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parameters in non-stationary longitudinally correlated
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ABSTRACT

In recent years, Com—Poisson has emerged as one of the most popular discrete models in
the analysis of count data owing to its flexibility in handling different types of dispersion.
However, in a stationary longitudinal Com—Poisson count data set-up where the covariates are
time independent, estimation of regression and dispersion parameters based on a generalized
quasi-likelihood (GQL) approach involves some major computational difficulties particularly
in the inversion of the joint covariance matrix. On the other hand, in practical real-life
longitudinal studies, time-dependent covariates leading to non-stationary responses are more
frequently encountered. This implies that further computational problems will now arise when
estimating parameters under non-stationary set-ups. This paper overcomes this problem by
approximating the inverse of the ill-conditioned covariance matrix in the GQL approach through
a multidimensional conjugate gradient method. The performance of this novel version of the
GQL approach is then assessed on simulations of AR(1) stationary and AR(1) non-stationary
longitudinal Com—Poisson counts and on real-life epileptic seizure counts. However, there is
not yet an algorithm to generate non-stationary longitudinal Com—Poisson counts nor a GQL
algorithm to estimate the parameters under non-stationary set-ups. Thus, the paper also
provides a framework to generate non-stationary AR(1) Com—Poisson counts along with the
construction of a GQL equation under non-stationary set-ups.

1. Introduction

In practice, correlated count responses are either over- or underdispersed, thus limiting the
application of the Poisson model. In the literature, such data can be modelled through
some weighted or generalized form of the Poisson distributions [1], but these models do
not belong to the exponential family of distributions. Recently, Shmueli et al. [7] revived
the two-parameter Com—Poisson distribution (CMP), which satisfies the properties of the
generalized linear models and can model all forms of dispersion. Owing to its elegant properties,
Mamode Khan and Jowaheer [4] extended the cross-sectional CMP to longitudinal CMP
by first developing its AR(1) Gaussian autocorrelation structure based on time-independent
covariates followed by the construction of the generalized quasi-likelihood (GQL) that was
based on a general autocorrelation structure developed by Sutradhar and Das [8]. Their GQL
approach yields reliable and efficient estimates of the regression and dispersion parameters
under both simulated AR(1) longitudinal stationary Com-Poisson data and real-life data
applications. However, a huge number of non-convergent simulations were reported. Upon
investigation, it was revealed that the covariance structure in the GQL technique was ill
conditioned. Unfortunately, this computational deficiency limits the application of the GQL
approach. Besides, these authors have developed the AR(1) generating process and the GQL
equation based only on time-independent covariates, whilst, in many real-life studies, especially
in medicine, time-varying covariates such as age, treatment, number of medical check-ups and
attacks are commonly encountered. In fact, Mamode Khan and Jowaheer [4] did consider
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time-dependent covariates in the analysis of breakdown data but the values of these covariates
were averaged over a single time point to make their GQL work.

Non-stationarity through the inclusion of time-dependent covariates based on the Com-—
Poisson model has not yet been dealt with. This paper proposes a reconstruction of the
GQL estimating equation based on non-stationary longitudinal Com—Poisson counts. The
performance of this GQL equation is then assessed on simulation studies and on real-life
data applications. Note that there is not yet an algorithm to generate non-stationary AR(1)
longitudinal Com—Poisson counts. Thus, we also develop an algorithm to generate such types
of counts based on the binomial thinning operation. On the other hand, the computational
challenges in the estimation of parameters under the assumption of time-dependent covariates
can already be foreseen given the performance of the GQL approach under stationary set-ups.
To address this issue, this paper comes forward with the multiconjugate gradient algorithm to
approximate the inverse of the covariance structure in the GQL approach and thereafter uses
the Newton—Raphson technique to estimate jointly the regression and dispersion parameters.

