Classification of Certain Simple C^{*}-Algebras with Torsion in K_{1}

Jesper Mygind

Abstract

We show that the Elliott invariant is a classifying invariant for the class of C^{*}-algebras that are simple unital infinite dimensional inductive limits of finite direct sums of building blocks of the form $$
\left\{f \in C(\mathbb{T}) \otimes M_{n}: f\left(x_{i}\right) \in M_{d_{i}}, i=1,2, \ldots, N\right\}
$$

where $x_{1}, x_{2}, \ldots, x_{N} \in \mathbb{T}, d_{1}, d_{2}, \ldots, d_{N}$ are integers dividing n, and $M_{d_{i}}$ is embedded unitally into M_{n}. Furthermore we prove existence and uniqueness theorems for $*$-homomorphisms between such algebras and we identify the range of the invariant.

1 Introduction

During the last decade the Elliott invariant has been used with amazing success to classify simple unital C^{*}-algebras (see e.g. [8], [10], [20], [27], [15], [16]). This project is part of Elliott's program which has the ambitious goal of a classification result for all separable nuclear C^{*}-algebras by invariants of K-theoretical nature.

The goal of the present paper is to unify and generalize classification results due to Thomsen [27] and Jiang and Su [16]. In order to achieve this we will unfortunately have to consider the rather complicated building blocks defined in the abstract. Our main result (see Theorem 11.7) is the following:

Theorem 1.1 The Elliott invariant is a classifying invariant for the class of unital simple infinite dimensional inductive limits of sequences of finite direct sums of building blocks.

The main ideas of the proof are similar to those of Thomsen [27] who considers the simpler case $d_{1}=d_{2}=\cdots=d_{N}$. The technical problems are greater in our case, and in particular the possible lack of projections in our building blocks (see Lemma 3.8) means there is no straightforward generalization of Thomsen's proof.

Let us introduce the notation used in this paper before we describe our results in greater detail. Recall that for a unital C^{*}-algebra A the Elliott invariant consists of the ordered group $K_{0}(A)$ with order unit, the group $K_{1}(A)$, the compact convex set $T(A)$ of tracial states, and the restriction map $r_{A}: T(A) \rightarrow S K_{0}(A)$, where $S K_{0}(A)$ denotes the state space of $K_{0}(A)$.

Let A be a unital C^{*}-algebra. Let Aff $T(A)$ denote the order unit space of all continuous real-valued affine functions on $T(A)$. Let $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff} T(A)$ be the group

[^0]homomorphism
$$
\rho_{A}(x)(\omega)=r_{A}(\omega)(x), \quad \omega \in T(A), x \in K_{0}(A)
$$

Let $U(A)$ denote the unitary group of A and let $D U(A)$ denote its commutator subgroup, i.e., the group generated by all unitaries of the form $u v u^{*} v^{*}, u, v \in U(A)$. If A is a unital inductive limit of a sequence of finite direct sums of building blocks then there is a natural short exact sequence of abelian groups (see Section 5)

$$
0 \longrightarrow \operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)} \xrightarrow{\lambda_{A}} U(A) / \overline{D U(A)} \xrightarrow{\pi_{A}} K_{1}(A) \longrightarrow 0
$$

that splits (unnaturally). The group $U(\cdot) / \overline{D U(\cdot)}$ was introduced into the classification program by Nielsen and Thomsen [20].

Let A and B be unital C^{*}-algebras. An affine continuous map $\varphi_{T}: T(B) \rightarrow T(A)$ gives rise to a linear positive order unit preserving map $\varphi_{T_{*}}: \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(B)$ by setting $\varphi_{T_{*}}(f)=f \circ \varphi_{T}$ for $f \in \operatorname{Aff} T(A)$. If furthermore $\varphi_{T_{*}} \circ \rho_{A}=\rho_{B} \circ$ φ_{0} for some group homomorphism $\varphi_{0}: K_{0}(A) \rightarrow K_{0}(B)$ then φ_{T} induces a group homomorphism

$$
\widetilde{\varphi_{T}}: \operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)} \longrightarrow \operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}
$$

Let $\psi: A \rightarrow B$ be a unital $*$-homomorphism. Let $\psi^{*}: T(B) \rightarrow T(A)$ be the affine continuous map given by $\psi^{*}(\omega)=\omega \circ \psi, \omega \in T(B)$. Define $\widehat{\psi}: \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(B)$ by $\widehat{\psi}=\left(\psi^{*}\right)_{*}$. Note that $\widehat{\psi}(f)(\omega)=f\left(\psi^{*}(\omega)\right)$. Since $\widehat{\psi} \circ \rho_{A}=\rho_{B} \circ \psi_{*}$ on $K_{0}(A)$, we see that ψ gives rise to a group homomorphism

$$
\widetilde{\psi}: \operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)} \longrightarrow \operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}
$$

Let $\psi^{\#}: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ be the homomorphism induced by ψ.
Besides the Elliott invariant, two other invariants will be crucial in the proof of the classification theorem, namely $U(\cdot) / \overline{D U(\cdot)}$ and Rørdam's $K L$-bifunctor [22]. These invariants are both determined by the Elliott invariant for the C^{*}-algebras under consideration, and are therefore useless as additional isomorphism invariants. They are, however, not determined canonically. This means that $*$-homomorphisms (or even automorphisms) between such C^{*}-algebras that agree on the Elliott invariant may fail to be approximately unitarily equivalent because they may act differently on these additional invariants. This was demonstrated by Nielsen and Thomsen [20, Section 5] for $U(\cdot) / \overline{D U(\cdot)}$ and by Dadarlat and Loring [6, pp. 375-376] for $K L$.

It is therefore necessary to include these invariants in the following uniqueness theorem (see Theorem 11.5):

Theorem 1.2 Let A and B be unital inductive limits of sequences of finite direct sums of building blocks, with A simple. Two unital *-homomorphisms $\varphi, \psi: A \rightarrow B$ with $\varphi^{*}=\psi^{*}$ on $T(B), \varphi^{\#}=\psi^{\#}$ on $U(A) / \overline{D U(A)}$, and $[\varphi]=[\psi]$ in $K L(A, B)$ are approximately unitarily equivalent.

Let $K L(A, B)_{T}$ denote the set of elements $\kappa \in K L(A, B)$ for which the induced map $\kappa_{*}: K_{0}(A) \rightarrow K_{0}(B)$ preserves the order unit and for which there exists an affine continuous map $\varphi_{T}: T(B) \rightarrow T(A)$ such that $r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x)$ for $x \in K_{0}(A), \omega \in T(B)$.

Let A and B be e.g. simple unital inductive limits of sequences of finite direct sums of building blocks. It turns out, perhaps surprisingly, that there is a connection between $K L(A, B)$ and the torsion subgroups of $U(A) / \overline{D U(A)}$ and $U(B) / \overline{D U(B)}$, see Section 10. If $\varphi, \psi: A \rightarrow B$ are unital $*$-homomorphisms with $[\varphi]=[\psi]$ in $K L(A, B)$ and if x is an element of finite order in the group $U(A) / \overline{D U(A)}$, then $\varphi^{\#}(x)=\psi^{\#}(x)$ in $U(B) / \overline{D U(B)}$. More generally, an element $\kappa \in K L(A, B)_{T}$ gives rise to a group homomorphism

$$
s_{\kappa}: \operatorname{Tor}(U(A) / \overline{D U(A)}) \longrightarrow \operatorname{Tor}(U(B) / \overline{D U(B)})
$$

The map

$$
K L(A, B)_{T} \longrightarrow \operatorname{Hom}(\operatorname{Tor}(U(A) / \overline{D U(A)}), \operatorname{Tor}(U(B) / \overline{D U(B)}))
$$

where $\kappa \mapsto s_{\kappa}$, is natural with respect to the Kasparov product and must be taken into account in the existence theorem:

Theorem 1.3 Let A and B be simple unital inductive limits of sequences of finite direct sums of building blocks, with B infinite dimensional. Let $\varphi_{T}: T(B) \rightarrow T(A)$ be an affine continuous map, let $\kappa \in K L(A, B)_{T}$ be an element such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B),
$$

and let $\Phi: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ be a homomorphism such that the diagram

commutes. Assume finally that

$$
s_{\kappa}(y)=\Phi(y), \quad y \in \operatorname{Tor}(U(A) / \overline{D U(A)}) .
$$

There exists a unital $*$-homomorphism $\psi: A \rightarrow B$ such that $\psi^{*}=\varphi_{T}$ on $T(B)$, such that $\psi^{\#}=\Phi$ on $U(A) / \overline{D U(A)}$, and such that $[\psi]=\kappa$ in $K L(A, B)$.

