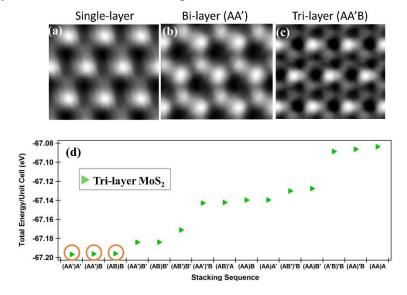
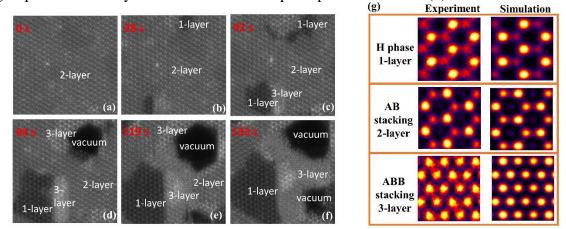
Identifying and Engineering the Stacking Sequence in CVD Grown Few-layer MoS₂ via Aberration-corrected STEM

Aiming Yan^{1,2}, Wei Chen³, Colin Ophus⁴, Jim Ciston⁴, Christian Humberto Merino¹, Alex Zettl^{1,2,5}

- ^{1.} Department of Physics, University of California, Berkeley, Berkley, CA, USA.
- ² Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkley, CA, USA.
- ^{3.} Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, USA.
- ^{4.} National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- ^{5.} Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA.


As a promising candidate for the next-generation electronics, large-scale single- and few-layer MoS₂ grown by chemical vapor deposition (CVD) method is an important advancement towards the technological implementation of this material [1][2]. However, compared to exfoliated MoS₂, CVD grown few-layer MoS₂ often exhibits mixed stacking sequences. These different stacking sequences can significantly impact the electronic and optical properties of MoS₂, and are presumably caused by the high-temperature growth condition of CVD method. Here, we report the preferred intrinsic stacking sequence in CVD grown few-layer MoS₂ identified by annular-dark-field (ADF) imaging in an aberration-corrected scanning transmission electron microscope (AC-STEM) operated at an ultra-low voltage–50 keV. We then use a combined *in-situ* AC-STEM setup to study the stacking sequence evolution of few-layer MoS₂ under synergistic thermal effect and electron irradiation to unravel the role of high temperature in the final stacking sequence.

To probe the intrinsic stacking sequence in CVD grown MoS₂, low-voltage STEM imging is an ideal tool. Considering the threshold for S vacancy formation in single-layer MoS₂–80keV [3], the low operation voltage–50 keV enables the extensive imaging of atomically thin MoS₂ without introducing significant structural damage. Figures 1a-c show the experimentally obtained STEM ADF images of CVD grown 1-, 2-, and 3-layer MoS₂. By comparing to simulated STEM ADF images based on known stacking sequences, we identify the structure for 1-layer MoS₂ is H phase, and the stacking sequence for 2-layer MoS₂ is AA', corresponding to 2H phase. We find 3-layer MoS₂ has a preferred stacking sequence of AA'B, which is a mixed phase of 2H and 3R. First-principles calculations reveal that the mixed phase is among the most stable stacking sequences in 3-layer MoS₂ (fig. 1d) [4].


To understand how the growth temperature affects the final stacking sequence in CVD grown MoS₂, we study the stacking sequence evolution in few-layer MoS₂ while it is *in-situ* heated at different temperatures and imaged by a higher-voltage electron beam (80keV). In this experiment, we start with AB stacked bilayer MoS₂, the 80 keV electron beam knocks out one layer of MoS₂ atom-by-atom and leaves the H-phase single-layer MoS₂ behind. The evaporated Mo and S atoms redeposit onto the neighboring AB-stacked bilayer MoS₂ and form trilayer MoS₂ with different stacking sequences at different temperatures (Figs. 2 a-f). We find redeposited trilayer MoS₂ at 600°C shows a preferred stacking sequence ABB (corresponding to 3R phase, Fig. 2g), and a high-energy defective ABC' stacking at 700°C. Our study suggests that high temperatue plays an important role in determining the stacking sequence in synthesized few-layer MoS₂.

References:

- [1] S. Najmaei *et al.*, Nat. Mater. **12** (2013), p. 754.
- [2] A. M. van der Zande et al., Nat. Mater. 12 (2013), p.554.
- [3] H. P. Komsa et al., Phys. Rev. Lett. 109 (2012), p. 035503.
- [4] A. Yan et al., Physical Review B 93 (2016), p. 41420.

Figure 1. Experimental atomic-resolution STEM ADF images of single-layer (H phase), bi-layer (AA' stacking) and tri-layer (AA'B stacking) CVD grown MoS₂ (a-c, respectively), and stability of different stacking sequences in tri-layer MoS₂ based on first-principles calculations (d).

Figure 2. The evolution of stacking sequence in few-layer MoS₂ while *in-situ* heated at 600 °C inside STEM. (a)-(f), Time-series STEM ADF images of bilayer MoS₂ under the synergistic thermal effect and irradiation. Redeposited trilayer MoS₂ shows a preferred stacking sequence ABB, which corresponds to 3R phase. (g) identifying the stacking sequence in 1-, 2- and 3-layer MoS₂ by comparison between the experimental and simulated STEM ADF images.