(αε−β) = −∞,

and, thus, (14) is satisfied. Define

xF (t) = F(l(t)),

where l(t) = exp((1 − t)−β)+ 1 for some β ∈ (0, 1). It is easy to check that xF (t) > t for all
t sufficiently close to 1. Equation (15) is equivalent to

αβ(1 − t)−(β+1)(l(t)− 1)(l(t))α−1 ≥ 1 − e−(l(t))α

1 − e−(l(t))α − t
log

(
1 − t

t

1 − e−(l(t))α

e−(l(t))α
)

(18)

for all t sufficiently close to 1. Equation (18) holds if we can show that

lim
t→1

{
[αβ(1 − t)−(β+1)(l(t)− 1)(l(t))α−1(1 − e−(l(t))α − t)]

×
[
(1 − e−(l(t))α ) log

(
1 − t

t

1 − e−(l(t))α

e−(l(t))α
)]−1}

= +∞.

For this, note that, for all t close to 1, we have

(1 − e−(l(t))α ) log

(
1 − t

t

1 − e−(l(t))α

e−(l(t))α
)

≤ (1 − e−(l(t))α ) log(e(l(t))
α − 1)

≤ (1 − e−(l(t))α )(l(t))α,

and so

[αβ(1 − t)−(β+1)(l(t)− 1)(l(t))α−1(1 − e−(l(t))α − t)]

×
[
(1 − e−(l(t))α ) log

(
1 − t

t

1 − e−(l(t))α

e−(l(t))α
)]−1

≥ αβ(1 − t)−(β+1)(l(t)− 1)(1 − e−(l(t))α − t)

(1 − e−(l(t))α )l(t)
. (19)

The claim follows noting that the term in (19) goes to +∞ as t → 1 because it is asymptotically
equivalent to αβ(1 − t)−β .
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Example 8. (Truncated Pareto emulating Pareto.) As an application of Theorem 5, we
determine estimates on the likelihood that the Hill plot misclassifies the distribution function
F as having Pareto tails when it does not. For certain financial objects, it has been suggested
that, while on short time scales, fluctuations in value are large, in the longer term they are not;
see, e.g. [18]. Similar observations have been made in ground-water hydrology, atmospheric
science, and many other fields; for examples, see [1] and the references therein. This has led to
the proposal of, e.g. financial market models based on random walks whose increments have
apparent power-tail behaviour near the centre of their support, but whose tails decay at least
as fast as an exponential distribution. Truncated Lévy distributions have been used with either
a sudden truncation [18] or a transition to an exponential distribution beyond a given cutoff
[14]. Similarly, truncated Pareto distributions have also been proposed. Consider a truncated
Pareto distribution with parameter γ > 0 supported on [1,K) that changes into an exponential
distribution on [K,∞) with rate λ:

F(x) =
{

1 − x−γ if x ∈ [1,K),
1 −K−γ e−λ(x−K) if x ∈ [K,∞),

and, therefore, its quantile function is

F−1(u) =
{
(1 − u)−1/γ if u ∈ [0, 1 −K−γ ),
K − λ−1 log(Kγ (1 − u)) if u ∈ [1 −K−γ , 1].

By the preceding example, the conditions of Theorem 5 are met.
Consider LF (χ̂), where χ̂ corresponds to the Hill plot of the Pareto(α) distribution. Then,

for the quantile function φ̂(s) = (1 − s)−1/α , we have

χ̂(t) = 1

t

∫ 1

1−t
log(φ̂(s)) ds − log(φ̂(1 − t)) = 1

α
.

Referring to Corollary 1, the functionf is defined byf (x) := Ḟ (x) = γ x−γ−1 if x ∈ [1,K)
and f (x) := Ḟ (x) = λK−γ exp(−λ(x −K)) if x ∈ (K,∞). Thus, by the expression of LF

in Theorem 5 and (9), we have

LF (χ̂) ≤ JF (φ̂)

= −
∫ 1

0
(log(f (φ̂(t))+ log( ˙̂φ(t))) dt

= −
∫ 1−K−α

0
log(γ ((1 − t)−1/α)−γ−1) dt

−
∫ 1

1−K−α
log(λK−γ exp(−λ((1 − t)−1/α −K))) dt

−
∫ 1

0
log

(
(1 − t)−1/α−1

α

)
dt.

The second term in this equation, corresponding to the exponential part of the distribution
emulating the quantile function of a Pareto(α) law, leads the integral to be infinite if α ∈ (0, 1]
and finite if α > 1. That is, if the real distribution is a Pareto(γ ) distribution truncated by an
Exponential(λ), then, with finite rate, one can observe a Pareto(α) Hill plot so long as α > 1.
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