The above theorem follows by combining the slightly more general Theorem 11.2 with Lemma 9.6, Lemma 10.3 and Theorem 9.9. It should be noted that it is possible to prove this existence theorem (and our classification theorem) for $K_{0}(A)$ non-cyclic without using the map s_{κ}, see Corollary 11.3 (or [27]).

Let us finally describe the range of the invariant for the C^{*}-algebras in our class. By combining Theorem 12.1 and Corollary 12.5 we have the following:

Theorem 1.4 Let G be a countable simple dimension group with order unit, H a countable abelian group, Δ a compact metrizable Choquet simplex, and $\lambda: \Delta \rightarrow$ SG an affine continuous extreme point preserving surjection. There exists a simple unital inductive limit of a sequence of finite direct sums of building blocks A together with an isomorphism $\varphi_{0}: K_{0}(A) \rightarrow G$ of ordered groups with order unit, an isomorphism $\varphi_{1}: K_{1}(A) \rightarrow H$, and an affine homeomorphism $\varphi_{T}: \Delta \rightarrow T(A)$ such that

$$
r_{A}\left(\varphi_{T}(\omega)\right)(x)=\lambda(\omega)\left(\varphi_{0}(x)\right), \quad \omega \in \Delta, x \in K_{0}(A)
$$

if and only if G is non-cyclic, or G is cyclic and H can be realized as an inductive limit of a sequence of the form

$$
\mathbb{Z} \oplus H_{1} \longrightarrow \mathbb{Z} \oplus H_{2} \longrightarrow \mathbb{Z} \oplus H_{3} \longrightarrow \cdots
$$

where each H_{k} is a finite abelian group.
Let A be a simple unital inductive limit of a sequence of finite direct sums of building blocks. It is easy to see that A is unital projectionless if and only if $\left(K_{0}(A)\right.$, $\left.K_{0}(A)^{+},[1]\right) \cong\left(\mathbb{Z}, \mathbb{Z}^{+}, 1\right)$. Hence our classification theorem can be applied to a large class of simple unital projectionless C^{*}-algebras, including the C^{*}-algebra Z constructed by Jiang and Su [16].

It would be interesting if one could extend our classification result to a class that contains simple unital projectionless C^{*}-algebras with arbitrary countable abelian K_{1}-groups. This could probably be obtained by considering building blocks with \mathbb{T} replaced by a general 1-dimensional compact Hausdorff space. It would also be interesting if one could include the class of C^{*}-algebras considered by Jiang and Su in [15].

Let A be a unital C^{*}-algebra. If $a \in A_{\mathrm{sa}}$ we define $\widehat{a} \in \operatorname{Aff} T(A)$ by $\widehat{a}(\omega)=\omega(a)$, $\omega \in T(A)$. It is well-known that $a \mapsto \widehat{a}$ is a surjective map from A_{sa} to $\operatorname{Aff} T(A)$. Let $q_{A}^{\prime}: \overline{U(A)} \rightarrow U(A) / \overline{D U(A)}$ be the canonical map. We equip the abelian group $U(A) / \overline{D U(A)}$ with the quotient metric

$$
D_{A}\left(q_{A}^{\prime}(u), q_{A}^{\prime}(v)\right)=\inf \left\{\left\|u v^{*}-x\right\|: x \in \overline{D U(A)}\right\}
$$

Denote by d_{A}^{\prime} the quotient metric on the group Aff $T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)}$. This group can be equipped with another metric which gives rise to the same topology, namely

$$
d_{A}(f, g)= \begin{cases}2 & d_{A}^{\prime}(f, g) \geq \frac{1}{2} \\ \left|e^{2 \pi \mathrm{id}_{A}^{\prime}(f, g)}-1\right| & d_{A}^{\prime}(f, g)<\frac{1}{2}\end{cases}
$$

see [20, Chapter 3]. Let $q_{A}: \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)}$ be the quotient map. Let finally $s(A)$ be the smallest positive integer n for which there exists a unital $*$ homomorphism $A \rightarrow M_{n}$ (we set $s(A)=\infty$ if A has no non-trivial finite dimensional representations).

Let gcd denote the greatest common divisor and lcm the least common multiple of a set of positive integers. Let Tr denote the (unnormalized) trace on a matrix algebra (i.e., the number obtained by adding the diagonal entries). If

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

is a sequence of C^{*}-algebras and $*$-homomorphisms with inductive limit A, we let $\alpha_{n, m}=\alpha_{m-1} \circ \alpha_{m-2} \circ \cdots \circ \alpha_{n}: A_{n} \rightarrow A_{m}$ when $m>n$. We set $\alpha_{n, n}=\mathrm{id}$ and let $\alpha_{n, \infty}: A_{n} \rightarrow A$ denote the canonical map.

Acknowledgements Most of this work was carried out while I was a Ph.D student at Aarhus University. I would like to thank the many people at the Department of Mathematics that have helped me during my studies, both mathematically and otherwise. In particular I would like to express my gratitude towards my Ph.D advisor Klaus Thomsen for many inspiring and helpful conversations. Special thanks to George Elliott for valuable conversations and for his interest in my work. Finally, I would like to thank Mikael Rørdam for some useful suggestions.

2 Building Blocks

Let \mathbb{T} denote the unit circle of the complex plane. We will equip \mathbb{T} with the metric

$$
\rho\left(e^{2 \pi i s}, e^{2 \pi i t}\right)=\min _{k \in \mathbb{Z}}|s-t+k|
$$

which is easily seen to be equivalent to the usual metric on \mathbb{T} inherited from \mathbb{C}.
As in [20] we say that a tuple $\left(a_{1}, a_{2}, \ldots, a_{L}\right)$ of elements from \mathbb{T} is naturally numbered if there exist numbers $s_{1}, s_{2}, \ldots, s_{L} \in\left[0,1\left[\right.\right.$ such that $s_{1} \leq s_{2} \leq \cdots \leq s_{L}$ and $a_{j}=e^{2 \pi i s_{j}}, j=1,2, \ldots, L$.

We define a building block to be a C^{*}-algebra of the form

$$
A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)=\left\{f \in C(\mathbb{T}) \otimes M_{n}: f\left(x_{i}\right) \in M_{d_{i}}, i=1,2, \ldots, N\right\}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is a naturally numbered tuple of (different) points in \mathbb{T}, d_{1}, d_{2}, \ldots, d_{N} are integers dividing n, and $M_{d_{i}}$ is embedded unitally into M_{n}, e.g. via the *-homomorphism

$$
a \mapsto \operatorname{diag}(\underbrace{a, a, \ldots, a}_{\frac{n}{d_{i}} \text { times }})
$$

The points $x_{1}, x_{2}, \ldots, x_{N}$ will be called the exceptional points of A. By allowing $d_{i}=$ n we may always assume that $N \geq 2$. It will also be convenient to always assume that 1 is not an exceptional point.

