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A b s t r a c t . The stochastic excitation of solar oscillations due to turbulent 
convection is reviewed. A number of different observational results tha t 
provide test for solar p-mode excitation theories are described. I discuss how 
well the stochastic excitation theory does in explaining these observations. 
The location and properties of sources tha t excite solar p-modes are also 
described. Finally, I discuss why solar g-modes should be linearly stable, and 
estimate the surface velocity amplitudes of low degree g-modes assuming 
tha t they are stochastically excited by the turbulent convection in the sun. 

1. In troduct ion 

It was realized about 25 years ago tha t the Sun, our nearest star, is a vari-
able s tar . Millions of acoustic normal modes (p-modes) of the sun are seen 
to be excited with a typical surface velocity amplitude of only a few cm s""1, 
whereas other pulsating stars have a few modes excited to large amplitudes. 
Considering this dramatic difference between the pulsation property of the 
sun and other variable stars, it should not be surprising tha t the solar 
oscillations are excited by a mechanism tha t is different from the oversta-
bility mechanism believed to be responsible for the pulsation of other stars 
(overstability can arise for instance when the radiative flux is converted to 
mechanical energy of pulsation due to an increase of opacity with tempera-
ture) . A number of early papers in the field proposed tha t the solar p-modes 
are excited by some overstability mechanism (Ulrich 1970, Leibacher and 
Stein 1971, Wolf 1972, Ando and Osaki 1975). However, the margin of 
instability for solar p-modes is found to be small and different ways of han-
dling radiative transfer and/or the interaction of convection with oscillation 
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seems to change the sign of stability e.g. Goldreich and Keeley 1977a, Antia 
et al. 1982 and 1988, Christensen-Dalsgaard and Frandsen 1983, Balmforth 
and Gough 1990, Balmforth 1992 (the last two papers used a sophisticated 
version of the mixing length theory of Gough, 1977); see Cox et al. 1991 for 
a more complete list of references. If we assume that the solar p-modes are 
overstable then their amplitudes grow exponentially until some nonlinear 
mechanism limits their growth. By considering all possible 3-mode nonlin-
ear couplings amongst overstable and stable p-modes in the sun, which is 
the most efficient process for saturating the amplitudes of overstable modes, 
Kumar and Goldreich (1989) and Kumar, Goldreich and Kerswell (1991) 
showed tha t the amplitudes of overstable modes saturate at a value that is 
several orders of magnitude larger than the observed value. This suggests 
tha t solar p-modes are linearly stable. 

In this article we will assume tha t solar p-modes are stable, and de-
scribe how they can be excited by acoustic waves generated by turbulent 
convection. The basic idea is tha t the broad band acoustic noise gener-
ated by the turbulent flow in the convection zone is selectively amplified 
at frequencies corresponding to the normal mode frequencies of the sun. 
The process of wave generation by homogeneous turbulence was first stud-
ied systematically and in some detail by Lighthill (1952). Stein (1967) and 
Kulsrud (1955) applied it to the heating of the solar chromosphere/corona 
by acoustic and MHD waves respectively. Goldreich and Keeley (1977b) 
carried out a careful calculation of the stochastic excitation of solar normal 
modes by turbulent convection (for an excellent general review of wave gen-
eration due to turbulent fluid please see Crighton 1975). We describe the 
stochastic excitation process for the simple case of a homogeneous sphere 
below and later discuss its generalization to the Sun (§2). In §3 we describe 
various observations tha t any theory for excitation of solar p-modes must 
be able to explain and discuss how well the stochastic excitation theory 
performs when confronted with these observations. The estimate for the 
surface velocity amplitude of low degree g-modes, assuming tha t they are 
stochastically excited, is given in §4. 

2. S tochast ic Exc i ta t ion 

Let us consider a homogeneous gas sphere with a surface tha t reflects acous-
tic waves. Some fraction of the fluid inside this sphere is assumed to be in 
the s ta te of turbulence which acts as a source of sound waves. Following 
Lighthill (1952) we write the perturbed mass and momentum equations as 

Pi + V - (ρζ) = 0, (1) 
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ω2 

- ^ e x p ( ^ i ) J = ^ « X P K O / d * x ZSSLTij. (7) 

Turbulent flow is crudely described as consisting of critically damped ed-
dies. The velocity Vh of an eddy of size h is related to the largest or the 
energy bearing eddy (size H and velocity υ H ) by the Kolmogorov scaling 
i.e. 

