
EQUILIBRIUM POINTS FOR OPEN ACYCLIC 
RELATIONS 

BEZALEL P E L E G 

1. Existence of balanced points. A formulation of a fixed point theorem, 
which can be applied conveniently to non-cooperative games and cooperative 
games, is suggested in this note. 

Let iVi, . . . , Nm be m non-empty, finite disjoint sets. For k = 1, . . . , m we 
denote by Sk the simplex the coordinates of whose points are indexed by the 
members of Nk\ thus Sk is the collection of all real functions xk defined on Nk 

which satisfy: 

(1.1) xk(i) > 0 , for a l i i G Nkf 

(1.2) £<€****(*') = 1. 

Let S = Si X . . . X Sm. We assume that for each x G S m binary relations 
-Rx(x), . . . , Rm(x) are defined on Nlt . . . , Nm respectively. We further assume 
that 

(1.3) Rk(x) is acyclic (i.e., its (oriented) graph contains no circuits), for all 
k = 1, . . . , m and for all x G 5. 

(1.4) Rk is open (continuous) for k = 1, . . . , m\ i.e., for each pair i, j G Nk 

the set {y\iRk(y)j} is open in 5 (when 5 is regarded as a subset of a 
proper euclidean space). 

(1.5) if x G S, x = (x1, . . . , xm), x3 G Sj} j = 1, . . . , m, and xk(i) = 0 then 
there exists no h £ Nk such that hRk(x) i. 

(1.5) is called the immunity assumption. 
The following are simple results from the assumptions. 

LEMMA 1. / / i G Nk, 1 < k < m, £ t a /Ae se2 

(1.6) M / = {x\ there is n o j G Nk such that iRk(x)j\ 

is non-empty and closed. 

Proof. (1.5), (1.3), and (1.4). 

LEMMA 2. If x G 5, ^e?z /or mcA &, 1 < k < m, /Aere a i ^ s a?z i G iV^ SWCÂ 

(1.7) x G M,*, 

(1.8) xk(i) > 0. 
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Proof. (1.3) and (1.5). 

A point x G S is balanced if Rk(x) = 0 for & = 1, . . . , m (here 0 denotes 
the empty set). I t is clear that x G 5 is balanced if and only if: 

(i.9) x G n n MA 

THEOREM. There exists a balanced point in S. 

Proof. For x £ S and i G A^, & = 1, . . . , m, define 

(1.10) ct*(x) = d(x,Mk) 

where d(x, Mk) is the (euclidean) distance between x and Mk. 
The functions ck{x) are non-negative continuous functions of x. It follows 

from (1.9), Lemma 1, and (1.10) that 

(1.11) x G S is balanced if and only if ck{x) = 0, for all i G Nk and for 
k = 1, . . . , m. 

We now define a mapping / : 5 —> 5 by setting, for x G 5 and i G iV*, 
& = 1, . . . , w, 

(1.12) (/(*))*(*) = {**(») + c/(x)J / ( l + £ ' / ( * ) ) • 

We claim that, 

(1.13) 3/ G S is a fixed point of/ if and only if ck(y) = 0 for all i G TV* and for 
k = 1, . . . , m. 

The sufficiency part of (1.13) is immediate. To prove necessity let y G 5 
satisfy y = f(y). For each 1 < k < m there exists an i G iV*. such that y G M / 
and yk{i) > 0 (see Lemma 2). Hence c/(;y) = 0 and 

(1.14) / ( i ) = / ( < ) / ( l + l £ / w ) . 

Since 3>fc(0 > 0 and ck(y) > 0 for j G iV/;, we conclude that ck(y) = 0 for 
a l i i G iV*. 

By Brouwer's fixed point theorem/ has a fixed point. The proof now follows 
from (1.11) and (1.13). 

We are now able to generalize a result of Knaster, Kuratowski, and 
Mazurkiewicz. 

COROLLARY. Let Ck, i G Nk1 k = 1, . . . , m, be closed subsets of 5, such that 
for each Q C Nk, k = 1, . . . , m, 

(1.15) U CjkD {x|xG 5andx"(i) = 0 for alH G Nk - Q}. 

Then 
m 

n n c4*^0. 
fc=l t€iV 
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Proof. For x G S and ifj G Nk define: 

(1.16) iR*(x)j &d(x, Ck) > d(x, C/) and xk(J) > 0, 

where d(x, Ck) (d(x, Ck)) is the distance between x and Ck (C / ) . The 
balanced points of the relations defined by (1.16) belong to the intersection 
of all the Cf. 

2. Applications 

2.1. Nash's equilibrium points (3). Let {Si, . . . , Sn; Hh . . . , Hn} be a 
finite ^-person game in normalized form; here Si, . . . , Sn are the sets of mixed 
strategies, and Hi, . . . , Hn are the payoff functions of the players 1, . . . , n 
respectively. If x = (x1, . . . , x11) G S = Si X . . . X Sn is an w-tuple of mixed 
strategies and yk G Sk, then we define: 

x\yk = (x1, . . . , x^-1, yk, xk+1, . . . , xn). 

x G S is an equilibrium point if 

(2.1) Hk(x) > Hk(x\yk) for all y* G S,, k - 1, . . . , n. 

Let iVi, . . . , Nn be the sets of pure strategies of the players 1, . . . , n 
respectively. For x G S and i, j G Nk, 1 < k < w, we define 

(2.2) iR*(*)j ^> ^ ( x | ^ ) > Hk(x\j) and xfc(j) > 0. 

Interpretation. Player k "prefers" his pure strategy i to j , when x is played, 
if (a) i is better than j against the strategies x1, . . . , xAw, x*+1, . . . , xw, and 
(b) he uses j with positive probability in xfc. 

It is a straightforward matter to show that Nash's equilibrium points are 
exactly the balanced points of S, and that the results of the previous section 
can be applied to yield the existence of balanced points in S. 

2.2. The kernel of a cooperative game (1). Let G = (N, v) be a co
operative game; here N = {1, . . . , n) is the set of players of G, and v is the 
characteristic function. We assume that v satisfies: 

(2.3) »(S) > 0 , f o r a l l S Ç i V ; 

(2.4) v({i}) = 0 , fori = 1, . . . ,w. 

An outcome of G is a pair (x; /3), where /3 = {£i, . . . , Bm} is a partition of 
the set of players, and x = (x3, . . . , xn) is a payoff distribution to the players, 
which satisfies: 

(2.5) Xi > 0, for i = 1, . . . , n ; 

(2.6) Z*€*y *< = »(5y), f o r j = 1, . . . , W. 

Let /3 be a partition of iV. We set, 

(2.7) X(P) = {x| (x, p) is an outcome for G}. 
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Letx € X{fi) and i,j G -B* G 0, i ^ J . We use the notation 

(2.8) stj(x) = max{z;(5) - E»es *,|S C N, i G 5, and j g S}. 

The relations associated with x are defined by 

(2.9) iRk(x)j <=> ^z;(x) > sjt(x) and a^ > 0. 

By definition x is balanced (according to our definition) if and only if it 
belongs to the kernel of G (for the partition f3 of the players). I t is proved in 
(1) that the relations defined in (2.9) are transitive; since (1.4) and (1.5) are 
obvious in this case, the non-emptiness of the kernel follows from the theorem 
in the first section (with obvious modifications). 

We remark that our results can also be applied to yield a direct existence 
proof for the bargaining set Mi{i) (2; 4). 
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