For every $i=1,2, \ldots, N$, evaluation at x_{i} gives rise to a unital $*$-homomorphism from A to $M_{d_{i}}$ which will be denoted by Λ_{i}, or sometimes Λ_{i}^{A}. If s is a non-negative integer we define $\Lambda_{i}^{s}: A \rightarrow M_{s d_{i}}$ by

$$
\Lambda_{i}^{s}(f)=\operatorname{diag}(\underbrace{\Lambda_{i}(f), \Lambda_{i}(f), \ldots, \Lambda_{i}(f)}_{s \text { times }}) .
$$

Note that $\Lambda_{i}^{\frac{n}{i_{i}}}(f)=f\left(x_{i}\right)$ in M_{n} for $f \in A$ and $i=1,2, \ldots, N$. The following lemmas are left as exercises.

Lemma 2.1 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block. The irreducible representations (up to unitary equivalence) of A are $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{N}$, together with point evaluations at non-exceptional points.

Lemma 2.2 Let I be a closed two-sided ideal in A. There is a closed set $F \subseteq \mathbb{T}$ such that

$$
I=\{f \in A: f(x)=0 \text { for all } x \in F\}
$$

Lemma 2.3 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block and let $\omega \in T(A)$. There exists a Borel probability measure μ on \lceil such that

$$
\omega(f)=\frac{1}{n} \int_{\mathbb{T}} \operatorname{Tr}(f(x)) d \mu(x)
$$

It follows that $C_{\mathbb{R}}(\mathbb{T})$ and $\operatorname{Aff} T(A)$ are isomorphic as order unit spaces via the map $f \mapsto \widehat{f \otimes 1}, f \in C_{\mathbb{R}}(\mathbb{T})$.

Theorem 2.4 Let A be a finite direct sum of building blocks. Then A is finitely generated and semiprojective.

Proof First note that A is a one-dimensional non-commutative CW complex, as defined in [7]. Hence A is semiprojective by [7, Theorem 6.2.2] and finitely generated by [7, Lemma 2.4.3].

Note that if $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ then $s(A)=\min \left(d_{1}, d_{2}, \ldots, d_{N}\right)$.
Building blocks will sometimes be called circle building blocks in order to distinguish them from interval building blocks. An interval building block is a C^{*}-algebra A of the form

$$
I\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)=\left\{f \in C[0,1] \otimes M_{n}: f\left(x_{i}\right) \in M_{d_{i}}, i=1,2, \ldots, N\right\}
$$

where $0=x_{1}<x_{2}<\cdots<x_{N}=1$ and $d_{1}, d_{2}, \ldots, d_{N}$ are integers dividing n. We will call $x_{1}, x_{2}, \ldots, x_{N}$ the exceptional points of A.

3 K-Theory

The purpose of this section is to calculate and interpret the K-theory of a building block. We start out with the following lemma, which will be used to calculate the K_{1}-group.

Lemma 3.1 Let $N \geq 2$ and let $a_{1}, a_{2}, \ldots, a_{N}$ be positive integers. Define a group homomorphism $\varphi: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N}$ to be multiplication with the $N \times N$ matrix

$$
C=\left(\begin{array}{ccccc}
a_{1} & -a_{2} & & & \\
& a_{2} & -a_{3} & & \\
& & a_{3} & \ddots & \\
& & & \ddots & -a_{N} \\
-a_{1} & & & & a_{N}
\end{array}\right)
$$

For $k=1,2, \ldots, N-1$, set

$$
s_{k}=\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right)
$$

and

$$
r_{k}=\operatorname{gcd}\left(s_{k}, a_{k+1}\right)=\operatorname{gcd}\left(\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right), a_{k+1}\right)
$$

Choose integers α_{k} and β_{k} such that

$$
r_{k}=\alpha_{k} s_{k}+\beta_{k} a_{k+1}, \quad k=1,2, \ldots, N-1
$$

Then

$$
\operatorname{coker}(\varphi) \cong \mathbb{Z} \oplus \mathbb{Z}_{r_{1}} \oplus \mathbb{Z}_{r_{2}} \oplus \cdots \oplus \mathbb{Z}_{r_{N-1}}
$$

This isomorphism can be chosen such that for $k=1,2, \ldots, N-2$, a generator of the direct summand $\mathbb{Z}_{r_{k}}$ is mapped to the coset

$$
(\underbrace{0,0, \ldots, 0}_{k-1 \text { times }}, 1,-\frac{\beta_{k} a_{k+1}}{r_{k}}, \underbrace{0,0, \ldots, 0}_{N-k-2 \text { times }},-\frac{\alpha_{k} s_{k}}{r_{k}})+\operatorname{im}(\varphi),
$$

such that a generator of the direct summand $\mathbb{Z}_{r_{N-1}}$ is mapped to the coset

$$
(0,0, \ldots, 0,1,-1)+\operatorname{im}(\varphi),
$$

and such that a generator of the direct summand \mathbb{Z} is mapped to the coset

$$
(0,0, \ldots, 0,1)+\operatorname{im}(\varphi)
$$

Proof Let I_{j} denote the $j \times j$ identity matrix for any non-negative integer j. For each $k=1,2, \ldots, N-2$, define an integer matrix of size $N \times N$ by

$$
A_{k}=\left(\begin{array}{ccccccc}
I_{k-1} & & & & & & \\
& 1 & & & & & \\
& -\frac{\alpha_{k} s_{k}}{r_{k}} & 1 & & & & \\
& -\frac{\alpha_{k} s_{k}}{r_{k}} & & 1 & & & \\
& \vdots & & & \ddots & & \\
& -\frac{\alpha_{k} s_{k}}{r_{k}} & & & & 1 & \\
& 0 & & & & 1
\end{array}\right) .
$$

Let D_{k} denote the 2×2 matrix

$$
\left(\begin{array}{cc}
\alpha_{k} & \frac{a_{k+1}}{r_{k}} \\
-\beta_{k} & \frac{s_{k}}{r_{k}}
\end{array}\right)
$$

and define for $k=1,2, \ldots, N-1$, an integer matrix of size $N \times N$ by

$$
B_{k}=\left(\begin{array}{ccc}
I_{k-1} & & \\
& D_{k} & \\
& & I_{N-k-1}
\end{array}\right)
$$

For $k=0,1,2, \ldots, N-2$, define yet another $N \times N$ matrix by

$$
X_{k}=\left(\begin{array}{ccccccc}
r_{1} & & & & & & \\
& r_{2} & & & & & \\
& & \ddots & & & & \\
& & & r_{k} & & & \\
& & & & s_{k+1} & -a_{k+2} & \\
& s_{k+1} & & -a_{k+3} & & \\
& & & \vdots & & & \ddots
\end{array}\right]
$$

Finally, let P be the $N \times N$ matrix

$$
\left(\begin{array}{ccccc}
1 & & & & \\
1 & 1 & & & \\
1 & 1 & 1 & & \\
\vdots & \vdots & \vdots & \ddots & \\
1 & 1 & 1 & \cdots & 1
\end{array}\right)
$$

Note that for $k=1,2, \ldots, N-2$,

$$
s_{k+1}=\operatorname{lcm}\left(s_{k}, a_{k+1}\right)=\frac{s_{k} a_{k+1}}{r_{k}}
$$

Using this, it is easily seen by induction that

$$
A_{k} A_{k-1} \cdots A_{1} P C B_{1} B_{2} \cdots B_{k}=X_{k}, \quad k=0,1,2, \ldots, N-2
$$