The organization of the paper is as follows: in the next section, an overview of the
longitudinal CMP model is presented. In § 3, the derivation of AR(1) non-stationary Gaussian
autocorrelation structure is performed along with its generating process. This is followed by a
review of the GQL estimating equation under stationary set-up and the construction of GQL
under non-stationarity. In the same section, the multidimensional conjugate gradient method
(MCGM) approach is implemented. In §6, a simulation study of AR(1) stationary and non-
stationary cases of the longitudinal CMP counts is carried out under various covariate designs
and values of dispersion that encompass equi-, over- or underdispersion. The GQL approach
based on Newton-Raphson and MCGM is then used to estimate the regression and dispersion
parameters using these simulated data. This section also comprises a comparison between
Newton-Raphson based on the ill-conditioned covariance matrix with Newton-Raphson based
on the MCGM approach. In §7, both versions of GQL are applied to epileptic seizure counts.
The conclusion is presented in the last section.

2. Overview of the longitudinal CMP model

For our discussion, let y;; be a count response and x;; be a p-dimensional vector of covariates for
subject i (¢ =1,...,I) observed at time t (¢t =1,...,T). Let 3 be the p x 1 vector of regression

parameters. For the ith subject, let v; = (yi1,--.,%it,---,¥i7). be the T x 1 response vector
and X; = (z;1,...,7;7)T be the T X p matrix of covariates. The Com—Poisson density function
of y;; is given by
Vit 1
flyi) = 75 7 (1)

(v ) Z(Nit,v)

where

Z0um) =30 )

where \;; = exp(z}3) in (1); the parameter v corresponds to the dispersion index. More

specifically, the values v = 1, ¥ < 1 and v > 1 correspond to equi-, over- and underdispersion.

The moments of the CMP model derived by Shmueli et al. [7] are given by
1/v v—1 0;: v—1

E(}/—zt) = 0“ = )\it — 21/ s Var(Yit) = 7 2V2 .

(3)
Thus, Y;; ~ CMP(6;;/v,v). Under the assumption of stationarity, that is, time-independent

covariates, for t = 1,2,...,T,
0ir =02 = ... =0T, (4)
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whereas, for time-dependent covariates, 6;; is different at each time point. Since the y;; are
repeatedly recorded over time ¢ = 1,...,T, the T repeated responses under the ith cluster are
more likely to be correlated. Note that under a stationary set-up, the correlation structure is
constant for all individuals, whereas, for a non-stationary structure,

1 Pil2  Pil3 .- PiAT
Pi21 1 Pi23 ... Pi2T
Ci(p) = . . . ) . , (5)
piT1 PiT2  Pi T3 .- 1

where p; i, is the correlation coefficient for the ith individual at lag k = |l — m].

3. Derivation of the AR(1) Gaussian non-stationary Com-Poisson longitudinal counts

In this section, we provide the framework to generate sequences of dependent count responses
following the CMP distribution based on the assumption of time-dependent covariates
analogous to the dependent Com—Poisson counts generated under stationary set-ups. Here,
the correlation matrix is not unique for all the I clusters, that is, C;(p) # C(p).

We assume, fort =1,...,T, y;41—1 ~ CMP(6, —1/v,v) and d;y ~ CMP((6;x — pb; 1—1)/7, D),

where
_ W+ Ve —8a ©)

4q1

with go = (203 — 2p0i0—1 + 1), @1 = (1 = p*)((v = 1)/20%) + 03 /v — (pby -1 /v)(p + V(1 = p))
and 0 < p < 1. Then, following McKenzie [5] and Mamode Khan and Jowaheer [4], the
non-stationary AR(1) model for the sequence {y;:} can be formulated as

A

Yit = p* Yir—1 + dit, (7)

where 0 < p < 1. The symbol * indicates the binomial convolution thinning operation such
that

P *Yit—1 | Yit—1 ~ Binomial(y; 1, p). (8)
Under these conditions, it can be shown that

01‘, vV — 1
E(Yy) = 0i,  Var(Ya) =~ + = (9)

Similarly,

v 2u2

0; ¢ -1
Cov(Yi,Yii—r) = P(’tk + v )

and thus the lag-k correlation is

1/v
Corr(Yig, Yie—i) = p* VOison/v+ v —1)/20%) m 0)
ity Lit—k P ei,t/V + (V — 1)/2U2 p )\l/u/y
it

for k = 1,...,T — 1. Note that since the mean parameter (6;; — pf;;—1) > 0 and p is a
probability parameter, 0 < p < min(6;2/6;1,...,6it/0i1-1,1).
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4. GQL under non-stationarity

