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Abstract
We design a scheme for laser-inertial odometry and mapping with bundle adjustment (BA-LIOM), which can greatly
mitigate the problem of undesired ground warping due to sparsity of laser scans and significantly reduce odometry
drift. Specifically, an Inertial measurement unit (IMU)-assisted adaptive voxel map initialization algorithm is pro-
posed and elaborately integrated with the existing framework LIO-SAM, allowing for accurate registration in the
beginning of the localization and mapping process. In addition, to accommodate to fast-moving and structure-less
scenarios, we design a tightly coupled odometry, which jointly optimizes both the IMU preintegration constraints
and scan matching with adaptive voxel maps. The voxels (edge and plane, respectively) are updated with BA opti-
mization. And then the accurate mapping result is obtained by performing local BA. The proposed BA-LIOM is
thoroughly assessed using datasets collected from multiple platforms over a variety of environments. Experimental
results show the superiority of BA-LIOM over the state-of-the-art methods in robustness and precision, especially
for large-scale scenarios. BA-LIOM improves the accuracy of localization by 61% and 73% on the buildings
and lawn datasets, respectively, and has a 29% accuracy improvement over LIO-SAM on the KITTI datasets. A
supplementary video can be accessed at https://youtu.be/5l4ZFhTc2sw.

1. Introduction
The research emphasis regarding state estimation and mapping of mobile robots has revolved around
achieving high levels of accuracy and real-time performance. Accurate pose estimation and precise map
can ensure the function of closed-loop control, autonomous exploration, obstacle avoidance, and motion
planning [1]. Currently, the perception of robots relies on lidar or camera or a combination of the two.
The main advantage of lidar over visual sensor is the ability to directly acquire accurate depth mea-
surements of spatial objects. The lidar-based simultaneous localization and mapping (SLAM) methods,
which are more universal and robust [2], do not face the drawbacks such as limited field of view, short
effective perception distance, and illumination change. Dense point clouds also lead to computational
consumption problems. Therefore, in practice, mechanical lidars with less channels are more widely
used. This paper mainly focus on improving localization and mapping accuracy based on sparse laser
scans.

Even though a considerable amount of research on lidar-based SLAM methods has been proposed,
there are still some important issues that need to be thoroughly investigated. Due to motion distortion,
sparsity of point cloud, and low updated frequency of lidar measurements, pure lidar-based meth-
ods cannot handle some specific tasks. The common approach is to utilize Inertial measurement unit
(IMU) measurements to compensate the estimated motion between lidar frames [3, 4]. In comparison
to lidar, the IMU has a frequency that is an order of magnitude higher than lidar. With the aid of short-
term motion observation offered by IMU, the distortion of lidar point cloud caused by motion can be
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eliminated. We employ a tightly coupled strategy to fuse lidar point cloud pose estimation with IMU
measurements.

Bundle adjustment (BA), which is successfully used for jointly solving the 3D structures and poses
[5], has been widely used in the field of computer vision [6, 7]. For lidar-based methods, BA is typically
used for the joint optimizion of lidar poses and the global map. Existing lidar-based methods usually use
iterative closest points (ICP) or generalized ICP for scan matching and register new scans incrementally.
It would inevitably accumulate registration errors in such an incremental mapping process. BA is very
effective for decreasing the drift, especially in large-scale scenarios and featureless environments. Thus,
this paper seamlessly integrates the BA with a laser-inertial framework to decrease the drift of odometry
and relieve the problem of ground warping caused by sparse laser scans. To improve the robustness of the
odometry at its initializing stage as well as increase the accuracy of localization, we design an adaptive
IMU-assisted voxel map initialization method. The adaptive voxel maps contain rich environmental
history information, in which each voxel corresponds to a feature, allowing for efficient scan matching.

The main contributions of this paper are summarized as

1. A novel tightly coupled laser-inertial odometry is designed. Both the IMU preintegration con-
straints and lidar scan matching with adaptive voxel map are designed to be tightly coupled and
jointly optimized in a local factor graph. It can accommodate fast moving as well as feature
degradation and improve the accuracy of localization and mapping.