It follows that

$$
A_{N-2} A_{N-3} \cdots A_{1} P C B_{1} B_{2} \cdots B_{N-2} B_{N-1}=\left(\begin{array}{ccccc}
r_{1} & & & & \\
& r_{2} & & & \\
& & \ddots & & \\
& & & r_{N-1} & \\
& & & & 0
\end{array}\right)
$$

Since all the matrices on the left-hand side, except C, are invertible in $M_{N}(\mathbb{Z})$, we obtain the desired calculation of $\operatorname{coker}(\varphi)$. Finally, it is easily verified that

$$
\left(A_{N-2} A_{N-3} \cdots A_{1} P\right)^{-1}=\left(\begin{array}{ccccccc}
1 & & & & & & \\
-\frac{\beta_{1} a_{2}}{r_{1}} & 1 & & & & & \\
0 & -\frac{\beta_{2} a_{3}}{r_{2}} & 1 & & & & \\
0 & 0 & -\frac{\beta_{3} a_{4}}{r_{3}} & 1 & & & \\
\vdots & \vdots & & \ddots & \ddots & & \\
0 & 0 & & & -\frac{\beta_{N-2} a_{N-1}}{r_{N-1}} & 1 & \\
-\frac{\alpha_{1} s_{1}}{r_{1}} & -\frac{\alpha_{2} s_{2}}{r_{2}} & \cdots & \cdots & -\frac{\alpha_{N}-2 s_{N-2}}{r_{N-2}} & -1 & 1
\end{array}\right)
$$

The last part of the lemma follows from this.
Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block with exceptional points $e^{2 \pi i t_{k}}$, $k=1,2, \ldots, N$, where $0<t_{1}<t_{2}<\cdots<t_{N}<1$. Set $t_{N+1}=t_{1}+1$. Define continuous functions $\omega_{k}: \mathbb{T} \rightarrow \mathbb{T}$ for $k=1,2, \ldots, N$, by

$$
\omega_{k}\left(e^{2 \pi i t}\right)= \begin{cases}\exp \left(2 \pi i \frac{t-t_{k}}{t_{k+1}-t_{k}}\right) & t_{k} \leq t \leq t_{k+1} \\ 1 & t_{k+1} \leq t \leq t_{k}+1\end{cases}
$$

Let U_{k}^{A} be the unitary in A defined by

$$
U_{k}^{A}(z)=\operatorname{diag}\left(\omega_{k}(z), 1,1, \ldots, 1\right), \quad z \in \mathbb{T}
$$

Theorem 3.2 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block. Set for $k=1,2, \ldots$, N-1,

$$
s_{k}=\operatorname{lcm}\left(\frac{n}{d_{1}}, \frac{n}{d_{2}}, \ldots, \frac{n}{d_{k}}\right)
$$

and

$$
r_{k}=\operatorname{gcd}\left(s_{k}, \frac{n}{d_{k+1}}\right)=\operatorname{gcd}\left(\operatorname{lcm}\left(\frac{n}{d_{1}}, \frac{n}{d_{2}}, \ldots, \frac{n}{d_{k}}\right), \frac{n}{d_{k+1}}\right) .
$$

Choose integers α_{k} and β_{k} such that

$$
r_{k}=\alpha_{k} s_{k}+\beta_{k} \frac{n}{d_{k+1}}, \quad k=1,2, \ldots, N-1
$$

Then

$$
K_{1}(A) \cong \mathbb{Z} \oplus \mathbb{Z}_{r_{1}} \oplus \mathbb{Z}_{r_{2}} \oplus \cdots \oplus \mathbb{Z}_{r_{N-1}}
$$

This isomorphism can be chosen such that for $k=1,2, \ldots, N-1$, a generator of the direct summand $\mathbb{Z}_{r_{k}}$ is mapped to

$$
\left[U_{k}^{A}\right]-\frac{\beta_{k} n}{r_{k} d_{k+1}}\left[U_{k+1}^{A}\right]-\frac{\alpha_{k} s_{k}}{r_{k}}\left[U_{N}^{A}\right]
$$

and such that a generator of the direct summand \mathbb{Z} is mapped to $\left[U_{N}^{A}\right]$.

Proof Define a $*$-homomorphism $\pi: A \rightarrow M_{d_{1}} \oplus M_{d_{2}} \oplus \cdots \oplus M_{d_{N}}$ by

$$
\pi(f)=\left(\Lambda_{1}(f), \Lambda_{2}(f), \ldots, \Lambda_{N}(f)\right)
$$

Via the identification $S M_{n} \cong\left\{f \in C[0,1] \otimes M_{n}: f(0)=f(1)=0\right\}$ we define a *-homomorphism $\iota:\left(S M_{n}\right)^{N} \rightarrow A$ by

$$
\iota\left(f_{1}, f_{2}, \ldots, f_{N}\right)\left(e^{2 \pi i t}\right)=f_{k}\left(\frac{t-t_{k}}{t_{k+1}-t_{k}}\right), \quad t_{k} \leq t \leq t_{k+1}
$$

The short exact sequence

$$
0 \longrightarrow\left(S M_{n}\right)^{N} \xrightarrow{\iota} A \xrightarrow{\pi} M_{d_{1}} \oplus M_{d_{2}} \oplus \cdots \oplus M_{d_{N}} \longrightarrow 0
$$

gives rise to a six-term exact sequence

where δ denotes the exponential map.
By Bott periodicity $K_{1}\left(\left(S M_{n}\right)^{N}\right) \cong \mathbb{Z}^{N}$ is generated by $\left[V_{1}\right],\left[V_{2}\right], \ldots,\left[V_{N}\right]$, where

$$
V_{k}(t)=(1,1, \ldots, 1, \underbrace{\operatorname{diag}\left(e^{2 \pi i t}, 1, \ldots, 1\right)}_{\text {coordinate } k}, 1,1, \ldots, 1), \quad t \in[0,1]
$$

is a unitary in $\widetilde{\left(S M_{n}\right)^{N}}$. Note that $\iota\left(V_{k}-1\right)=U_{k}^{A}-1$ and hence $\iota_{*}\left(\left[V_{k}\right]\right)=\left[U_{k}^{A}\right]$ in $K_{1}(A)$. Since the map $\iota_{*}: K_{1}\left(\left(S M_{n}\right)^{N}\right) \rightarrow K_{1}(A)$ is surjective it follows that $K_{1}(A)$ is generated by $\left[U_{1}^{A}\right],\left[U_{2}^{A}\right], \ldots,\left[U_{N}^{A}\right]$, and that ι_{*} gives rise to an isomorphism between the cokernel of δ and $K_{1}(A)$.

Let $\left\{e_{i j}^{k}\right\}$ denote the standard matrix units in $M_{d_{1}} \oplus \cdots \oplus M_{d_{N}}$. Recall that $K_{0}\left(M_{d_{1}} \oplus\right.$ $\left.\cdots \oplus M_{d_{N}}\right) \cong \mathbb{Z}^{N}$ is generated by $\left[e_{11}^{1}\right],\left[e_{11}^{2}\right], \ldots,\left[e_{11}^{N}\right]$. We leave it with the reader to check that

$$
\delta\left(\left[e_{11}^{1}\right]\right)=-\frac{n}{d_{1}}\left[V_{N}\right]+\frac{n}{d_{1}}\left[V_{1}\right]
$$

and for $k=2,3, \ldots, N$,

$$
\delta\left(\left[e_{11}^{k}\right]\right)=-\frac{n}{d_{k}}\left[V_{k-1}\right]+\frac{n}{d_{k}}\left[V_{k}\right] .
$$

The conclusion follows from Lemma 3.1.