In this section, we review the joint generalized quasi-likelihood estimating equation
(GQL-I) technique proposed by Mamode Khan and Jowaheer [4] to estimate the regression
and dispersion parameters in the model for stationary Com—Poisson longitudinal count data
and use the true general autocorrelation structure suggested by Sutradhar and Das [8] to
estimate the regression parameters and the working multivariate normality assumption of
Prentice and Zhao [6] to estimate the dispersion parameters. This GQL-I estimating equation
is constructed using observations y;; and their squares y? and is given by

I
A ~—1
F(B,2) = DISi (fi—p) =0, (11)
i=1
where f; = (f4, ..., fF ... ), i = (uh, ... pk, ... pkp) are 2T x 1 vectors with fi; =
(Yits y2)s pir = (Bie, mir)™, where my; = )\;/V/V + 62,. The gradient matrix is given by
D; = [0u; /08, 0u;/ov]) = [DL,...,DE ... DT (12)
with
D‘ _ 69it/8ﬁT 89“5/81/
T Om /0BT Omy JOv
fort=1,...,T.

The covariance matrix of f; is expressed as

r—— —— — s

Y Qe Qs .. Qar
Yo Qs ... Quar
= S o Qur | (13)

where the diagonal submatrix

S Var(Yy) Cov(Yy,Y?)
= Var(Y2)

and, for ¢t # w, the off-diagonal submatrix

an. — [ Cov(¥ir, Yiu)  Cov(Yiy, Vi)

= | Cov(YZ, Yiw) Cov(Y2,YE)
fort=1,...,Tandw =1,...,T. Note that for time-independent covariates, these components
are computed at a single time point only and the same expressions are used for t =1,2,...,T.

For more details on the stationary case, refer to Mamode Khan and Jowaheer [4].
For the non-stationary case,

ALY
99:/08" = o,

lv—1 1 A/l
00, /0y = = —— — — — it il
o/ v 2 v2? 2v vz
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9 1/v 2 2/v 1/v
Ormey /05T — ( PRrAges >\2 VAL )
1%
Omay OV = —[2)\1,5/”1/111()\“) Fv—1— a7 (i) — AN v — A0 In(Ay)).

Next, the construction of the covariance matrix i is performed in two phases.

4.1. Computing the block diagonal elements of f];
Using the moment generating formula of the CMP function [4, 7],
1/v v v
oAV 4+ 2N — Al
2

MYV 4+ AN 02 10Ny — ANy ANl —ani v
v3 '

COV( ity }/z%)

)

Var(Y) =

4.2. Computing the block off-diagonal elements of f;

Following Jowaheer and Sutradhar [2] and Mamode Khan and Jowaheer [4], the off-diagonal
covariance entries are derived by approximating the higher-order moments based on the
assumption that (y;1,¥i2,...,¥r)) follow a multivariate normal distribution. By letting

. 1/v .
Titw = PitwCittTiww With o = \/ N[~ /v, we obtain

1/v 1/v
COV( zt7Y ) pitw\/(Ait )()\“U)
14 v

As for Cov(Yy, Y2) and Cov(Y;2,Y2)), we require the two higher-order moments E(Y;;Y;y Vi)
and E(Yit}@t/Y;wlﬁw/) that were derlved by Mamode Khan and Jowaheer [4]. In this paper,
we extend their formulations to obtain

MU (N
COV( zt75/;w) = Z(pztw ( o ) ( ) + 01t91w>61 - 29it9iw2a (14)
NN 1/1/ ALY
Contr v = | Ay Ao (2 ()
1/1/ 1/’/ 1/”
+2 ( (9 )9171; + 2 Pitw lt Zw + eztezw it T Qezgtel’w) 9”‘)
ALY ALY
+2 (2 <pitw 2 ﬂ + giteiw aiw + (alw + 0072274) + gzzw)alt - 20”01274)) git
)\1/V 1/”
— < » + 0 ) — pltw\/»m + 91t02w>91t01w
1/v 1/v /v
3 ( y Ao )61%_’_302 02— (94 At )( A )
v v v