2. A new IMU-assisted adaptive voxel map initialization and construction method is proposed by
using scan matching with adjacent keyframes within a sliding window. Throughout the process
of the adaptive voxel map initialization and construction, IMU pose estimation is employed as
a priori constraint. It guarantees the initialization performance in feature-less and degenerate
scenarios, making the subsequent pose estimation more accurate and robust.

3. Local BA optimization often used in the vision field is introduced into the lidar-based localization
as a back end of the system to deal with the ground warping and cumulative drift problem caused
by the sparsity of lidar points. In addition, BA is constantly updating the adaptive voxel maps
while performing optimization.

According to comparisons with some state-of-the-art algorithms, BA-LIOM achieves excellent
performance on both public and self-record datasets over various scenarios with ranged scales.

We give a brief overview of pertinent work in Section 2. The overview of BA-LIOM is described in
Section 3. Section 4 outlines the process of data preprocessing. And then the method of scan matching,
BA for lidar frames as well as the construction and utilization of adaptive voxel maps are detailed in
Section 5. Section 7 presents the application and performance of BA-LIOM in different scenarios as
well as comparison with some state-of -the-art approaches. Section 8 comes to a conclusion.

2. Related work
The challenges associated with estimating the movement of a robot [8] are often intensified by various
prevalent factors such as Global Navigation Satellite System (GNSS) denial, diminished visual percep-
tion resulting from darkness, and obstructions like fog, dust, and smoke [9]. Lidar sensors are commonly
employed for robot state estimation due to their ability to capture high fidelity, broad viewing angle, high
accuracy, and long-range 3D point-cloud measurements [10]. SLAM via lidar-based sensor fusion is a
essential technology with significant applications in the realms of industrial automation, autonomous
driving [11], as well as surveying and mapping.

In general, methods based on lidar inertial odometry (LIO) employ the registration of lidar point cloud
data with measurements from the IMU to estimate the ego motion of a robot. The difficulties of motion
skewing and establishing the association between sparse point clouds can be reduced by fully utilizing
the IMU’s instantaneous motion monitoring capacity. A laser-inertial SLAM system can be categorized
as two classes according to how the data is fused in the front end: loosely coupled or tightly coupled. It
usually be viewed as loosely coupled when the data from different sensors are processed separately and
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observations from distinct sources are fused by some common used mathematical tool (e.g., the Kalman
filter or extended Kalman filter) in a straightforward way [12]. These techniques, which are comparable
to post-data fusion because they do not take into account the physical level intrinsic correlation between
sensors, are highly computationally efficient [13]. Despite their implementation flexibility, they are sus-
ceptible to noise as they are unable to correct the internal states of sensors. Tightly coupled methods
integrate raw sensor measurements from lidar and other sensors in a direct manner, enabling the joint
optimization of state variables [14]. Certain methods employ iterative extended Kalman filter (IEKF) for
data fusion and reducing the estimation errors [3, 4]. Regarding optimization-based approaches, LIO-
SAM [15] utilizes a factor graph structure for processing the data from lidar, IMU and GPS in real time.
However, its deployment becomes infeasible when confronted with scenarios involving sparse geomet-
ric features or occasional failures. To address the problem of geometric feature degradation [16], certain
methods extract features by designing specific strategy, such as taking into account both geometry and
intensity, or carefully designing the weight and error functions. Compared with other similar method-
ology, BA-LIOM uses the factor graph for appropriately fusing of lidar and IMU. For completing deep
fusion and achieving higher accuracy, BA-LIOM manages IMU bias estimate and quick state correction
while performing precise point cloud registration.

Real-time performance is a challenging issue for lidar-based localization and mapping system. It is
very computationally costly to process the dense point cloud. Some classical registration technologies,
such as ICP and its variants and extensions, are hard to extend directly to the multiscan case. Although
these methods usually have good performance in dense 3D scans, they depend on exact point or surface
matching. However, it is rare in sparse and nonrepetitive point clouds of lidar [17]. To reduce computa-
tional cost, a natural idea is adopting the voxelization strategy [18]. In addition, the keyframe strategy can
also serve for accommodation between accuracy and real-time performance [19]. BA-LIOM employs an
adaptive voxelization strategy and selects key frames based on spatial transform to increase the real-time
performance without compromising accuracy.