1/3 

Moreover, following Lighthill (1952), we take Tij « pv2S{j. Since the dis-
placement eigenfunction, for low ί modes, near the surface of the sphere is 
in the radial direction, therefore equation (7) reduces to 

^ i « ^ e x p ( ^ ) / ^ / > ^ . (9) 

where £ 9 r is the radial displacement eigenfunction of mode q. The mean 
energy input rate in mode q can be obtained from the above equation and 
is given by 

and substituting this expansion into equation (4) we find the following 
equation for the mode amplitude Aq 

where £ q is displacement eigenfunction of mode q which is normalized to 
unit energy i.e. 

(6) 

(5) 

Expanding ζ in the terms of normal modes of the system 

(4) 

These equations can be combined to yield the following inhomogeneous 
wave equation 

(3) 

where c and ρ are unperturbed mean sound speed and density of the 
medium, ξ is fluid displacement, and 

and 

(2) 

(8) 
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where υω and 1ιω are the velocity and size of the eddies which have char-
acteristic time, Th = Ιιω/υω, approximately equal to the mode period. This 
equation is valid not only for the homogeneous gas sphere considered here 
but also for more general systems including the excitation of solar p-modes 
by the Reynolds stress as discussed below. Of course, we must use the 
eigenfunction £ q and turbulent velocity appropriate for the system being 
considered. 

It can be easily shown tha t the solution of the homogeneous wave equa-
tion (eq. [4] with right side set equal to zero), in the limit of large η (mode 
order) is 

Qr 

dr 
(10) 

tqr ~ Β jt [uqr/c] « Β— '—L, (11) 
ruq 

where ji is spherical Bessel function, and Β is a constant factor independent 
of mode frequency for properly normalized mode eigenfunction (condition 
expressed by eq. [6]). Substituting this into equation (10) we find 

J5, = ^ < x (12) 

Let us assume tha t the turbulent velocity field in the sphere is concen-
trated in a thin layer of thickness Η located near the surface of the sphere. 
We shall take the size of the largest eddies to be Η and their rms speed to 
be VH- The p-modes of period greater than r # = H/VH are predominantly 
excited by the largest size eddies and the resultant energy input rate in 
these modes is proportional to o;^, as can be seen immediately from the 
above equation. Modes of higher frequency (uq >̂ r ^ 1 ) couple best to iner-
tial range eddies which have characteristic time of order the wave period. 
Making use of the Kolmogorov scaling (eq. [8]) and equation (12) we see 
tha t Eg scales as ω ~ 5 · 5 . Thus the energy input rate into p-modes of this 
homogeneous system shows a break at frequency l / r # where the power law 
index changes by 7.5. 

The generalization of above equations to describe the excitation of solar 
modes is not difficult. Equation (2) is replaced by the linearized momentum 
equation valid for a stratified medium i.e. 

(13) 
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and the linearized equation of s tate is 

(14) 

where 

si = s - (€-V)e. (15) 

Here V s denotes the background entropy gradient, and s is the entropy 
fluctuation associated with turbulent convection. Equation (15) is the Eu-
lerian version of the statement tha t the Lagrangian entropy perturbation 
is due entirely to turbulent convection. In other words, we approximate the 
waves as adiabatic (these equations are adopted directly from Goldreich et 
al. 1994). Combining equations (1) and (13)-(15) we obtain the following 
inhomogeneous wave equation, which is the generalization of equation (4) 
and describes the stochastic excitation of solar oscillations: 

This equation describes wave generation due to Reynolds stress as well as 
entropy fluctuation. As the entropy of a fluid element fluctuates, so does its 
volume. The fluctuating volume is a monopole source for acoustic waves. 
In a stratified medium the fluctuating buoyancy force adds a dipole source. 
By transferring momentum among neighboring fluid elements, the Reynolds 
stress acts as a quadrupole source. 2 The anisotropy of a stratified medium 
blurs the distinction between monopole, dipole, and quadrupole sources. It 
allows for destructive interference between the monopole and dipole am-
plitudes. Although the monopole and dipole amplitudes are individually 
larger than the quadrupole amplitude, their sum is of comparable size to 
tha t of the quadrupole. Tha t this applies to energy bearing eddies follows 
directly from equations (16) and the relation between entropy and velocity 
fluctuation for convective eddies. The justification for inertial range eddies 
requires a subtle argument (cf. Goldreich and Kumar, 1990). 