In comparison with the stationary model, here the covariances are different between the
counts for the same lags apart and for different individuals. To estimate the AR(1)
correlation parameters we use a moment estimating equation approach following Jowaheer

w
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and Sutradhar [3]. Using the fact that

)\1/1/
k i,t—k
Corr(Yit,Yii—k) = pf ——x (15)

/\Z/”/V

[refer to § 1] and equating

DN Dri 1Yth(t+1)/( 1)

(16)
Zi=1 Zt:l it /T
with
21 312 )‘3{&1:1 MY v
pEpyE {((T,_l) /Ol -
we obtain T 1 -
ITZz 1D i Y; tYi 41 (18)

S Y VS S O ) )

where iy = (yit — 05¢)/ 1/V/V Thus, using this value of p, C; 1 -1 = p \/)\%V k/y/\/)\l/V

Note that p and the correlation matrix C;; ¢ are obtained using known estimates for ,5’
and ».

5. Estimating GQL
The GQL-I estimating equation (11) is solved by the Newton—Raphson iterative method such

ha
h [BH} N [ﬂ * [ZI:D?g_lDi]_l [XI:Dz‘Tg‘_l(fi — )| (19)

1%
T+l i—1 ro i r

where 3, is the value of 3 at the rth iteration. Here, []- is the value of the expression
at the rth iteration. The algorithm works as follows: for initial values of B and 7, we
calculate p using (18) to obtain the correlation structure (5) and then use these two sets
of parameters to update the values of B and 7. Then the new set of parameters is used
to calculate p; and the iteration continues in this way until convergence. The estimators
are consistent and, under mild regularity conditions, for I — oo, it may be shown that
I'2((8,9) — (8,v))" has an asymptotic normal distribution with mean 0 and covariance
matrix Iy, DI'S, DI, DI, ' (fi — w)(fi — w)'S, DI, DIS, D!
From §§4.1 and 4.2, it is clear that the covariance matrix ¥; has a complex structure. In
fact, Mamode Khan and Jowaheer [4] showed that under simple cases of time-independent
covariates, the covariance matrices become ill conditioned for each subject i = 1,2,...,I. To
overcome this issue in the case of non-stationary time-dependent covariates, we propose using
a multi-dimensional conjugate gradient method (MCGM) to approximate the inverse of the

covariance matrix, thus yielding another version of the GQL-I algorithm which we redefine as
GQL-II. The MCGM algorithm works as follows:

N ~—T
(1) Assume an initial Cy and calculate Ry = ¥; — ACy, where A = %;%; for the ith
observation, and let P, = Ry.

(2) For k=1,2,... until convergence, the following iterations are repeated:
(a) ok = [[Ri—1l*/Pe.(APL);
(b) Cx = Cr—1 + arP;
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(¢) Ry =3%; — ACy;
(d) nx = [ RZN/IIRZ -4 5
(e) Pyi1 = Ry + ni Pr.

If C; converges based on ||Ry|| < 10710, then %; - CF, else the iterations continue until
convergence. Note that this procedure is executed for each ¢ = 1,2,3,...,1. In contrast
to GQL-I, the convergence rate of GQL-II is slower since there is a sub-iteration at each
iteration for each subject 7. To assess the performance of GQL-II, we simulate both longitudinal
AR(1) stationary and non-stationary Com-Poisson counts in the next section and estimate
the regression and dispersion parameters under each set-up.

6. Simulation studies

This section is made up of the following parts: in the first subsection, we first generate
AR(1) stationary and non-stationary longitudinal Com—Poisson counts following the binomial
thinning operation derived in §1. Then, assuming 7" = 4 and for I = 60,100,500 with true
values of Bg = B1 = 1 for values of v = 0.5, 1, 1.5, GQL-II is implemented. For each cluster size
and values of v, 10 000 simulations are carried out under both set-ups. Note that v = 1 indicates
equidispersion or Poisson, v = 0.5 indicates overdispersion and v = 1.5 is underdispersion. To
assess the performance of GQL-I and GQL-II, the numbers of non-convergent simulations
under both set-ups are compared.

Following the AR(1) stationary autocorrelation structures developed by Mamode Khan and
Jowaheer [4], we extend their algorithm to simulate AR(1)-type longitudinal CMP count
responses under non-stationary set-ups, as illustrated in the next section.

