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TWO-WEIGHTED INEQUALITIES
FOR SINGULAR INTEGRALS

DAVID E. EDMUNDS AND VAKHTANG M. KOKILASHVILI

ABSTRACT.  We consider operators T of the form 7f = {T}ﬁ}, where Tjfi(x) =
(p.v) Jgn kj(x — y)fj(y) dy. Under appropriate conditions on the k;, two-weighted esti-
mates for T are obtained, the weights being radial and suitably linked.

In this paper we prove two-weighted inequalities for vector-valued singular inte-
grals. The description of the class of weight functions that provide the validity of a one-
weighted inequality for Hilbert transforms was given in [6]. Subsequent generalizations
for singular Calderon-Zygmund integrals can be found in [3], [7] and other papers. In
[1], [9] similar questions are treated for vector-valued singular integrals.

The solution of a two-weighted problem for singular integrals has turned out to be
more difficult. This problem is solved in [4] for the case of monotone weights. The
present paper deals with a more general case.

A measurable function w: R" — R! which is positive almost everywhere is called a
weight function; w is called radial if it is of the form w(x) = f{(|x|) for some £, and in
such cases we shall for convenience often write w(|x|) instead of the more correct w(x).
By 1%,(R") we denote the space of measurable functions f: R* — R! with finite norm

Wz = ([, Ve weeyas)’

Let us recall the definition of the Muckenhoupt class 4,. We say that w € 4,(R") (1 <
p < o0),if

1 1 Pl
supl—é—lfgw(x)dx(@fgw P—'(x)dx) < 09,

where the supremum is taken with respect to all balls Q in R".
Let Mf denote the maximal function of a locally summable function f:R" — R!
defined by

1
Mf(x) = sup — d
@) = sup 1 [ 1) dy
where the supremum is taken with respect to all balls Q containing the point x.

THEOREM A [11]. The operator M:f +— Mf is continuous in L4,(R"), 1 < p < oo,
ifand only if w € A,(R").

Further, we shall consider the convolution kernel k(x) satisfying the conditions:
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i) k()| < L,x € RY;
i) |k(x)| < Ljx|™, x € R
i) [k(r — ») — k)| < w(E)le| = for [y| < .
Here k denotes the Fourier transform of , L is a constant and w(?) is a nondecreasing
function on (0, 00) such that w(2f) < cw(f) and

1
/ &)—(t—)dt<oo.
0o ¢

Suppose {k;(x)} is a sequence of convolution kernels satisfying the conditions i), ii),
iii) with a uniform constant L and a fixed w independent of ;.

For f = {fi} let Tf = {T;f;} where
L46) = (V) [, ke = »0) dy.

Next, for 6, 1 < 8 < oo, and a vector ¢ = {¢;} we put

o8] 1/6
lelo = (3 lescl’) ™
ye

The following vector-valued one-weighted inequality for the operator T was proved in

[1].

THEOREM B.  Letp, 0 € (1,00), w € A4,. Then there exists a positive constant c such
that the inequality

JTlwexydx < [ Ifeolpwix)dx
holds for every f for which |f]y € L5,

Our further discussion will deal with two-weighted estimates for the operator 7' with
radial weights.
We introduce

DEFINITION 1. Let 1 < p < oo and let p’ = p/(p — 1). Denote by a,(n) the fam-
ily of all pairs (4, ) of nonnegative measurable functions on (0, 00) which satisfy the
condition

([ et ) ([ iyt ) < oo

>0

by(n) will denote the family of all pairs of functions (%, /) satisfying the condition
5 00 / n —1

sup(/o2 by ! dT) (ft B (e d’l’)p < 00.

>0

We have
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THEOREM 1. Let p,0 € (1,00), let o and u be positive monotone functions defined
on (0, 00), and suppose that the radial function p(|x|) € A,. We putv = ap, w = up; that
is, (|x|) = o(|xp(|x]) and w(|x|) = u(|x|)p(|x|). If either o and u are increasing and
(v,w) € ay(n), or o and u are decreasing and (v,w) € by(n), then there exists a constant
¢ > 0 such that the inequality

S 1T dx < ¢ [ eolfwiix)dx

holds whenever |f|g € L¥, e
To prove the theorem we shall use the following analogue of the well-known Hardy

inequality and some simple lemmas.

THEOREM C. Letl <p<g< o0 and let o(?), B(?) be positive functions on (0, 00).
i) The inequality

(f° oz(t)l /(;F(T)dfrlth)q/pgcl ([ |F(t)|‘”6(t)dt)l/p

with a constant ¢\ independent of F holds if and only if the condition

sup( I (X(T)d‘r)p/ ! ( /0' 5'~P’(T)df)p_1 <

>0

is fulfilled.
ii) The inequality

(f cx(t)| I F(T)dqudt)l/qﬁcz( I |F(t)|pﬂ(t)dt)l/p

with a constant c; independent of F holds if and only if

sup(f(; (X(T)d’r)p/q (/tw B'_”'(T) df)p_l < 00.