The new energy equation (which replaces eq. [10]) is given below 

d2i 
V [c 2 V- (ρζ) + p£g - c2p£.V In p] + gV- {p£) 

(16) 

Ea ~ 27Γω( >l J drr2p' hi (civ? + l) S\ (17) 

2 We classify acoustic sources as monopole, dipole, or quadrupole according to whether 
they produce a change in volume, add net momentum, or merely redistribute momentum. 
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Figure 1. The plot of (<i£ r/<ir)2, at the top of the solar convection zone, as a function 
of p-mode frequency (the mode degree is zero). The solar model used here is due to J. 
Christensen-Dalsgaard. 

where Ca is wave compressibility defined by 

the shape parameter S describes the ratio of the horizontal to vertical 
correlation lengths of turbulent eddies, and TZ is given by 

with A the mixing length and H the pressure scale height. The factor C^TZ2 

measures the ratio of the excitation by entropy fluctuations to tha t due 
to fluctuating Reynolds stress. Note tha t the frequency spectra of waves 
excited due to entropy fluctuation and tha t due to Reynolds stress are 
identical except of course for an over all normalization factor. The com-
pressibility, C a , for p-modes near the top of the convection zone, where the 
excitation takes place, is close to 1, and the value of V? in this region is 
about 10 (see Goldreich et al. 1994). Therefore, the excitation of p-modes 
is dominated by entropy fluctuations (Stein and Nordlund 1991, arrived at 
the same conclusion using their numerical simulations of solar convection). 
On the other hand f-modes are nearly incompressible (Ca ~ 0) and so they 
are not excited by entropy fluctuation. This is perhaps why the power in 
f-modes is observed to be smaller than a p-mode of similar frequency. 

- d& 
° Or ' 

(18) 

(19) 
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The observed rate of energy input into solar p-modes can now be readily 
understood. One of the differences between the homogeneous gas sphere 
system and the sun is in the shape of the eigenfunction especially near the 
surface where the wave excitation takes place. It can be shown tha t the 
radial derivative of the normalized radial displacement eigenfunction for 
p-modes just below the photosphere scales as uq'

8 for vq <> 3.0mHz and as 
Ugml for vq ^ 3.5mHz (see Figure 1). Substituting this scaling in equation 
(17), or equation (10), we find tha t the energy input rate in the p-modes, at 
a fixed degree, scales as ι/J for vq < 3.0mHz and as v~AA for vq > 3.5mHz 
which is in good agreement with the observations (Libbrecht and Woodard 
1991); please see Goldreich et al. (1994) for a more detailed analysis and 
comparison with the observed energy input rate. 

3. Observat ional constraints for t h e exc i ta t ion t h e o r y of solar 
p -modes 

A valid theory for the excitation of solar p-modes should be able to explain 
the observed rate of energy input in different modes. In addition, there are 
four other observational results tha t the theory must be able to explain 
and provide a fit to the data . These observations are: mode linewidth, the 
deviation of p-mode line profiles from symmetric Lorentzian shape, the 
statistics for the fluctuation of mode energy, and the presence of peaks in 
the power spectrum above the acoustic cutoff frequency (v > 5.3mHz). 

The agreement between the observed and the theoretically calculated 
energy input rate in solar p-modes due to stochastic excitation was de-
scribed in the last section. We describe below the other four observations 
and compare them with the results of the stochastic excitation theory. 