6.1. A review of the AR(1) stationary Gaussian autocorrelation structure for simulating
correlated Com—Poisson counts

We generate a CMP variable y;0 with mean 6;; and covariance index v using the
recurrence relation P(Y;p = wio + 1) = P(Yio = wio)Xi1(yio + 1)7%, where P(Y;p = 0)
= {exp(A/") ATV (2r)=1)/2 /A =1 Using the discrete analog of the inverse
transformation method, we calculate the sum of these probabilities starting from P(Y;o = 0)
until the sum exceeds the value of a simulated uniform (0, 1) variable and at this cut-off point
the value obtained becomes a Com—Poisson variable. A Com—Poisson variable d;; with mean
parameter (1 —p)6;; and covariance index ¥ is generated in the same way, where v is calculated
using (10) with 6;; = 6;; for all t = 1,2,...,T. Then y;; is obtained by using the Gaussian

AR(1) relationship
Yir = p* Yio + di,

where p * y;0 is a simulated binomial random variable with mean py;g following the binomial
thinning. In this way, we generate values of d;; with mean (1 — p)6;; and dispersion index
v given in (6) and a binomial random variable with mean py;;—; for t = 2,...,T to obtain
successive values of y;;.

6.2. Generating AR(1) non-stationary Com—Poisson counts

Here, as well, we generate a CMP variable y;o with mean 6;; and covariance index v in the
same way as in §6.1. Then we generate a Com—Poisson variable d;; with mean (1 — p)f;; and
covariance index U, where ¥ is given by (10). By using the relation (11), we generate successive
values of y;; for t = 2,...,T using simulated values of d;;, which is generated with mean
(03t — pB; +—1) and covariance index ¥ given in (10) and a binomial random variable with mean
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pyit—1. As for the covariate design, we consider two covariates x;;1 and ;2 under designs k,
where k = 1,2 as follows:
— under the stationary set-up,

k—1 (i=1,.. 1/5)
rbinom(k,0.5) (i = (I/5)+ .,2[/5),

Zit1 = 4 rpois(1, k) (t=(21/5)+1,...,31/5),
1 (i=(31/5)+1,...,41/5),
2k (i = (41/5) + ...,I)

and the second covariate z;;5 is generated from a standard normal distribution;
— under the non-stationary set-up,

(k—1)*t (i=1,.. 1/5)
rbinom(k,0.5) +¢ (i=(I/5)+1,...,21/5),

Tit1 = | rpois(1, k) (i =(21/5) + ...,3]/5),
1+t (i=(31/5)+1,...,41/5),
2k (i=(41/5)+1,...,1)

and the second covariate w9 is generated from a Poisson distribution with mean
parameter k and for various values of t. By applying GQL-I and GQL-IT on these
simulated responses with the respective covariate designs, the following results were
obtained.

The above estimates of the regression and dispersion parameters were obtained iteratively
using GQL-T and GQL-IT estimating equations based on small initial values of these parameters.
We note that, under both methods and set-ups, the values of these estimates converged close
to the true values of 8 and v. As the cluster size increases from I = 60 to I = 500, the standard
errors of the various estimated parameters decrease under both methods, designs and set-ups,
thus conforming to the central limit theorem. More specifically, the standard errors under GQL-
T are slightly superior than GQL-IT under both stationary and non-stationary covariate designs.
However, in terms of computations, both methods yield some non-convergent simulations, with
GQL-IT yielding the least number of failures, as illustrated in Table 3.

In more detail, in the stationary and non-stationary cases, the intermediate computation in
GQL-I fails in a very high number of simulations, particularly for I = 60 and I = 100 (see
the above), because the covariance matrices i]: become singular. On the other hand, GQL-II
fails because, in some simulations, the converged estimates were very far from the true values
of the parameters, which may be due to the choice of initial values. Note that the number of
failures is higher in the non-stationary case than the stationary case. Overall, GQL-II is an
extremely robust approach as it has overcome in totality the ill-conditioned problem of the
covariance matrix in simulations where GQL-I failed. Note that GQL-II took more iterations
than GQL-I to converge, which was as expected, particularly in the non-stationary case.