>0

For 1 < p = g < oo the above proposition is proved in [12], which also contains
information on previous work in this direction. For subsequent generalizations see [2],

(8], [10].

LEMMA 1. Letw = up where p(|x|) € 4, for some p, 1 < p < 00, u(t) increases on
(0, 00) and
t ,
/0 w Py dr < 0o

Jfor each t > 0. Suppose the kernel k satisfies the conditions i), ii) and iii).
Then the singular integral

Te@ = [, kx—»)p0)dy
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exists almost everywhere in R" for any ¢ € L’:v (IXI)(Rn)'

PROOF.  Fix arbitrarily a number o > 0. Suppose Sy = {x : |x| > §}, ¢1(x) =
p(x) - xs, and p2(x) = @(x) — ¢1(x). Since u(¢) is increasing on (0, o), we have

S ler@P ol = [ 1o@P pllds < [ 1ol wilx]) ds.

Since p € 4,, by virtue of Theorem B (in the scalar case) we conclude that T'p) exists
almost everywhere on R”". Now we shall show that T'p,(x) converges absolutely for all x
provided that |x| > . Note that for |x| > aand |[y| < § we have [x—y| > [x| - |y| > §.
Further, application of Holder’s inequality gives

Mool <c [, P gy 2y 1OMIDD,,

RS x =y o w ([y])
7

< (%)n</R <P(y)l”w(lyl)a’y)'l’( /Rn\sa w“”'(lyl)dy) < 00.

Since o may be chosen arbitrarily small we conclude that T'p, converges absolutely
almost everywhere on R".
Therefore Ty exists almost everywhere in R". [

1

LEMMA 2. Let the radial function p € A, for some p, 1 < p < 00 and suppose that
0 <¢; < ez £ 3 < c4. Then we have the inequality

t t
[ oyt dr <o [yt ar
c3t cyt
with some constant cg independent of t € (0, 00).
PROOF. We introduce the notation:
I'={x:cat<|x| <et},
I = {x:c3t < x| < cat}
and
B ={x:|x| <cat}.
By virtue of the definition of a maximal function for an arbitrary x € I'; and of the
function ¢ € L/,

1
|B|
Due to Theorem A we have

P
<
J(Me@) pixyax <c [

Then (1) implies the estimate
1 p
f (7 Feola) s <c [ 1eormd.
The choice ¢(y) = xr(») in the above inequality shows that

/r | p(x)dx < c /1._ p(x)dx,
which implies the validity of the desired inequality. n

(1) M) > oWl dyxr @ 2 1 [1e0) dxr, @),

PP px) dx.
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LEMMA 3.  Let the pair of radial functions (v,w) € a,(n) wherev = op, w = up and
o and v increase on (0,00), p(|x|) € 4,, 1 < p < 00. Then there exists a constantc > 0
such that for all t > 0,
o(2t) < cu(f).

PROOF. Obviously, due to the increase of the functions o and u, we obtain

@ [T o dr> o) [T e dr > o) [ oty dr

and

o (ferorror a2 g ([ o)

By Holder’s inequality we have
2t 2t , p—1
—np —1 1-p —1
@) t<e [ oy dr( [ 7o dT)

Further note that the definition of the class 4, shows that p € 4, implies p' 7 € 4.
By virtue of (4), Lemma 2, inequalities (2), (3) and the condition (v, w) € a,(n) we now
conclude that the inequalities

20 <o [ o [ o )

o(Y)
=l

a(?) - o —1 g\
<28 [P a{ [l o <

hold. u

PROOF OF THEOREM 1. First let o and u be increasing. Suppose without loss of
generality that the function o(f) can be represented as

o)) = 0(0) + [ p(w)du,
where ¢ is a positive function. Then we shall have
5
®) i ] y
Jo 1@l ds = 00) [ |Trefpdxhax+ [, 1Tle(x)dx( [ p(e)dr) dx
=1 +5.
If 0(0) = 0, then I; = 0. If 0(0) > 0, then by Theorem B we obtain
o) [, 1T p(xdx < co(0) [ ()l o) d
©) <er [ [l p(xo(x]) dx
< ez [, VP p(ixlullxl) dx.

* plry-l dT( ft 0 d"r)p_
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Next, change of the order of integration and use of Minkowski’s inequality give
I« 00
b=, (" ewdi) = ["o@ ([ T@ho(x)dr) dr
< (
M <o [T [ |0, = 00)df pl ) ar
+c3/o00 ‘P(T)< |xl>f|/l)/|<§ G _y)ﬁ(y)dy‘ p(’xl)dx) dr=In+ln.

Again application of Theorem B and Lemma 3 gives

b= [ 0@ [ | b =30 150721 0) D] o) ) dr
<a [ e[ VoD D) dr=co [ ONaD( [ e(rrar)
<co [ VOIpbDoCb)dy < i [ Oy dy.