Choose a continuous function $\gamma: \mathbb{T} \rightarrow \mathbb{R}$ such that

$$
\operatorname{Det}\left(U_{N}^{A}(z)\right)=z \exp (2 \pi i \gamma(z)), \quad z \in \mathbb{T}
$$

Define a unitary v^{A} in A by

$$
v^{A}(z)=U_{N}^{A}(z) \exp \left(-2 \pi i \frac{\gamma(z)}{n}\right), \quad z \in \mathbb{T}
$$

Note that $\operatorname{Det}\left(v^{A}(z)\right)=z, z \in \mathbb{T}$.
Lemma 3.3 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block and let $u \in A$ be a unitary. If

$$
\begin{gathered}
\operatorname{Det}\left(\Lambda_{k}(u)\right)=1, \quad k=1,2, \ldots, N, \\
\operatorname{Det}(u(z))=1, \quad z \in \mathbb{T},
\end{gathered}
$$

then u can be connected to 1 via a continuous path of unitaries in A.
Proof Let us start with a simple and well-known observation. Let v be a unitary in the C^{*}-algebra $B=\left\{f \in C[0,1] \otimes M_{n}: f(0)=f(1)\right\}$ such that the winding number of $\operatorname{Det}(v(\cdot))$ is 0 . Then v can be connected to 1 via a continuous path $\left(v_{t}\right)_{t \in[0,1]}$ in $U(B)$. If $v(0)=1$ we may assume that $v_{t}(0)=1$ for every $t \in[0,1]$.

Let $e^{2 \pi i t_{1}}, \ldots, e^{2 \pi i t_{N}}$ be the exceptional points of A, where $t_{1}<t_{2}<\cdots<t_{N}$ are numbers in $] 0,1\left[\right.$. Set $t_{0}=t_{N}-1, t_{N+1}=t_{1}+1$ and let $\iota_{k}: M_{d_{k}} \rightarrow M_{n}$ be the inclusion, $k=1,2, \ldots, N$. Since the group of unitaries in $M_{d_{k}}$ with determinant 1 is path-connected there exists a continuous function $\gamma_{k}:\left[t_{k-1}, t_{k+1}\right] \rightarrow U\left(M_{d_{k}}\right)$ such that $\gamma_{k}\left(t_{k-1}\right)=\gamma_{k}\left(t_{k+1}\right)=1, \gamma_{k}\left(t_{k}\right)=\Lambda_{k}(u)$, and $\operatorname{Det}\left(\gamma_{k}(\cdot)\right)=1$. Set

$$
w_{k}\left(e^{2 \pi i t}\right)= \begin{cases}\iota_{k}\left(\gamma_{k}(t)\right) & t \in\left[t_{k-1}, t_{k+1}\right], \\ 1 & t \in\left[t_{k+1}, t_{k-1}+1\right] .\end{cases}
$$

It follows from the above observation that w_{k} can be connected to 1 via a continuous path of unitaries in A. Upon replacing u with $u w_{1}^{*} w_{2}^{*} \cdots w_{N}^{*}$ we may thus assume that $u\left(e^{2 \pi i t_{k}}\right)=1$ for $k=1,2, \ldots, N$. Set

$$
y_{k}\left(e^{2 \pi i t}\right)= \begin{cases}u\left(e^{2 \pi i t}\right) & t \in\left[t_{k}, t_{k+1}\right] \\ 1 & t \in\left[t_{k+1}, t_{k}+1\right]\end{cases}
$$

Then $u=y_{1} y_{2} \cdots y_{N}$. Again by the above observation, y_{k} can be connected to 1 within $U(A)$ for $k=1,2, \ldots, N$.

Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block and set $d=\operatorname{gcd}\left(d_{1}, d_{2}, \ldots, d_{N}\right)$. Since d divides d_{i} for every $i=1,2, \ldots, N$, there exists a unital and injective $*$ homomorphism $M_{d} \rightarrow A$ given by $f \mapsto \operatorname{diag}(f, f, \ldots, f)$.

Lemma 3.4 Let p be a projection in $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$. Then p is unitarily equivalent to a projection in $M_{d} \subseteq A$.

Proof Let $r \in \mathbb{Z}$ denote the rank of p and let $e^{2 \pi i t_{1}}, e^{2 \pi i t_{2}}, \ldots, e^{2 \pi i t_{N}}$ be the exceptional points of A, where $0<t_{1}<t_{2}<\cdots<t_{N}<1$. Since $\frac{n}{d_{k}}$ divides r for $k=1,2, \ldots, N$, it follows that $\frac{n}{d}$ also divides r. Hence there is a projection $e \in M_{d} \subseteq A$ with the same trace as p.

For each $t \in[0,1]$ there is a unitary $u_{t} \in M_{n}$ such that

$$
e=u_{t} p\left(e^{2 \pi i t}\right) u_{t}^{*}
$$

We may assume that $u_{t_{k}} \in M_{d_{k}}, k=1,2, \ldots, N$, and that $u_{0}=u_{1}$. By compactness

$$
[0,1]=\bigcup_{j=1}^{L-1}\left[s_{j}, s_{j+1}\right]
$$

where $0=s_{1}<s_{2}<\cdots<s_{L}=1,\left\{t_{1}, t_{2}, \ldots, t_{N}\right\} \subseteq\left\{s_{1}, s_{2}, \ldots, s_{L}\right\}$, and

$$
t \in\left[s_{j}, s_{j+1}\right] \Longrightarrow\left\|u_{s_{j}} p\left(e^{2 \pi i t}\right) u_{s_{j}}^{*}-e\right\|<1
$$

Set $z_{j}(t)=v_{j}(t)\left|v_{j}(t)\right|^{-1}$ for $t \in\left[s_{j}, s_{j+1}\right], j=1,2, \ldots, L-1$, where

$$
v_{j}(t)=1-u_{s_{j}} p\left(e^{2 \pi i t}\right) u_{s_{j}}^{*}-e+2 e u_{s_{j}} p\left(e^{2 \pi i t}\right) u_{s_{j}}^{*}
$$

Then $t \mapsto z_{j}(t), t \in\left[s_{j}, s_{j+1}\right]$, is a continuous path of unitaries in M_{n}, and by [19, Lemma 6.2.1]

$$
e=z_{j}(t) u_{s_{j}} p\left(e^{2 \pi i t}\right) u_{s_{j}}^{*} z_{j}(t)^{*}, \quad t \in\left[s_{j}, s_{j+1}\right]
$$

As $U\left(M_{n}\right) \cap\{e\}^{\prime}$ is path-connected there is for each $k=1,2, \ldots, L-1$ a continuous map $\gamma_{j}:\left[s_{j}, s_{j+1}\right] \rightarrow U\left(M_{n}\right) \cap\{e\}^{\prime}$ such that

$$
\gamma_{j}\left(s_{j}\right)=1, \quad \gamma_{j}\left(s_{j+1}\right)=u_{s_{j+1}} u_{s_{j}}^{*} z_{j}\left(s_{j+1}\right)^{*}
$$

Since $z_{j}\left(s_{j}\right)=1$ for $j=1,2, \ldots, L-1$, we can define a unitary $u \in A$ by

$$
u\left(e^{2 \pi i t}\right)=\gamma_{j}(t) z_{j}(t) u_{s_{j}}, \quad t \in\left[s_{j}, s_{j+1}\right]
$$

Then $u p u^{*}=e$.
Corollary 3.5 If $p \in A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ is a projection of rank $r \neq 0$ then

$$
p A p \cong A\left(r, \frac{r}{n} d_{1}, \frac{r}{n} d_{2}, \ldots, \frac{r}{n} d_{N}\right)
$$

Corollary 3.6 The embedding $M_{d} \subseteq$ A gives rise to an isomorphism of ordered groups with order units between $K_{0}\left(M_{d}\right)$ and $K_{0}(A)$. In other words,

$$
\left(K_{0}(A), K_{0}(A)^{+},[1]\right) \cong\left(\mathbb{Z}, \mathbb{Z}^{+}, d\right)
$$

By Lemma 2.3 we have the following:

Corollary 3.7 If $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ then $\rho_{A}\left(K_{0}(A)\right)=\mathbb{Z} \frac{1}{d} \widehat{1}$ in $\operatorname{Aff} T(A)$.
Lemma 3.8 $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ is unital projectionless if and only if $d=1$.