7. Application to epileptic seizure counts

We revisit the epileptic dataset that was analyzed by Jowaheer and Sutradhar [2] (see also
Thall and Vail [9]). The data consists of 59 epileptic patients for whom the numbers of seizures
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occurring at each of four successive two-weekly clinic visits were reported. The summary
statistics for these responses are given in the following table.

Visit 1 Visit 2 Visit 3  Visit 4
Sample mean 8.949 8.356 8.441 7.305
Sample variance 220.084 103.785 200.182 93.112

We note that the variances are greater than their corresponding means for each time point,
indicating that the data are clearly overdispersed. We consider six covariates, namely the
intercept term denoted by x;;1, the treatment parameter x;:2, coded as 0 for placebo and 1

TABLE 1. Simulated mean estimates of the parameters and standard errors under designs 1 and 2 for
GQL-I and GQL-II under stationary set-up.

I Design 1 Bogqr-1  Breqr vaQL- Design 1 fogqL-n  Praqr-nn PaqQL-11

60 v=05 1.1110 0.9994 0.4998 v =205 1.1110 1.0012 0.4985

(0.0622)  (0.0890)  (0.1835) (0.0632)  (0.0894)  (0.1915)

100 1.0121 10111  0.5011 1.0124  1.0110  0.4998
(0.0589)  (0.0782)  (0.1663) (0.0601)  (0.0787)  (0.1680)

500 1.0101  1.0101  0.4999 1.001 1.0101  0.5010
(0.0392)  (0.0409)  (0.1330) (0.0401)  (0.0410)  (0.1331)

60 v=1 1.0001  1.0109 09985 v=1 1.0001  1.0105  0.9991
(0.0781)  (0.0718)  (0.1515) (0.0790)  (0.0720)  (0.1523)

100 1.0008  0.9991  1.0010 1.0010  1.0002  1.0003
(0.0615)  (0.0531)  (0.1101) (0.0620)  (0.0534)  (0.1105)

500 0.9991  1.0101  0.9999 0.9995  1.0101  1.0005
(0.0380)  (0.0421)  (0.0995) (0.0383)  (0.0430)  (0.1005)

60 wv=15 10111  1.0110 1485  v=15  1.0110  1.0109  1.4888
(0.0723)  (0.0820) (0.1010) (0.0725)  (0.0823)  (0.1018)

100 0.9998  1.1001  1.5001 1.0101  1.1002  1.4990
(0.0433)  (0.0555)  (0.0536) (0.0435)  (0.0560)  (0.0538)

500 0.9990  1.0103  1.4950 1.0011  1.0101  1.4948
(0.0366)  (0.0325)  (0.0316) (0.0371)  (0.0330)  (0.0319)

I Design 2 BOGQL—I BlGQL—I vaqr-1  Design 2 BOGQL—II BlGQL—II vaqQL-ir
60 v=20.5 1.1110 0.9994 0.4998 v=20.5 1.1111 1.0010 0.4978

(0.0622)  (0.0890)  (0.1835) (0.0631)  (0.0892)  (0.1878)

100 1.0121 10111  0.5011 1.0119  1.0091  0.5010
(0.0589)  (0.0782)  (0.1663) (0.0590)  (0.0785)  (0.1670)

500 1.0101  1.0101  0.4999 1.0101  1.0101  0.5001
(0.0392)  (0.0409)  (0.1330) (0.0401)  (0.0402)  (0.1334)

60 v=1 1.0001  1.0109 09985 v=1 1.0101  1.0101  1.1005
(0.0781)  (0.0718)  (0.1995) (0.0785)  (0.0720)  (0.2001)

100 1.0008  0.9991  1.0010 0.9991  1.0002  1.0013
(0.0615)  (0.0531)  (0.1101) (0.0617)  (0.0537)  (0.1115)

500 0.9991  1.0111  0.9999 1.0001  1.0101  1.0003
(0.0380)  (0.0421)  (0.0995) (0.0410)  (0.0422)  (0.1004)

60 wv=15 10111  1.0110 148  v=15 11110  1.0110  1.4888
(0.0723)  (0.0820)  (0.1010) (0.0733)  (0.0825)  (0.1015)