In the field of vision applications, BA has good performance [20]. Due to the sparsity and disconti-
nuity of lidar points and the fact that laser feature points are often tens of times more than that of visual,
performing BA on lidar points is challenging. LIOM [21] constructs joint nonlinear optimization on
lidar and IMU measurements, but not in real time. Despite achieving real-time performance, the odom-
etry drifts a lot because of the small local map in refs. [22] and [23]. LINS [22] tightly couples laser
and inertial measurements by an error-state Kalman filter. On the other hand, the concurrent constraints
among scans must be considered. Recent advancements [24] have utilized efficient second-order solvers,
considering both noise and pose uncertainty during the point cloud BA process. In general, the signifi-
cance of point cloud BA research lies in achieving more consistent pose estimates, albeit at the cost of
algorithm efficiency. Consequently, many methods are dedicated to exploring more efficient optimiza-
tion steps. The work [25] allows multiview registration by using a multiresolution occupancy grid map.
Compared with ref. [25], the proposed framework BA-LIOM performs local BA on an adaptive voxel
map, achieving a balance between memory and computation while considering all constraints among
all scans from the map.

3. Tightly-coupled laser-inertial odometry and mapping with bundle adjustment
The system framework of BA-LIOM is shown in Fig. 1. It leverages raw measurements from the lidar
and IMU to deduce the state and motion trajectory of the robot. First, the distortion removing of lidar
points is performed using the IMU preintegration results. Second, based on the curvature of the local
point cloud, planar and edge features are extracted. Next, the previous pose estimation of lidar and
the increment obtained by the IMU odometry are added as the initial value of the pose optimization.
Subsequently, the scan to map matching begins with the IMU-assisted adaptive voxel map initialization.
In the first stage, a new scan is matched with a local map made up of keyframes in a sliding window. And
in the second stage when a certain amount of environmental information has been accumulated, the new
scan is matched with the adaptive voxel map. In this process, the IMU preintegration is introduced as a
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Figure 1. BA-LIOM system overview.

prior constraints of the poses and ensures the robustness of the adaptive voxel map initialization and the
consistency of the map. By performing local optimization on the pose estimation from scan matching
and IMU pre integration constraints in a factor graph, the tightly coupled odometry is realized. Finally,
a local BA in a sliding window is performed as back end and the marginalized lidar pose and point cloud
are output as the mapping result.

4. Preprocessing of data
In this paper, the world frame and the robot body frame are denoted as W and B, respectively. For ease
of depiction, the body frame of robot and the IMU frame are assumed identical (aligned by calibrated
external parameters). Then the state of the robot x in W is given as

x = [
RT pT vT bT

]T
, (1)

where R ∈ SO(3) represents the rotation matrix, p ∈R
3 represents the position vector, v ∈R

3 represents
the speed, and b = [bg ba] represents the IMU bias. The transformation from W to B is denoted by
T = [

R | p
] ∈ SE(3) (i.e., W

B T).

4.1. Motion distortion removing
Due to the physical rules of the rotating lidar and the motion of the vehicle, motion distortion of the laser
point cloud is inevitable. The high frequency and high precision acceleration and velocity measurements
from IMU enable the estimation of nonlinear motion within one lidar rotation cycle.

The IMU preintegration method recommended in ref. [26] is used to calculate the relative body
motion between two timesteps. The preintegrated measurements �vij, �pij, and �Rij between time i
and j can be calculated by

�vij = RT
i

(
vj − vi − g�tij

)
, (2)

�pij = RT
i

(
pj − pi − vi�tij − 1

2
g�t2

ij

)
, (3)

�Rij = RT
i Rj. (4)
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The point cloud distortion removing makes motion compensation for each point during one scan. The
method is to transform the laser points at each moment to the first laser point coordinate system of the
lidar scan in which they are located. The rotation increment of each scan is obtained from the integration
of the raw IMU data during the scan, and the translation increment is obtained from the IMU odometry.