3.1. MODE LINEWIDTH 

A number of groups have measured p-mode linewidth as a function of mode 
frequency (cf. Duvall et al. 1988, Libbrecht 1988, Elsworth et al. 1990). It 
is found tha t the mode linewidth at a fixed degree increases monotoni-
cally with mode frequency. At 2 mHz the linewidth is about 0.5 μΗζ, or 
mode lifetime is 20 days (Q « 4 χ 10 3) and at 4 mHz the linewidth is 
10 μΗζ. The observed linewidth for 2mHz< ν < 3mHz increases as vA'2 

whereas numerical calculations show tha t the mode linewidth due to radia-
tive and turbulent damping increases as i / 8 for frequencies below ~4mHz 
(cf. Christensen-Dalsgaard and Frandsen 1983, Balmforth 1992; Goldreich 
and Kumar 1991, give a simple analytical derivation of these results). This 
suggests tha t the mode damping at frequencies greater than about 2 mHz 
is due to some process other than the radiative and turbulent viscosity. 
A number of alternate mechanisms have been suggested to account for 
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the observed mode linewidth. These include modulation of convective flux 
(Christensen-Dalsgaard et al. 1989), scattering of low degree p-modes by 
turbulent convection to high degree modes (Goldreich and Murray 1994), 
scattering of p-modes by magnetic fields (Bogdan et al. 1996). Goldreich 
and Murray (1994) have carried out a detailed calculation of the scattering 
process and find tha t an almost elastic scattering of p-modes by convec-
tive eddies is an important contributor to the mode linewidth at frequencies 
ν J> 2mHz, and the computed linewidth has the same frequency dependence 
as the observed width (see also Murray, 1993). 

Recent observational results indicate tha t the linewidth scales as v1 for 
ν <: 2 mHz (Chaplin et al. 1996, and Tomczyk 1996). Perhaps below 2 
mHz there are few modes available for p-modes to scatter into, and thus 
the linewidth falls off more rapidly with decreasing frequency. According to 
Jefferies (personal communication) the observed mode linewidth peaks at 
a frequency of about 5mHz, followed by a slight decline, and then remains 
constant at higher frequencies. This is a puzzling result for which as far as 
I know no explanation has been offered. 

5 10 
Rela t ive power 

Figure 2. The statistics of power fluctuation in low degree p-modes. The straight line 
is the exponential distribution, which is the theoretically expected distribution if modes 
are stochastically excited due to turbulent convection. The data is kindly provided by 
BiSON (please see Chaplin et al. 1995 for details). 
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3.2. ENERGY STATISTICS 

Modes excited by their interaction with a Gaussian random field (turbulent 
convection) have fluctuating amplitudes tha t follows the Gaussian distri-
bution. The correlation time for mode amplitude, which is of order the 
mode lifetime, is typically much larger than the mode period (see §3.1) or 
the characteristic time of resonant eddies. This is because a mode interacts 
with a large number of eddies each of which contribute only a small fraction 
of the total energy in the mode. A good analogy is a pendulum placed in 
contact with a thermal heat bath of molecules. The mean energy in the pen-
dulum is one third the mean kinetic energy of molecules, however it takes 
a large number of collisions (of order the ratio of the pendulum mass to 
molecular mass) in order for the amplitude of the pendulum to change. The 
statistics of energy fluctuation in a solar p-mode, if stochastically excited, 
like the energy of the pendulum placed in a heat bath, follows Boltzmann 
distribution (see Kumar et al. 1988 for a rigorous derivation of this result). 
At least two different groups (Toutain and Fröhlich 1992; and Elsworth et 
al. 1995) have looked for the statistics of energy fluctuation in the solar p-
modes and find it to be in good agreement with the theoretical expectation 
for stochastic excitation i.e. Boltzmann or exponential distribution (see fig. 
2). 