Therefore

@ by <c4 fRn Fo)lgw(lyl) dy-

Further, the property ii) of the kernels &; enables us to obtain the estimate

%0 p(xD) P
122 S Cs /(; cp(t)(~/|Xl>T le,,p dx) (/MS% [f(y)lﬁ dy) dr
00 p(7) P
= s [ e [, o @) ([ Vo) as.
By the hypotheses of the theorem we have
o(np(r) S U
(10) (fde)(/o o 1() ) < cg.
After change of order of integration we obtain
o0 o _p() p(Y)
/Zt w(s)(/b 'yl+n(p b} d’)’) s <6 /OQ (p(S)( 25 yltn@—1) d’)’) ds

=c1 —Wlfﬁg)_l) (/; <,o(s)ds) dy

p(Mo(Y)
STy N1 dv.

®

Therefore by (10) we have

0 00 - —1
[ oo [ o)l f o) <

Now, applying Theorem C to the right-hand side of (9) we find that
(11) by < co /R [f)w(x])dx.
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Finally, from (5), (6), (7), (8) and (11) we conclude that the theorem is valid.
When o and u are decreasing functions, the proof is conducted in a similar manner;
one should use only condition ii) of Theorem C. =
Let us consider a concrete singular integral, namely the Hilbert transform

_ SO
= [
In that case the conditions a,(1) and b,(1) are also necessary for the boundedness of

the operator H from L, to L}. To be more precise, the following theorem is valid:

THEOREM 2. Let 1 < p < oo. If the pair (v, w) satisfies the conditions of Theorem 1
for n = 1, then we have the inequality

(12) [ irpvishar <c [~ fepwix)dy, £ €L,
Conversely, if (12) is fulfilled, then (v,w) € ap(1) N bp(1).

PROOF. The first part of the theorem is a corollary of Theorem 1. Now let (12) be
fulfilled: then by [13], w!7' € L((«, B)) for arbitrary o and 8, 0 < & < B < 0. Fix
arbitrarily a and 7, 0 < a < %, and in (12) substitute the function

sy =270 Pra<y<y,

otherwise.
We obtain
Iy
(13) [Py dx < ¢ [* w7 @)ar,
where the constant ¢ does not depend on « and .
On the other hand,
[ i seyas > [7][F 2 dyrvdxt)dx
(14)

> | oov(x) (/ w-—p(y)dy)‘

Further, from (13) and (14) we obtain

D a([fwroa) <a

Making « tend to zero, we conclude that (v, w) € a,(1).
Now fix arbitrarily fand 5,0 <t < g, and in (12) substitute the function

o) = { (()w(y)y)l_p’ for2t <y <p,

otherwise.

Obtaining the estimates in the manner discussed above and making 3 tend to infinity, we
find that (v, w) € by(1).
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In what follows given any natural number m, A,, will denote the set of all measurable

functions f for which
Lol + bely" dx < oo
and -
/ fordx =0, k=0,1,2,...,m.
—00
We have

THEOREM 3. Let 1 < p < o00. If the pair of functions (v, w) satisfies the condition
of Theorem 1, then for arbitrary functions [ € Ay for which fPy € L, (xl) We have the
inequality

Lo P PP i < [ 1 1P wilx)dx,

where Py, (x) is an arbitrary polynomial with complex-valued coefficients of degree m+ 1
and the positive constant c is independent of f.

PROOF. The proof follows from Theorem 1 and the identity

Pu()Hf(x) = HPw)(x), [ € An. .

We illustrate Theorems 1 and 2 by giving examples of distinct weights v and w for which
these theorems hold.

EXAMPLE 1. Let0 < o < 8 < p — 1; define real-valued functions 4, and 4 on
(0,00) by
e ifo<t<1/2
(= {2a—p+1ta if1/2<t< 00
and
h(t) = a log’(1/0) if0<t<1/2
T 2571 logP 2 if1/2 <t < oo,

and define radial weights v, w by v(|x|) = hi(|x|), w(|x|) = A(|x|). Routine calculations
show that the pair (4, #) of increasing functions belongs to a,(1)Mb,(1). Thus Theorem 1
and the first part of Theorem 2 hold for the pair (v, w).

EXAMPLE 2. Here we let 0 < 8 < o < p — 1, define A and 4 by
() = 1/(tlogr(1/0))  if0<t<1/2
l Q[ log 2)r* if1/2 <1< o0,
and
W= {0 if0<i<1/2
T2 if1/2 <t < oo,

and define the radial weights v, w by v(|x|) = hi(|x]), w(|x|) = A(|x|). Again it is easy
to verify that the pair (k;, /) of decreasing functions belongs to a,(1) M b,(1), and that
consequently Theorem 1 and the first part of Theorem 2 hold for the pair (v, w).
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