4.2. Feature extraction
Feature points are needed to be extracted when a new laser scan arrives. The smoothness of points
over a local region distinguishes edge and planar points. Largely curved points are considered as edge
points; conversely, those with slight curvature are considered as planar points. The rule for evaluating
the smoothness of the local surface is defined in ref. [27]. The method to obtain stable features is the
same as LOAM, which excludes two kinds of points: those on a plane generally parallel to a laser beam
and collected under the influence of occluders.

The sets of edge and planar feature points collected from the kth scan are denoted as Fe
k and Fp

k ,
respectively, which constitute the lidar frame Fk = {

Fe
k, Fp

k

}
represented in B.

4.3. Keyframes selection
BA-LIOM adopts the lidar keyframe strategy to save computing power and increase efficiency. In the
area of visual SLAM, the keyframe notion is frequently used. A practical heuristic technique established
by spatial transformation is used to choose the current Fk+1 as a keyframe when the pose changes over
a certain threshold while comparing with the former keyframe Fk. Specifically, in our outdoor experi-
ments, the current frame is designated as a keyframe if the relative distance change from the previous
keyframe is greater than 1 m or if the orientation changing is greater than 0.2◦ along any axis. Only
keyframes are sent to the BA optimization thread for processing. This method of adding keyframes
makes a compromise between memory usage and map density, facilitating real-time optimization.

5. IMU-assisted adaptive voxel map initialization and construction
For efficient feature searching and matching [28], an adaptive voxelization method is utilized, which is a
relatively sparse representation of environmental features. Compared with traditional point cloud map,
the adaptive voxel maps constructed in this study discretize 3D space into voxels and encodes spatial
features at the voxel level. Each feature is characterized by its centroid and the associated normal vector
or directional vector, constituting a sparse representation of spatial structural information. When envi-
ronmental information is insufficient during the initial stage, relying solely on point cloud registration
for initializing the adaptive voxel map is unreliable. So an IMU-assisted adaptive voxel map initialization
and construction approach is proposed to facilitate accurate and robust scan matching and localization,
particularly in scenarios involving rapid motion and limited feature availability.

5.1. IMU-assisted adaptive voxel map initialization
The initiation of the adaptive voxel map plays a crucial role in reducing system uncertainty. It is necessary
to carefully address the errors that emerge in the initial phase, as they have a propensity to accumulate
over time, ultimately impacting the overall localization performance. At the beginning of the procedure,
as not enough scans have been received for subsequent BA optimization, a new scan is matched with a
local map made up of keyframes in a sliding window. Specifically, a set of the n most recently received
keyframes {Fk−n, . . . , Fk} is registered into frame W by

{
T̃

(0)

k−n, . . . , T̃
(0)

k

}
that are associated with them.

They are then combined to form a submap Mk, which is made up of two sub-voxel maps Me
k and Mp

k
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corresponding to edge and planar feature voxel maps, respectively, that is, Mk = {
Me

k, Mp
k

}
. In order to

remove the duplicate feature points that fall within the same voxel, Me
k and Mp

k are downsampled.
During the adaptive voxel map initialization stage, a newly received lidar frame Fk+1 = {

Fe
k+1, Fp

k+1

}
is matched to Mk via scan matching. The scan matching to local point cloud is the same as ref. [27]. Fk+1

is transformed from B to W by T̃
(0)

k+1 to obtain ′
Fk+1 = {′Fe

k+1,′ Fp
k+1

}
, where T̃

(0)

k+1 = T̃k�T̃k,k+1, T̃k stands
for the odometry estimation of the previous frame Fk. �T̃k,k+1 denotes the increment prediction during
the kth scan acquired by the IMU odometry. The motion constraints provided by the IMU effectively
compensate for the lack of feature information during the adaptive voxel map initialization phase. It can
aid in the precise point cloud registration and accelerates the convergence speed of the optimization.
The detailed definition of dek and dpk is given in ref. [27], which indicates the distance between feature
point and its corresponding feature in Mk. The optimization issue is formulated as the minimization of
the sum of distance residuals.

min
T̃k+1

⎧⎨
⎩

∑
pe

k+1,i∈′Fe
k+1

dek +
∑

pp
k+1,j∈′Fp

k+1

dpk

⎫⎬
⎭ , (5)

where i and j represent the index of the point in the set to which it belongs. The optimal problem is
solved by applying the GaussNewton method.