Proof As in the proof of Lemma 3.4 we see that there exists a projection $p \in A$ of rank $r \leq n$ if and only if $\frac{n}{d}$ divides r. The conclusion follows.

Lemma 3.9 Let K be a positive integer and let H be a finite abelian group. There exists a unital projectionless building block A with $s(A) \geq K$ such that $K_{1}(A) \cong \mathbb{Z} \oplus H$.

Proof Let

$$
H \cong \mathbb{Z}_{p_{1}^{k_{1}}} \oplus \mathbb{Z}_{p_{2}^{k_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{m}^{k_{m}}}
$$

where m is a positive integer, k_{1}, \ldots, k_{m} are non-negative integers, and p_{1}, \ldots, p_{m} are prime numbers. Let $q_{1}, q_{2}, \ldots, q_{m+1} \geq K$ be prime numbers, mutually different as well as different from $p_{1}, p_{2}, \ldots, p_{m}$. Define integers n and $d_{1}, d_{2}, \ldots, d_{m+1}$ by

$$
\begin{gathered}
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}} q_{1} q_{2} \cdots q_{m+1} \\
d_{1}=q_{2} q_{3} \cdots q_{m+1} \\
d_{i}=\frac{p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}}{p_{i-1}^{k_{i-1}}} \frac{q_{1} q_{2} \cdots q_{m+1}}{q_{i}}, \quad 2 \leq i \leq m+1
\end{gathered}
$$

Set $A=A\left(n, d_{1}, d_{2}, \ldots, d_{m+1}\right)$. Then $K_{1}(A) \cong \mathbb{Z} \oplus H$ by Theorem 3.2. A is unital projectionless by Lemma 3.8.

4 KK-Theory

Recall a few facts about $K K$-theory that can be found in e.g. [2]. $K K$ is a homotopy invariant bifunctor from the category of C^{*}-algebras to the category of abelian groups that is contravariant in the first variable and covariant in the second. A *homomorphism $\varphi: A \rightarrow M_{n}(B)$ defines an element $[\varphi] \in K K(A, B)$. We have an associative map $K K(B, C) \times K K(A, B) \rightarrow K K(A, C)$, the Kasparov product, that generalizes composition of $*$-homomorphisms.

The purpose of this section is to analyze the KK-theory of our building blocks. Inspired by the work of Jiang and $\mathrm{Su}[16$, Section 3], we will consider the K-homology groups $K^{0}(A)=K K(A, C)$. A $*$-homomorphism $\varphi: A \rightarrow M_{n}(B)$ induces a group homomorphism $\varphi^{*}: K^{0}(B) \rightarrow K^{0}(A)$ via the Kasparov product. $K^{0}\left(M_{n}\right) \cong \mathbb{Z}$ is generated by the class of the identity map on M_{n}.

If A and B are unital C^{*}-algebras we let $K K(A, B)_{e}$ be the set of elements $\kappa \in$ $K K(A, B)$ such that $\kappa_{*}: K_{0}(A) \rightarrow K_{0}(B)$ preserves the order unit.

Lemma 4.1 Let

$$
A=\left\{f \in C[0,1] \otimes M_{n}: f\left(t_{i}\right) \in M_{d_{i}}, i=1,2, \ldots, N\right\}
$$

where $N \geq 2,0 \leq t_{1}<t_{2}<\cdots<t_{N} \leq 1$, and $d_{1}, d_{2}, \ldots, d_{N}$ are integers dividing n. Let $\Lambda_{i}: A \rightarrow M_{d_{i}}$ be the $*$-homomorphism induced by evaluation at $t_{i}, i=1,2, \ldots, N$. Then $K^{0}(A)$ is generated by $\left[\Lambda_{1}\right],\left[\Lambda_{2}\right], \ldots,\left[\Lambda_{N}\right]$. Furthermore, for $a_{1}, a_{2}, \ldots, a_{N} \in \mathbb{Z}$ we have that

$$
a_{1}\left[\Lambda_{1}\right]+a_{2}\left[\Lambda_{2}\right]+\cdots+a_{N}\left[\Lambda_{N}\right]=0
$$

if and only if there exist $b_{1}, b_{2}, \ldots, b_{N} \in \mathbb{Z}$ such that $\sum_{i=1}^{N} b_{i}=0$ and

$$
a_{i}=b_{i} \frac{n}{d_{i}}, \quad i=1,2, \ldots, N
$$

Proof Choose $y \in] 0,1\left[\right.$ such that $t_{1}<y<t_{2}$. Set

$$
\begin{gathered}
B=\left\{f \in C[0, y] \otimes M_{n}: f\left(t_{1}\right) \in M_{d_{1}}\right\} \\
C=\left\{f \in C[y, 1] \otimes M_{n}: f\left(t_{i}\right) \in M_{d_{i}}, i=2,3, \ldots, N\right\} .
\end{gathered}
$$

We have a pull-back diagram

where g_{1}, g_{2} are the restriction maps and f_{1}, f_{2} evaluation at y. Apply the MayerVietoris sequence [2, Theorem 21.5.1] to get a six-term exact sequence

Note that $K^{1}\left(M_{n}\right)=0$ and $K^{0}\left(M_{n}\right) \cong \mathbb{Z}$. Thus the exact sequence becomes

Since f_{1} is homotopic to evaluation at x_{1} in B and f_{2} is homotopic to evaluation at x_{2} in C we see that

$$
\varphi(k)=\left(-k \frac{n}{d_{1}}\left[\left.\Lambda_{1}\right|_{B}\right], k \frac{n}{d_{N}}\left[\left.\Lambda_{N}\right|_{C}\right]\right), \quad k \in \mathbb{Z}
$$

B is homotopic to $M_{d_{1}}$ via $\left.\Lambda_{1}\right|_{B}$ and hence $K^{0}(B) \cong \mathbb{Z}$ is generated by $\left[\left.\Lambda_{1}\right|_{B}\right]$.
For $N=2$ we have that $K^{0}(C)$ is generated by $\left[\left.\Lambda_{2}\right|_{C}\right]$ and that

$$
\psi\left(a_{1}\left[\left.\Lambda_{1}\right|_{B}\right], a_{2}\left[\left.\Lambda_{2}\right|_{C}\right]\right)=a_{1}\left[\Lambda_{1}\right]+a_{2}\left[\Lambda_{2}\right] .
$$

Thus $K^{0}(A)$ is generated by $\left[\Lambda_{1}\right]$ and $\left[\Lambda_{2}\right]$ and

$$
a_{1}\left[\Lambda_{1}\right]+a_{2}\left[\Lambda_{2}\right]=0 \Longleftrightarrow \exists b_{1} \in \mathbb{Z}: a_{1}=-b_{1} \frac{n}{d_{1}}, a_{2}=b_{1} \frac{n}{d_{2}} .
$$