3.3. PEAKS AT HIGH FREQUENCIES 

Acoustic waves of frequency less than about 5 mHz (the acoustic cutoff fre-
quency at the temperature minimum) are reflected at the solar photosphere 
and thus trapped inside the sun. The reflectivity however drops off rapidly 
at higher frequencies; at 6mHz about 2% of the incident wave energy is 
reflected at the photosphere whereas at 7mHz the reflectivity drops to less 
than 0.3%. A number of observations indicate tha t high frequency acoustic 
waves (waves of frequency greater than about 5mHz) suffer little reflection 
at the chromosphere/corona as well (Duvall et al. 1993, Kumar et al. 1994, 
Jefferies 1996). If high frequency acoustic waves were significantly reflected 
at the chromosphere/corona boundary then the frequency spacing between 
modes of adjacent order would fluctuate with mode frequency (see figure 
3); this is because of the interference of waves partially trapped between 
two cavities above and below the temperature minimum. The observations, 
however, show, no evidence for such a behavior (fig. 3) and thus provide 
an upper limit of about 10% to the reflection at the chromosphere/corona 
boundary (Kumar et al. 1991; Jefferies, personal communication). 

In the absence of wave reflection at the solar surface these high frequency 
acoustic waves are not trapped in the sun, and thus it was expected tha t the 
power spectrum above the acoustic cutoff frequency should be featureless 
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Figure 3. Average frequency spacing between adjacent peaks in the power spectrum, 
(Sis), as a function of frequency. The averaging over frequency bins of width 100 μΗζ, and £ 
range of 80 and 150 has been carried out after subtracting a linear term in i (0.6981 i μΗζ) 
from ( j /n+i,/ —

 vr\yi)> The observational data (thick solid curve) was obtained by Duvall et 
al. (1993) at the geographical South Pole in 1988. The dotted curve, labeled 'source' in the 
legend, is the result of calculation of peak frequencies in the theoretically computed power 
spectra for Christensen-Dalsgaard's solar model with sources lying about 140 km below 
the photosphere. The dashed curve labled 'VAL+C is the frequency spacing calculated 
for JC-D solar model that includes the "mean quiet sun" chromospheric structure of 
Vernazza et al. (1981) as well as an isothermal corona at a temperature of 10 6 K. 

i.e. devoid of peaks. However, the observed spectra contain very regular 

peaks tha t are seen upto the Nyquist frequency of observations. One of 

the best recent da ta set obtained at the South Pole in 1994 shows peaks 

extending to almost 11 mHz which makes the length of the spectrum above 

the acoustic cutoff frequency larger than the observed spectrum below the 

cutoff frequency! 

The existence of these high frequency peaks provides one of the strongest 

evidence tha t solar acoustic oscillations above 5 mHz are not excited by 

some overstability mechanism 3 , and since power spectrum varies smoothly 

3 Considering the poor reflectivity of high frequency waves at the chromo-
sphere/corona, the energy flux in the solar atmosphere associated with them represents 
a net loss of their energy. So if these waves are to be excited due to an overstability 
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from below the acoustic cutoff frequency to above the cutoff frequency we 
infer tha t the trapped p-modes in the sun are also not overstable (Kumar 
et al. 1989). 

The peaks at high frequencies can be understood as arising quite nat-
urally if waves are stochastically excited. These peaks form because of the 
constructive interference between waves propagating from the source (lo-
cated in the convection zone) upward to the photosphere and waves travel-
ing downward from the source tha t is refracted back up due to increasing 
sound speed and thus end up at the photosphere (Kumar and Lu 1991). 
Therefore the frequencies of peaks above the acoustic cutoff ( ^ 5 mHz 
for the sun) depend on the difference between these two paths or in other 
words on the depth of acoustic sources. A good fit to the high frequency 
power spectrum is obtained by placing sources (assumed to be quadrupole) 
approximately 140 km below the photosphere (Kumar 1994); please see 
figure 4. It should be emphasized tha t unlike the lower frequency trapped 
p-modes (frequency less than about 5 mHz) the frequencies of peaks at 
high frequencies is not a property of the equilibrium model of the sun alone 
but depends in a sensitive way on the location of sources tha t excite these 
oscillations. 

As discussed in Kumar (1994) if the acoustic sources are assumed to be 
dipolar instead, then no mat ter where these sources are placed in the solar 
convection zone they do not provide a fit to the observed power spectrum. 
This suggests tha t the acoustic sources, at least for the high frequency 
waves, are not dipole but quadrupole, which is consistent with the work of 
Goldreich et al. (1994). 