The IMU-assisted adaptive voxel map initialization approach can effectively solve the failure and
degradation of the adaptive voxel map due to insufficient environmental information at the early stage,
which can increase the system’s adaptability and robustness.

5.2. IMU-assisted construction of the adaptive voxel map
Consider a collection of feature points

{
pf1

, pf2
, . . . , pfN

}
drawn from M keyframes and indicate the same

edge or plane feature, where pfi
belongs to the si-th scan. The feature points are transformed from B to

W by the pose estimation from scan matching T̃si , where T̃si =
[
R̃si |t̃si

] ∈ SE(3):

pi = R̃sipfi
+ t̃si ;i = 1, . . . , N. (6)

The center p̄ and covariance matrix A for these points are

p̄ = 1

N

N∑
i=1

pi; A = 1

N

N∑
i=1

(pi − p̄)(pi − p̄)T . (7)

The kth largest eigenvalue and the associated eigenvector of matrix A is denoted by λk(A) and uk.
As shown in Fig. 1, all points in the received keyframes are converted into the global coordinate

system in the above manner. Afterward, the 3D space is repeatedly voxelized from a default size (1
m). Eigenvalues and eigenvectors of A in (7) are used to determine whether feature points in a voxel
are located on a certain feature. An edge (or a plane) feature is represented by p̄ and a unit vector n.
n characterizes where the geometric feature is oriented, which is the direction vector for edge (i.e., u1)
and the normal vector for plane (i.e., u3).

An octree structure naturally accommodates the voxel map. To decrease the depth of the octree, a set
of octrees are indexed using a hash table. A cube of default size (e.g., 1 m3) in space, on which an octree
will be constructed if it is not empty. The cube is continuously divided by whether the points in it lie
on the same feature, with the result that each leaf node (i.e., a voxel) corresponds to the same geometric
feature (i.e., edge or plane) in the 3D space. The process of construction of adaptive voxel map is shown
in Algorithm 1.

This adaptive voxelization method is more effective [29], especially for environments with large edges
and planes. It can avoid the shortcomings of constructing Kd-tree directly on feature points, which may
terminate early when the points all lie in one feature. The adaptive voxel map shown in Fig. 2 stores and
represents the geometry in 3D space and can facilitate efficient feature searching and alignment.
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Algorithm 1: Construction of adaptive voxel map

Center point Normal or direction vector Edge points Plane points

Figure 2. Voxel map.

6. Scanmatching and tightlycoupled odometry on adaptive voxel map
6.1. Tightly-coupled odometry
Assuming that the adaptive voxel maps have been successfully initialized, the new keyframe Fk+1 ={
Fe

k+1, Fp
k+1

}
is matched with the adaptive voxel map ′Mk = {′Me

k,
′ Mp

k

}
. The same as Section 5.1, Fk+1
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Lidar odometry factor IMU preintegration factor Lidar Keyframe Speed of keyframe and bias of  IMU 

Figure 3. Factor graph of the tightly coupled odometry.
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Figure 4. Feature and the corresponding feature points drawn from multiple keyframes: (a) Edge
feature. (b) Plane feature.

is transformed to W by T̃
(0)

k+1 and then ′
Fk+1 = {′Fe

k+1,′ Fp
k+1

}
is obtained. More specifically, for each

point in ′
Fk+1, despite fitting its correspondence feature by least squares, we search for the nearest voxel

represented by p̄ and n based on distance. The simplification leads to speeding up of matching process.
The factor graph on which the tightly coupled odometry is built is depicted in Fig. 3. The pose

estimation acquired by scan matching to adaptive voxel map is added to a factor graph as lidar odometry
factor. The IMU preintegration factor between two adjacent keyframes is added for constraining the
pose, velocity, and bias. The proposed method tightly couples the estimation of lidar with the IMU state
variables and updates the pose and velocity estimates and IMU bias in real time. This operation fully
accounts for the inherent constraints of lidar and IMU observations, which can significantly increase the
accuracy of the framework and enhance noise inclusiveness. Therefore, BA-LIOM can achieve excellent
performance in some scenarios with fast motion or lack of structural features.