Proceeding by induction, assume that the lemma holds for $N-1$. By the induction hypothesis $K^{0}(C)$ is generated by $\left[\left.\Lambda_{2}\right|_{C}\right],\left[\left.\Lambda_{3}\right|_{C}\right], \ldots,\left[\left.\Lambda_{N}\right|_{C}\right]$. Note that

$$
\psi\left(a_{1}\left[\left.\Lambda_{1}\right|_{B}\right],\left(a_{2}\left[\left.\Lambda_{2}\right|_{C}\right]+\cdots+a_{N}\left[\left.\Lambda_{N}\right|_{C}\right]\right)\right)=\sum_{i=1}^{N} a_{i}\left[\Lambda_{i}\right]
$$

such that A is generated by $\left[\Lambda_{1}\right], \ldots,\left[\Lambda_{N}\right]$. It also follows that

$$
a_{1}\left[\Lambda_{1}\right]+a_{2}\left[\Lambda_{2}\right]+\cdots+a_{N}\left[\Lambda_{N}\right]=0
$$

if and only if there exists $k \in \mathbb{Z}$ such that

$$
-k \frac{n}{d_{1}}\left[\left.\Lambda_{1}\right|_{B}\right]=a_{1}\left[\left.\Lambda_{1}\right|_{B}\right], \quad k \frac{n}{d_{N}}\left[\left.\Lambda_{N}\right|_{C}\right]=a_{2}\left[\left.\Lambda_{2}\right|_{C}\right]+\cdots+a_{N}\left[\left.\Lambda_{N}\right|_{C}\right] .
$$

By the induction hypothesis this happens if and only if there exist $k, c_{2}, \ldots, c_{N} \in \mathbb{Z}$ such that $\sum_{i=2}^{N} c_{i}=0$ and

$$
a_{1}=-k \frac{n}{d_{1}}, \quad a_{i}=c_{i} \frac{n}{d_{i}}, \quad i=2,3, \ldots, N-1, \quad a_{N}-k \frac{n}{d_{N}}=c_{N} \frac{n}{d_{N}}
$$

The desired conclusion follows easily from these equations.
Proposition 4.2 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block. Then $K^{0}(A)$ is generated by $\left[\Lambda_{1}\right],\left[\Lambda_{2}\right], \ldots,\left[\Lambda_{N}\right]$. Furthermore, for $a_{1}, a_{2}, \ldots, a_{N} \in \mathbb{Z}$ we have that

$$
a_{1}\left[\Lambda_{1}\right]+a_{2}\left[\Lambda_{2}\right]+\cdots+a_{N}\left[\Lambda_{N}\right]=0
$$

if and only if there exist $b_{1}, b_{2}, \ldots, b_{N} \in \mathbb{Z}$ such that $\sum_{i=1}^{N} b_{i}=0$ and

$$
a_{i}=b_{i} \frac{n}{d_{i}}, \quad i=1,2, \ldots, N
$$

Proof Choose $\left.t_{1}, t_{2}, \ldots, t_{N} \in\right] 0,1\left[\right.$ such that $e^{2 \pi i t_{k}}, k=1,2, \ldots, N$, are the exceptional points for A. Set

$$
B=\left\{f \in C[0,1] \otimes M_{n}: f\left(t_{k}\right) \in M_{d_{k}}, k=1,2, \ldots, N\right\} .
$$

Define a $*$-homomorphism $\iota: A \rightarrow B$ by $\iota(f)(t)=f\left(e^{2 \pi i t}\right)$. Let $\pi: A \rightarrow M_{n}$ be evaluation at $1 \in \mathbb{T}$. Let $\alpha: M_{n} \rightarrow M_{n} \oplus M_{n}$ denote the map $\alpha(x)=(x, x)$. Let $\beta: B \rightarrow M_{n} \oplus M_{n}$ be the map $\beta(f)=(f(0), f(1))$. We have a pull-back diagram

and hence by [2, Theorem 21.5.1] a six-term exact sequence of the form

$K^{0}\left(M_{n} \oplus M_{n}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$ is generated by $\left[\pi_{1}\right]$ and $\left[\pi_{2}\right]$ where $\pi_{1}, \pi_{2}: M_{n} \oplus M_{n} \rightarrow M_{n}$ are the coordinate projections. $K^{0}\left(M_{n}\right) \cong \mathbb{Z}$ is generated by the class of the identity map id on M_{n}. Note that

$$
\begin{gathered}
\pi^{*}([\mathrm{id}])=\frac{n}{d_{1}}\left[\Lambda_{1}^{A}\right] \\
\iota^{*}\left(\left[\Lambda_{i}^{B}\right]\right)=\left[\Lambda_{i}^{A}\right], \quad i=1,2, \ldots, N, \\
\left(-\alpha^{*}, \beta^{*}\right)\left(a\left[\pi_{1}\right]+b\left[\pi_{2}\right]\right)=\left(-(a+b)[\mathrm{id}],(a+b) \frac{n}{d_{1}}\left[\Lambda_{1}^{B}\right]\right) .
\end{gathered}
$$

As $\pi^{*}+\iota^{*}$ maps onto $K^{0}(A)$ (because $K^{1}\left(M_{n}\right)=0$) and as $\operatorname{im}\left(\pi^{*}\right) \subseteq \operatorname{im}\left(\iota^{*}\right)$, we see that ι^{*} is surjective. Assume that $\iota^{*}(x)=0$. Then $(0, x) \in \operatorname{im}\left(-\alpha^{*}, \beta^{*}\right)$ and hence $x=0$ by the above. Thus ι^{*} is an isomorphism and the conclusion follows from Lemma 4.1.

Proposition 4.3 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ and $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ be building blocks and let $h: K^{0}(B) \rightarrow K^{0}(A)$ be a group homomorphism. For every $j=1,2, \ldots, M, i=1,2, \ldots, N$, there is a uniquely determined integer $h_{j i}$, with $0 \leq h_{j i}<\frac{n}{d_{i}}$ for $i \neq N$, such that

$$
\left(\begin{array}{c}
h\left(\left[\Lambda_{1}^{B}\right]\right) \\
h\left(\left[\Lambda_{2}^{B}\right]\right) \\
\vdots \\
h\left(\left[\Lambda_{M}^{B}\right]\right)
\end{array}\right)=\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 N} \\
h_{21} & h_{22} & \cdots & h_{2 N} \\
\vdots & \vdots & & \vdots \\
h_{M 1} & h_{M 2} & \cdots & h_{M N}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right)
$$

This will be called the standard form for h.

The integers determined by habove satisfy the equations

$$
\begin{gathered}
\frac{m}{e_{j}} h_{j i} \equiv \frac{m}{e_{M}} h_{M i} \quad \bmod \frac{n}{d_{i}}, \quad j=1,2, \ldots, M, i=1,2, \ldots, N \\
\frac{m}{e_{j}} \sum_{i=1}^{N} h_{j i} d_{i}=\frac{m}{e_{M}} \sum_{i=1}^{N} h_{M i} d_{i}, \quad j=1,2, \ldots, M
\end{gathered}
$$

Proof By Proposition 4.2, or simply because homotopic $*$-homomorphisms $A \rightarrow$ M_{n} define the same elements in $K^{0}(A)$, we have that

$$
\frac{n}{d_{N}}\left[\Lambda_{N}^{A}\right]=\frac{n}{d_{i}}\left[\Lambda_{i}^{A}\right], \quad i=1,2, \ldots, N .
$$

From this the existence follows.
To check uniqueness, assume

$$
\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 N} \\
h_{21} & h_{22} & \cdots & h_{2 N} \\
\vdots & \vdots & & \vdots \\
h_{M 1} & h_{M 2} & \cdots & h_{M N}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right)=0
$$

where

$$
-\frac{n}{d_{i}}<h_{j i}<\frac{n}{d_{i}}, \quad i=1,2, \ldots, N-1, j=1,2, \ldots, M
$$

Fix some $j=1,2, \ldots, M$. By Proposition 4.2 there exist integers $b_{j i}$ such that $h_{j i}=$ $b_{j i} \frac{n}{d_{i}}, i=1,2, \ldots, N$. Therefore $h_{j i}=0$ for $i=1,2, \ldots, N$.