100 0.9988  1.0001  1.5011 0.9981  0.9902  1.4990
(0.0433)  (0.0555)  (0.0536) (0.0438)  (0.0560)  (0.0543)

500 0.9990  1.0103  1.4950 1.0001  1.0101  1.4958
(0.0166)  (0.0325)  (0.0316) (0.0169)  (0.0330)  (0.0336)
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for progabide, the baseline seizure rates denoted by x;:3, the age of the person denoted by
T4, the interaction effect between treatment and baseline seizure rates x5 and the visit ;6.
Note that x;;6 is the only time-dependent covariate, which makes the mean parameter non-
stationary. The mean parameter of the Com—Poisson distribution for the ith person is given
by )\it = exp(mg;ﬂ) with Tit = (mitl,xitg, N ,mit5,$it6)T for t = 1, N ,4. Here7 ﬁ is the 6 x 1
vector of regression parameters.

Both methods yield reliable estimates of the regression and overdispersion parameters. The
standard errors under GQL-I and GQL-IT illustrate that GQL-I is slightly more efficient than
GQL-II, thus confirming the pattern in the simulation studies. The treatment parameter under

TABLE 2. Simulated mean estimates of the parameters and standard errors under designs 1 and 2 for
GQL-I and GQL-II under non-stationary set-up.

I Design 1 Bogqr-1  Breqr vaqL-1 Design 2 fogqL-n  Bieq-u YL

60 v=05 1.0998 0.9996 0.5010 v=20.5 1.1102 1.0002 0.4998

(0.0922)  (0.0990)  (0.2331) (0.0935)  (0.0999)  (0.2365)

100 1.0065  1.1112  0.4997 1.0070  1.1111  0.4992
(0.0786)  (0.0881)  (0.1933) (0.0790)  (0.0888)  (0.1965)

500 1.0001  1.0001  0.5023 1.0001  1.0001  0.5025
(0.0692)  (0.0665) (0.1873) (0.0699)  (0.0670)  (0.1883)

60 wv=1 1.0001  1.0001  0.9995  v=1 0.9999  1.0001  1.0001
(0.0583)  (0.0620)  (0.1492) (0.0590)  (0.0626)  (0.1495)

100 1.0001  0.9999  1.0001 1.0001  1.0000  1.0003
(0.0432)  (0.0530)  (0.1201) (0.0435)  (0.0535)  (0.1210)

500 0.9995  1.0001  0.9999 0.9995  0.9991  1.0002
(0.0399)  (0.0497)  (0.1105) (0.0402)  (0.0498)  (0.1110)

60 wv=15 10110 1.0012 15150 v»=15 10115  1.0015  1.5140
(0.0756)  (0.0835)  (0.1023) (0.0764)  (0.0842)  (0.1025)

100 0.9991  1.0012  1.4981 1.0001  1.0002  1.4987
(0.0642)  (0.0623) (0.0871) (0.0650)  (0.0640)  (0.0882)

500 0.9995  1.0001  1.4997 1.0001  1.0001  1.4998
(0.0452)  (0.0561)  (0.0616) (0.0462)  (0.0564)  (0.0621)

I Design 2 BOGQL—I BlGQL—I PaQL-1 Design 2 BOGQL—II 31GQL—II vaQL-r
60 v=0.5 1.1001 0.9999 0.4990 v=20.5 1.1003 0.9993 0.4986

(0.0636)  (0.0995)  (0.1910) (0.0642)  (0.0999)  (0.1925)

100 0.9995  1.0001  0.5001 1.1010  1.0001  0.5004
(0.0593)  (0.0671)  (0.1713) (0.0601)  (0.0682)  (0.1736)

500 1.0105  1.0001  0.4999 1.0110  0.9999  0.4995
(0.0238)  (0.0520)  (0.1431) (0.0241)  (0.0532)  (0.1440)

60 wv=1 1.0001  1.0001 09995 v=1 1.0001  1.0001  1.0001
(0.0181)  (0.0331)  (0.1289) (0.0187)  (0.0338)  (0.1301)

100 1.0000  0.9996  0.9999 0.9996  0.9999  1.0001
(0.0101) ~ (0.0111)  (0.1111) (0.0110)  (0.0115)  (0.1119)