6.2. Scan matching on adaptive voxel map
The BA on lidar frames is similar to the multiview registration in the visual SLAM field. Unlike those
methods which build the map incrementally [12, 27, 30], this paper performs local lidar BA on a sliding
window of lidar keyframes. By using concurrency constraints from multiple frames, information from
recent scans can be used to reevaluate the past scans. The pose estimation of all scans in the sliding win-
dow can be adjusted for regional temporal and spatial correlations. Due to the sparsity of feature points,
it is challenging to conduct BA on lidar frames. The lidar BA in this paper is formulated as minimizing
the distance between a feature point and its corresponding edge or plane, as shown in Fig. 4. The detailed
derivation and formulation of the efficient lidar BA are given in ref. [29]. Due to the characteristics of
the adaptive voxel map, plane or edge features are stored at the voxel level. Each feature is represented
by its centroid and the associated normal vector or directional vector. For establishing correspondences,
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Lidar

IMU
GPS

(a) (b)

Figure 5. Platforms for data collection: (a) Self-assembled platform. The self-assembled sensors have
done hardware synchronization and parameters calibration. (b) Sensor configuration and vehicle used
by the KITTI benchmark. The station is equipped with cameras, a Velodyne HDL-64E laser scanner and
a GPS localization system.

we only need to search for the nearest centroids and then calculate the distance from the point to its
corresponding feature. The distance residual is used as the loss function in optimization to obtain the
final matching result.

7. Experiment
Experiments have conducted to analyze the performance of BA-LIOM qualitatively and quantitatively.
The mobile platform is equipped with a Velodyne VLP-16 lidar, an Xsense MTi-300 IMU, and a CHC
CGI-610 integrated navigation system, where the GPS-RTK measurements are used as ground truth. The
sensors have realized hardware trigger and time synchronization based on pulse per second (PPS) and
National Marine Electronics Association (NEMA) of CGI-610. The experimental platform and sensors
are shown in Fig. 5(a).

To validate the widespread feasibility of BA-LIOM, we conducted extensive experimental validation
on self-record and public datasets. We collect four different datasets across various scales and environ-
ments using our self-assembled platform shown in Fig. 5(a), which are referred to as buildings, square,
lawn, and grove, respectively. What is more, BA-LIOM has also been evaluated on the dataset from the
KITTI odometry benchmark, and the platform used is shown in Fig. 5(b).

The proposed framework has been compared with LOAM, BALM, and LIO-SAM. In the experi-
ments, the algorithms are all forced to run in real time on a laptop computer with Intel Core i7-10870H
2.20 GHz, 16G RAM. The software platform is Ubuntu 18.04 with ROS melodic software framework.
All of the methods are implemented in C++.

7.1. Buildings dataset
The dataset is recorded by manipulating the unmanned ground vehicle around the college for simulating
the urban road environment. The experiment aims to assess the performance of BA-LIOM in dealing
with the translation and rotation of the vehicle, besides the trajectory drift and localization errors while
running for a long time. The test environment and mapping result are shown in Fig. 6.

The trajectories and evaluation results of LOAM, BALM, and LIO-SAM and are shown in Fig. 7. The
output trajectories of the above methods and the ground truth are shown in Fig. 7(a). The XYZ directional
components of the trajectories in a global coordinate system are shown in Fig. 7(b). The outputs of the
four methods show no obvious deviation in the horizontal direction, while there is a noticeable variance
in the height. It can be seen that the trajectory of BA-LIOM almost coincide with the ground truth,
LIO-SAM has a slight deviation, and the trajectories of BALM and LOAM deviate from the ground
truth and accumulate with time. The absolute errors of the trajectories are evaluated quantitatively, as

https://doi.org/10.1017/S0263574723001698 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001698


Robotica 693

Figure 6. Environment and mapping result of BA-LIOM in the buildings. (a) Test environment. (b)
Google map. (c) Mapping result of BA-LIOM.

shown in Table I, in which the optimal results are thickened. Among the statistical indicators, except
that the minimum value of BA-LIOM is slightly higher than that of LIO-SAM, the other indicators are
better than the other three methods. The root mean square error (RMSE) of BA-LIOM is decreased by
61–70% compared with others, and the standard deviation (STD) is reduced by 76–83%. Overall, the
proposed framework has the smallest trajectory error and the highest robustness.