High frequency acoustic waves also provide information about the power 
spectrum of turbulent convection in the sun (Kumar 1994); we can con-
strain the spectrum of turbulent convection in the region where acoustic 
emission is significant. The theoretical power spectrum shown in figure 4 
was computed using the Kolmogorov power spectrum of turbulence, i.e., 
P(k) oc fc~5/3. Evidently, this provides a good fit to the observed spectrum 
between 5.5 and 10 mHz. In order to determine the power law index a of 
solar turbulence, P(k) oc A; - 0 , from the high frequency interference peaks, 
we relate the fluctuating velocity, of sub-energy bearing eddies to the 
velocity VH of scale-height size eddies as follows: 

mechanism, their e-folding time must be less than about an hour, and thus these waves 
can at best be amplified by a factor of ~ e as they make one passage through the solar 
interior. Thus we need a mechanism that provides a large seed amplitude, within a factor 
of e of the observed value, and clearly in this case it seems most natural that the same 
mechanism generates the full observed amplitude. 
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Figure 4- Observed power spectrum (thin solid line) from the 1994 South Pole obser-
vation (courtesy of S. Jefferies) for &=90, and theoretically calculated power spectrum 
for sources lying 140km below (thick solid line) the photosphere. The Nyquist frequency 
of the data is 11.9 mHz. Both the ^-leakage and the Nyquist folding has been included 
in the theoretically computed spectrum; to model the ^-leakage the theoretically calcu-
lated power spectra for ^=88 to 92 were added together with weighting factors of 0.147, 
0.68, 1.0, 0.61, and 0.10 respectively which corresponds to the 1994 South Pole observa-
tions (Jefferies, personal communication). The radial extent of the sources is taken to be 
50km, and the spectrum of turbulent convection is Kolmogorov. A frequency dependent 
background has been subtracted from the observed spectrum. 

where h is the size of the eddy. This equation is a generalization of equation 
(8). Using this relation, we find tha t the frequency dependence of the source 
function is (α ; τ^)"" ( 3 θ ί + 5 ) / ( 3 ~ α ) (the derivation is similar to the one leading 
to eq. [12]). Therefore, a change in the spectral index of turbulence from 
5/3 to 1.4 decreases the dependence of the acoustic power spectrum on 
frequency by ω 1 · 7 5 , which results in a poor fit to the observed spectrum. 
We find tha t the observed high frequency power spectra suggest tha t the 
power law index for the solar turbulence lies between 1.5 and 1.7. 

We note tha t the energy input rate for p-modes in the frequency range 
between 3.5 and 5mHz is proportional to a;""4 , 4, which is understood most 
naturally if the spectrum of turbulence near the top of the solar convection 
zone is taken to be Kolmogorov (Goldreich et al. 1993). The result described 
above extends this range to lOmHz. 

https://doi.org/10.1017/S0074180900061222 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900061222


EXCITATION OF SOLAR ACOUSTIC OSCILLATIONS 299 

3.4. ASYMMETRIC LINE PROFILES OF P-MODES 

The last observational result I would like to describe is the asymmetry of low 
frequency p-mode line profiles. The spectrum of individual p-modes is fitted 
very well by a Lorentzian profile. However, Duvall et al. (1993) discovered 
that the line profiles do not have perfect Lorentzian shape and in particular 
the power spectrum falls off more rapidly on one side of the peak than the 
other i.e. the lines are asymmetrical. The da ta from GONG and SOHO 
clearly show tha t line-profiles for low frequency modes are asymmetrical. 
Duvall et al. had also proposed in their original paper an explanation for 
why the lines are asymmetrical which is found to be basically correct by 
a number of independent investigations (Gabriel 1992, 1995; Abrams and 
Kumar 1996). The line profile for a p-mode of frequency 1.9 mHz and ί = 1, 
calculated using JC-D solar model, is shown in figure 5. 

