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As a promising candidate for the next-generation electronics, large-scale single- and few-layer MoS;
grown by chemical vapor deposition (CVD) method is an important advancement towards the
technological implementation of this material [1][2]. However, compared to exfoliated MoS,, CVVD grown
few-layer MoS; often exhibits mixed stacking sequences. These different stacking sequences can
significantly impact the electronic and optical properties of MoS., and are presumably caused by the high-
temperature growth condition of CVD method. Here, we report the preferred intrinsic stacking sequence
in CVD grown few-layer MoS; identified by annular-dark-field (ADF) imaging in an aberration-corrected
scanning transmission electron microscope (AC-STEM) operated at an ultra-low voltage-50 keV. We
then use a combined in-situ AC-STEM setup to study the stacking sequence evolution of few-layer MoS>
under synergistic thermal effect and electron irradiation to unravel the role of high temperature in the final
stacking sequence.

To probe the intrinsic stacking sequence in CVD grown MoS:, low-voltage STEM imging is an ideal tool.
Considering the threshold for S vacancy formation in single-layer MoS,—80keV [3], the low operation
voltage—50 keV enables the extensive imaging of atomically thin MoS; without introducing significant
structural damage. Figures 1a-c show the experimentally obtained STEM ADF images of CVD grown 1-,
2-, and 3-layer MoS». By comparing to simulated STEM ADF images based on known stacking sequences,
we identify the structure for 1-layer MoS: is H phase, and the stacking sequence for 2-layer MoS; is AA”’,
corresponding to 2H phase. We find 3-layer MoS: has a preferred stacking sequence of AA’B, which is a
mixed phase of 2H and 3R. First-principles calculations reveal that the mixed phase is among the most
stable stacking sequences in 3-layer MoS: (fig. 1d) [4].

To understand how the growth temperature affects the final stacking sequence in CVD grown MoS2, we
study the stacking sequence evolultion in few-layer MoS> while it is in-situ heated at different
temperatures and imaged by a higher-voltage electron beam (80keV). In this experiment, we start with
AB stacked bilayer MoS», the 80 keV electron beam knocks out one layer of MoS, atom-by-atom and
leaves the H-phase single-layer MoS behind. The evaporated Mo and S atoms redeposit onto the
neighboring AB-stacked bilayer MoS; and form trilayer MoS; with different stacking sequences at
different temperatures (Figs. 2 a-f). We find redeposited trilayer MoS; at 600°C shows a preferred stacking
sequence ABB (corresponding to 3R phase, Fig. 2g), and a high-energy defective ABC’ stacking at 700°C.
Our study suggests that high temperatue plays an important role in determining the stacking sequence in
synthesized few-layer MoS;.
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Figure 1. Experimental atomic-resolution STEM ADF images of single-layer (H phase), bi-layer (AA’
stacking) and tri-layer (AA’B stacking) CVD grown MoS:> (a-c, respectively), and stability of different
stacking sequences in tri-layer MoS: based on first-principles calculations (d).
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Figure 2. The evolution of stacking sequence in few-layer MoS> while in-situ heated at 600 °C inside
STEM. (a)-(f), Time-series STEM ADF images of bilayer MoS; under the synergistic thermal effect and
irradiation. Redeposited trilayer MoS: shows a preferred stacking sequence ABB, which corresponds to
3R phase. (g) identifying the stacking sequence in 1-, 2- and 3-layer MoS; by comparison between the
experimental and simulated STEM ADF images.
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