7.2. Square dataset
The dataset was recorded around a small library in the middle of the square and returned to its starting
position at the end of the trajectory. The trajectory is shorter than that of the buildings dataset. But
the platform will pass through the slightly bumpy masonry road, which will cause a certain degree of
disturbance to the sensors carried on the mobile platform, especially the IMU, and bring challenges to
the robustness of the algorithm and causing an impact on the localization accuracy. The map of the
square and the mapping result is shown in Fig. 8.

Table II shows the statistical findings of the quantitative analysis of the absolute pose error of the
output trajectories relative to the ground truth. The values of red and blue marks represent the minimum
and sub-minimum values in the column, respectively. BA-LIOM occupies two best and three second
best of the seven evaluation indicators. Generally speaking, the error and robustness of the proposed
framework in this scene are better than other comparison methods.

7.3. Lawn dataset
This dataset is recorded around a big lawn, which has a long side nearly 400 m. The final location of
the verification trajectory coincides with the initial position, allowing for seeing the cumulative drift of
BA-LIOM. The environment and mapping result of lawn are shown in Fig. 9.

The point cloud maps created using the two techniques seem very similar from overhead. However,
due to the height drift of LIO-SAM, the map at the end of the trajectory cannot be connected with the
starting map. Although there is no auxiliary of the closed-loop detection module, BA-LIOM suppresses
the accumulation of drift effectively through local BA. It ensures a great mapping performance when
running for a long time.

Figure 10 shows the absolute error curve of LIO-SAM and BA-LIOM relative to the ground truth on
lawn. In this scenario, the mean and median of the proposed method are much smaller than that of LIO-
SAM. And the RMSE and STD are reduced by 73% and 77%, respectively, compared with LIO-SAM on
this dataset. Overall, BA-LIOM can dramatically increase localization accuracy and reduce odometry
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Figure 7. Comparison and evaluation results of LOAM, BALM, LIO-SAM, and BA-LIOM (ours). (a)
Trajectory. (b) XYZ directional trajectory component. (c) Absolute pose error of trajectories.

drift. The quantitative evaluation of the absolute pose error is shown in Table III, in which the optimal
value is thickened.

7.4. Grove dataset
This dataset was recorded in the grove. It is more challenging than buildings. The lack of complete and
quality features makes extracting scan-matching difficult. In this case, the fusion of IMU measurements
ensures the performance and robustness of the system. BALM failed at the midway through this dataset.
Comparing the maps constructed by BALM (before failure interruption) and BA-LIOM, the proposed
framework has a much clearer texture of the environment details, as shown in Fig. 11.
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Table I. Buildings dataset: absolute trajectory error.

Parameter MAX(m) MEAN(m) MEDIAN(m) MIN(m) RMSE(m) STD(m)
LOAM 3.346 1.258 1.015 0.073 1.500 0.816
BALM 2.525 1.093 1.013 0.039 1.257 0.620
LIO-SAM 3.215 0.985 0.817 0.031 1.160 0.612
BA-LIOM (ours) 0.685 0.426 0.426 0.042 0.449 0.142

Table II. Square dataset: absolute trajectory error.

Parameter MAX(m) MEAN(m) MEDIAN(m) MIN(m) RMSE(m) STD(m)
LOAM 0.652 0.244 0.200 0.010 0.283 0.144
BALM 0.457 0.151 0.136 0.036 0.171 0.080
LIO-SAM 0.694 0.149 0.122 0.009 0.190 0.118
BA-LIOM (ours) 0.708 0.130 0.104 0.018 0.173 0.114

Figure 8. Environment and mapping result of proposed framework in the square. (a) Google map. (b)
Mapping result of BA-LIOM.