500 0.9998  1.0011  0.9999 1.0001  1.0012  1.0002
(0.0098)  (0.0103)  (0.1023) (0.0099)  (0.0110)  (0.1030)

60 wv=15 09992  1.0010 1499 v=15 09995  1.0010  1.5001
(0.0823)  (0.0881)  (0.1129) (0.0830)  (0.0890)  (0.1134)

100 0.9991  1.0016  1.5001 0.9999  0.9992  1.4996
(0.0636)  (0.0651)  (0.0489) (0.0640)  (0.0672)  (0.0590)

500 0.9995  1.0001  1.4994 1.0005  1.0001  1.4998
(0.0321)  (0.0330)  (0.0410) (0.0336)  (0.0338)  (0.0415)
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both methods is negative, which indicates that the predicted seizure counts will be less in the
treatment group than in the placebo group. The age factor is positive, indicating that as
age increases, the patients are more likely to obtain more epileptic attacks. The interaction
between the treatment and the baseline seizure rate does not appear to be significant in both
methods. In terms of computations, GQL-I is rather sensitive to the choice of initial values, as
shown in simulation studies. In fact, for even small initial values of the regression and dispersion
parameters, GQL-I yields ill-conditioned covariance matrices at several individual levels whilst
for the same set of initial values, GQL-II performs satisfactorily well and converges smoothly
to the above estimates. To solve this issue with GQL-I, we use the GQL-I estimates under
the Poisson model as the initial values. This is quite feasible here given that there were only
59 individuals but, in a large cluster size, this procedure may lead to further computational
problems. The only remark for GQL-IT is that it is time consuming as there were two sets
of iterations to be accomplished at each cluster size. Overall, in a real-life data application,
GQL-I is not appealing as compared to GQL-II.

TABLE 3. Number of non-convergent simulations in GQL-I and GQL-II under non-stationary set-up.

Design 1 Design 1

I (stationary) GQL-T - GQL-IT (non-stationary) GQL-T - GQL-IT

60 v =205 4892 30 v=0.5 5600 10
100 3890 23 4030 22
500 2300 2 2334 4

60 v=1 6712 15 v=1 7400 13
100 5423 18 3192 11
500 6601 10 6671 13

60 v=15 3421 20 v=15 4521 14
100 4210 12 6561 11
500 2222 3 3131 12

Design 2 Design 2

I (stationary) GQL-T  GQL-IT (non-stationary) GQL-T  GQL-I

60 0.5 4818 22 v =05 5516 13
100 4620 14 2891 10
500 2331 12 2717 9

60 v=1 23 v=1 Tl 14
100 3451 12 4515 16
500 2101 12 2818 10

60 v=15 4313 20 v=15 5421 11
100 3411 11 4121 10
500 2313 10 2819 12

TABLE 4. Epileptic data: estimates of the regression and dispersion parameters using GQL-I and
GQL-II approaches.

Method ~ INTC TR BR Age INTA Visit v

GQL-I 04582  —0.2471  0.0027  0.0210  0.0011  0.5142  0.5222
(0.4321)  (0.1521)  (0.0040) (0.0109) (0.0048) (0.3121)  (0.4510)

GQL-II 04601  —0.2484  0.0032  0.0222  0.0012  0.5182  0.5261

(0.4372)  (0.1555) (0.0045) (0.0111) (0.0056) (0.3201)  (0.4534)
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8. Conclusion

With a surge in the range of applications for longitudinal count data with time-dependent
covariates, there is a renewed interest in developing longitudinal non-stationary count models.
This paper focuses on developing AR(1) non-stationary structure for Com—Poisson counts as
it is a fast-growing distribution that can handle all forms of dispersion. The non-stationary
Com—Poisson autocorrelation structure was constructed using a binomial thinning operation.
As regards the estimation of regression and dispersion parameters under such set-up, a new
GQL estimating function was constructed based on the MCGM algorithm. The MCGM
algorithm was used purposely to approximate the inverse of the ill-conditioned covariance
matrix following some major computational issues that were present under simple longitudinal
stationary cases. This new algorithm was applied on simulated and real-life data applications,
where it was clearly shown that the new GQL performs computationally well and yields reliable
estimates of mean and dispersion parameters.
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