The physical explanation for line asymmetry is simplest when sources 
lie in the region of the sun where acoustic waves can propagate (this case 

ι ι ι ι ι ι ι ι ι I ι ι ι ι ι ι ι ι ι I I I I I I I I I I I ι ι ι ι ι ι ι ι ι I ι ι ι ι ι ι ι ι ι I I I I I I I I I I 

- 3 - 2 - 1 0 1 2 3 

("-".)Λ« 

Figure 5. Line profiles of a p-mode of frequency 1.9 mHz and i = 1 of a solar model 
due to J. Christensen-Dalsgaard. The power spectrum plotted using a continuous line 
corresponds to sources placed at the upper turning point of the mode. The other power 
spectrum, dashed curve, arises when sources are placed 300 km below the upper turning 
point. The radial extent of sources in both cases was taken to be 100 km. 
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does not seem to apply to solar oscillations however which are excited by 
sources tha t lie in the evanescent region). Consider a source lying close to 
the node of a p-mode. As the frequency of acoustic waves is varied in the 
neighborhood of this p-mode frequency the position of the node changes 
with respect to the source position. Thus waves of frequencies lying sym-
metrically on the opposite side of the p-mode frequency gets excited to 
different amplitudes making the resultant power spectrum asymmetrical. 
It is clear from this rather simple example tha t not all p-mode line profiles 
are expected to be equally asymmetrical (as is observed) and also tha t the 
degree of asymmetry depends on the location of sources. In fact Duvall et 
al (1993) had recognized this in their original paper and used this to deter-
mine the depth of sources tha t are exciting p-modes. The recent paper of 
Abrams and Kumar (1996) uses a realistic solar model due to Christensen-
Dalsgaard to calculate the p-mode power spectrum and finds tha t in order 
to reproduce the magnitude of asymmetry observed by Duvall et al. (1993) 
the sources responsible for exciting low frequency p-modes should lie about 
250 km below the photosphere. This might appear to be in conflict with 
the result obtained using high frequency solar oscillations described in §3. 
However, the result is in agreement with the theory of stochastic excitation 
which predicts tha t lower frequency oscillations are excited deeper in the 
convection zone where the characteristic eddy time is longer. 

Line asymmetry causes a slight error to the observational determination 
of p-mode frequencies which are obtained by fitting a Lorentzian function 
to the power spectra. Abrams and Kumar (1996) find tha t this frequency 
error is proportional to the product of mode linewidth and a nondimensional 
measure of line asymmetry ηα (see the figure below). The parameter ηα is 
obtained by decomposing the observed power spectrum in the neighborhood 
of a peak corresponding to a mode a into even and odd functions. Since 
the odd function is zero at the peak (by definition) and again far from the 
peak, its magnitude has a maximum at some intermediate distance from 
the peak, typically less than one linewidth. The ratio of the maximum 
magnitude of the odd function to the maximum magnitude of the even 
function is a dimensionless measure of the asymmetry which we denote by 
77^/100 i.e. ηα is the percentage line asymmetry of mode a. The sign of 
ηα is taken to be positive or negative according to whether there is more 
power on the high- or low-frequency side of the peak, respectively. 

There is one feature of the observed line asymmetry tha t is very puz-
zling and for which there is no theoretical explanation. Duvall et al. (1993) 
reported tha t the sense of asymmetry reverses in the velocity and the in-
tensity power spectra for the p-mode. This behavior has been confirmed 
by the most recent GONG data . The difference between the velocity and 
the intensity power spectra can arise as a result of line formation in the 
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Figure 6. Error in the measurement of mode frequency (expressed as percentages of 
corresponding linewidths) as a result of asymmetry of lines in the power spectrum; fit 
is the frequency obtained by fitting a Lorentzian function to the power spectrum, vQ is 
the mode eigenfrequency, and Γ α is mode linewidth. The frequency error is shown as 
a function of a dimensionless measure of line asymmetry (ηα) defined in the text. The 
slope of the line is approximately 1.5. The power spectra were calculated by solving an 
inhomogeneous wave equation which included radiative damping of waves (see Abrams 
and Kumar 1996, for details). The solar model used in this calculation was kindly provided 
by J. Christensen-Dalsgaard. 

presence of oscillations. However, it is not clear what process can cause a 
reversal of the sign of ηα in the two spectra; the process has to be extremely 
frequency sensitive so tha t it can modify the spectrum in an interval of only 
a few μΗζ. 