7.5. KITTI datasets
KITTI datasets have been widely used for autopilot research and evaluation. The datasets consist of
corrected and synchronized images, lidar frames, high-precision GPS, and IMU acceleration infor-
mation. In this paper, the dataset 2011_09_30_drive_0028 is used to test. The information provided
by lidar (VelodyneHDL-64E,10 Hz) and GPS/IMU (OXTS RT3003) are used. To verify the accuracy
and effectiveness of BA-LIOM in long-time and large-scale localization and mapping, we compare the
experimental result of the proposed process with LIO-SAM.

The mapping result of LIO-SAM and BA-LIOM is shown in Fig. 12. While crossing the same road
twice, there is a significant deviation in the trajectory of LIO-SAM. However, in the map constructed
by BA-LIOM, the track of the two times passing through this section almost coincides.

The trajectories of the two methods are displayed in the xy plane as shown in Fig. 13. The output
trajectory of BA-LIOM very well matched with the ground truth, while that of LIO-SAM drifts more and
more serious over time. Table III displays the findings of the quantitative examination, except that the
maximum absolute error index is slightly larger than LIO-SAM, and the other indicators are better than
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Figure 9. Environment and mapping result in the lawn. (a) Google map. (b)(d) LIO-SAM. (c)(e)
Mapping result of BA-LIOM (ours).

LIO-SAM, especially the MEAN, MEDIAN, and RMSE. When representing the accuracy by RMSE,
the accuracy of BA-LIOM is 29% higher than that of LIO-SAM.

According to the aforementioned experimental findings, BA-LIOM can significantly increase local-
ization accuracy and successfully reduce cumulative drift when large-scale mapping is conducted over
an extended period of time.
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Table III. Absolute trajectory error.

Parameter MAX(m) MEAN(m) MEDIAN(m) MIN(m) RMSE(m) STD(m)
Lawn LIO-SAM 9.952 3.046 2.622 0.045 3.794 2.262

BA-LIOM (ours) 2.395 0.861 0.714 0.090 1.009 0.526
Grove LIO-SAM 0.217 0.070 0.064 0.008 0.078 0.035

BA-LIOM (ours) 0.167 0.069 0.064 0.005 0.076 0.031
KITTI LIO-SAM 54.995 14.760 12.412 3.095 17.580 9.551

BA-LIOM (ours) 61.070 9.839 7.216 1.183 12.544 7.781

LIO-SAM 
BA-LIOM

Figure 10. Absolute pose error of LIO-SAM and BA-LIOM (ours).

Figure 11. Mapping result of BALM and BA-LIOM in the grove. (a) BALM. (b) BA-LIOM (ours).

8. Conclusions
This paper proposes a framework for laser-inertial odometry and mapping based on map optimization,
which can perform in real time and robustly in various scenarios. The system is built atop a factor graph
for the fusion of lidar and IMU measurements. Compared to lidar-only odometry, the fusion of IMU
allows the framework to be adapted to featureless scenarios and fast movements. The core of this sys-
tem is a tightly coupled laser-inertial odometry with BA on the back end to optimize the lidar point
clouds and keyframe poses as well as the IMU bias in real time. This can considerably decrease the
drift of odometry and relieve the issue of ground warping caused by sparse laser scans. Moreover, the
BA thread maintains two global voxel maps for edge and plane features, respectively, which consists of
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Figure 12. Mapping result of LIO-SAM and BA-LIOM in the KITTI. (a) LIO-SAM. (b) Mapping result
of BA-LIOM (ours).

Figure 13. Trajectories of LIO-SAM and BA-LIOM in KITTI dataset.

optimized points and is constantly updated with BA optimization. The maps make full use of IMU prein-
tegration as priori information and contain a wealth of historical and current environmental information.
Because of the correspondence between voxels and features, scan matching can be made efficient at a
global level. BA-LIOM is thoroughly evaluated on public and self-record datasets gathered on differ-
ent platforms across various scenarios. Qualitative and quantitative analysis shows that BA-LIOM can
achieve better performance while compared with LIO-SAM and other state-of-art methods. Future work
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involves improving the robustness of the framework and validating its superiority in more challenging
environments.
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