4. C a n w e de tec t gravi ty m o d e s in t h e sun? 

Gravity mode oscillations of the sun are primarily confined to its radiative 
interior and their observation would thus provide a wealth of information 
about the energy generating region which is poorly probed by the p-modes. 
In the past 20 years a number of different groups have claimed to detect 
g-modes in the sun (e.g. Brookes et al. 1976; Brown et al. 1978; Delache 
and Scherrer 1983; Scherrer et al. 1979; Severny et al. 1976, Thomson et 
al. 1995; for a detailed review of the observations please see the article by 
Pallé, 1991, and references therein), but thusfar there is no consensus tha t 
g-modes have in fact been observed. One of the objectives of the instruments 
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aboard SOHO (VIRGO, GOLF and SOI) is to search for solar g-modes. So 
it should be helpful to estimate the expected surface velocity amplitudes 
of g-modes in the sun, providing observations and da ta analysis programs 
a rough target number to shoot for. The first question we need to address 
in this respect is whether solar g-modes are self-excited (overstable) or not. 
This is dealt with in the following paragraph. 

A number of people have investigated the linear stability of solar g-
modes (e.g. Düke and Gough 1972; Rosenbluth and Bahcall 1973; Christen-
sen-Dalsgaard et al. 1974; Shibahashi et al. 1975; Boury et al. 1975; Saio 
1980). All of these investigations find tha t g-modes of radial-order (n) 
greater than 3 are stable. However, there is no general agreement about 
the stability of low order modes (n < 3). If overstable, the g-mode ampli-
tude will increase exponentially with time until nonlinear effects become 
important and saturate their growth. Kumar and Goodman (1995) have 
recently investigated 3-mode parametric interaction, a very efficient non-
linear process. Using their results we find tha t the low order overstable 
g-modes in the sun will attain an energy of at least 1 0 3 7 erg before they are 
limited by nonlinearities. The velocity at the solar surface corresponding 
to this energy is ~ 10 2 cm s _ 1 , which is an order of magnitude larger than 
the observational limit of Pallé (1991). Thus even low order g-modes of 
frequency greater than about 150 μΗζ are unlikely to be overstable. 

However, g-modes can be stochastically excited. A number of people 
have estimated g-mode amplitude assuming tha t they are linearly stable 
and stochastically excited. Keeley (1980) applied his theory, developed with 
Goldreich in 1977, of the excitation of solar modes to estimate the ampli-
tude of the 160 minute oscillation, and found the theoretical amplitude to 
be much smaller than claimed by the observations; much more sensitive ob-
servational searches since then have not detected this oscillation (cf. Pallé 
1991). Gough (1985) carried out an application of the energy partition result 
of Goldreich and Keeely (1977) to solar g-modes and estimated the surface 
velocity amplitude of low η and I g-modes (n < 3, i < 2) to be about 1-2 
mm s " 1 . Kumar et al. (1996) estimated the g-mode amplitude using the 
recent theoretical work of Goldreich et al. (1994) on stochastic excitation of 
waves, which reproduces the observed energy input rate into solar p-modes 
of all frequencies (see §2), and taking into account the radiative and viscous 
turbulent dampings. They find the surface velocity amplitude of low order 
g-modes to be about 0.4 mm s""1 (see figure 7). Recently Anderson has car-
ried out numerical simulation of g-mode excitation as a result of turbulent 
flow associated with penetrative convection. He finds tha t the transverse 
surface velocity amplitudes of g-modes of degree about 6 is ~ 0.2 mm s""1 

in the case when he assumes tha t 10 3 modes are excited by this process 
(Anderson, 1996). Thus several different calculations suggest tha t the am-
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Figure 7. Magnitude of the surface velocity amplitude as a function of frequency for low 
degree solar g-modes excited by coupling with turbulent convection. The surface velocity 
amplitude falls off rapidly with increasing t, thus only low degree g-modes are expected 
to be observable. 

plitudes for low degree g-modes are of order 0.5 mm s " 1 . The uncertainty 
in this estimate is at least a factor of a few. If the nature turns out to be 
cooperative and the actual amplitudes of solar g-modes are a factor of a few 
larger than these estimates, then instruments aboard SOHO have a good 
chance of detecting g-modes and opening up a new window in the study of 
the solar core. 
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