Finally, to prove the equations above, fix again some $j=1,2, \ldots, M$. Note that

$$
0=h(0)=h\left(-\frac{m}{e_{j}}\left[\Lambda_{j}^{B}\right]+\frac{m}{e_{M}}\left[\Lambda_{M}^{B}\right]\right)=\sum_{i=1}^{N}\left(-\frac{m}{e_{j}} h_{j i}+\frac{m}{e_{M}} h_{M i}\right)\left[\Lambda_{i}^{A}\right] .
$$

Hence there exist integers $b_{j i}, i=1,2, \ldots, N$, such that $\sum_{i=1}^{N} b_{j i}=0$ and

$$
-\frac{m}{e_{j}} h_{j i}+\frac{m}{e_{M}} h_{M i}=b_{j i} \frac{n}{d_{i}} .
$$

The desired conclusion follows easily from these equations.
From now on, let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ and $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ be building blocks. Define a group homomorphism

$$
\Gamma: K K(A, B) \longrightarrow \operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right) \oplus K_{1}(B)
$$

by

$$
\Gamma(\kappa)=\left(\kappa^{*}, \kappa_{*}\left[v^{A}\right]\right)
$$

We want to show that Γ is an isomorphism in certain cases.

Proposition 4.4 Let $h: K^{0}(B) \rightarrow K^{0}(A)$ be a group homomorphism with standard form

$$
\left(\begin{array}{c}
h\left(\left[\Lambda_{1}^{B}\right]\right) \\
h\left(\left[\Lambda_{2}^{B}\right]\right) \\
\vdots \\
h\left(\left[\Lambda_{M}^{B}\right]\right)
\end{array}\right)=\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 N} \\
h_{21} & h_{22} & \cdots & h_{2 N} \\
\vdots & \vdots & & \vdots \\
h_{M 1} & h_{M 2} & \cdots & h_{M N}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right)
$$

where $h_{j N} \geq \frac{n}{d_{N}}$ for $j=1,2, \ldots, M$, and $\sum_{i=1}^{N} h_{M i} d_{i}=e_{M}$. Let $\chi \in K_{1}(B)$. There is a unital $*$-homomorphism $\varphi: A \rightarrow B$ such that $\Gamma([\varphi])=(h, \chi)$.

Proof Let $1 \leq i \leq N$. By Proposition 4.3 there is an integer $s_{i}, 0 \leq s_{i}<\frac{n}{d_{i}}$, and integers $l_{j i}, j=1,2, \ldots, M$, such that

$$
\begin{equation*}
\frac{m}{e_{j}} h_{j i}=l_{j i} \frac{n}{d_{i}}+s_{i} \tag{1}
\end{equation*}
$$

Note that $l_{j i} \geq 0$ for $i=1,2, \ldots, N-1$, and $l_{j N} \geq 1$. By Proposition 4.3 we see that for $j=1,2, \ldots, M$,

$$
m=\frac{m}{e_{M}} \sum_{i=1}^{N} h_{M i} d_{i}=\frac{m}{e_{j}} \sum_{i=1}^{N} h_{j i} d_{i}=\sum_{i=1}^{N}\left(l_{j i} n+s_{i} d_{i}\right)
$$

By (1) there exists a unitary $V_{j} \in M_{m}$ such that the matrix

$$
V_{j} \operatorname{diag}(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), \underbrace{f\left(x_{1}\right), \ldots, f\left(x_{1}\right)}_{l_{j 1} \text { times }}, \ldots, \underbrace{f\left(x_{N}\right), \ldots, f\left(x_{N}\right)}_{l_{j N} \text { times }}) V_{j}^{*}
$$

belongs to $M_{e_{j}} \subseteq M_{m}$ for all $f \in A$.
Set

$$
L=\frac{1}{n}\left(m-\sum_{i=1}^{N} s_{i} d_{i}\right)=\sum_{i=1}^{N} l_{j i}, \quad j=1,2, \ldots, M
$$

Let $x_{1}, x_{2}, \ldots, x_{N}$ denote the exceptional points of A and let $y_{1}, y_{2}, \ldots, y_{M}$ be those of B. Choose continuous functions $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L-1}: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\left(\lambda_{1}\left(y_{j}\right), \lambda_{2}\left(y_{j}\right), \ldots, \lambda_{L-1}\left(y_{j}\right)\right)=(\underbrace{x_{1}, \ldots, x_{1}}_{l_{j 1} \text { times }}, \ldots, \underbrace{x_{N-1}, \ldots, x_{N-1}}_{l_{j(N-1)} \text { times }}, \underbrace{x_{N}, \ldots, x_{N}}_{l_{j N}-1 \text { times }})
$$

as ordered tuples. Choose a unitary $U \in C(\mathbb{T}) \otimes M_{m}$ such that $U\left(y_{j}\right)=V_{j}$. Define a unital $*$-homomorphism $\psi: A \rightarrow B$ by

$$
\begin{aligned}
& \psi(f)(z) \\
& \quad=U(z) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\lambda_{1}(z)\right), \ldots, f\left(\lambda_{L-1}(z)\right), f\left(x_{N}\right)\right) U(z)^{*}
\end{aligned}
$$

By Theorem 3.2 we have that $\chi=\sum_{j=1}^{M} a_{j}\left[U_{j}^{B}\right]$ for some $a_{1}, a_{2}, \ldots, a_{M} \in \mathbb{Z}$. Let

$$
\psi_{*}\left[v^{A}\right]=\sum_{i=1}^{M} b_{j}\left[U_{j}^{B}\right]
$$

in $K_{1}(B)$. Define $\xi: \mathbb{T} \rightarrow \mathbb{T}$ by

$$
\begin{equation*}
\xi(z)=\prod_{j=1}^{M} \operatorname{Det}\left(U_{j}^{B}(z)\right)^{a_{j}-b_{j}} \tag{2}
\end{equation*}
$$

and define $\lambda_{L}: \mathbb{T} \rightarrow \mathbb{T}$ by $\lambda_{L}(z)=\xi(z) x_{N}$. Note that $\lambda_{L}\left(y_{j}\right)=x_{N}, j=1,2, \ldots, M$. Define $\varphi: A \rightarrow B$ by

$$
\varphi(f)(z)=U(z) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\lambda_{1}(z)\right), \ldots, f\left(\lambda_{L}(z)\right)\right) U(z)^{*}
$$

By Lemma 3.3 and (2) we see that in $K_{1}(B)$,

$$
\begin{aligned}
\varphi_{*}\left[v^{A}\right] & =\psi_{*}\left[v^{A}\right]+\left[z \mapsto U(z) \operatorname{diag}\left(1,1, \ldots, 1, v^{A}\left(\lambda_{L}(z)\right) v^{A}\left(x_{N}\right)^{*}\right) U(z)^{*}\right] \\
& =\psi_{*}\left[v^{A}\right]+\sum_{j=1}^{M}\left(a_{j}-b_{j}\right)\left[U_{j}^{B}\right]=\sum_{j=1}^{M} a_{j}\left[U_{j}^{B}\right] .
\end{aligned}
$$

Since $\varphi(f)\left(y_{j}\right)=\psi(f)\left(y_{j}\right), f \in A, j=1,2, \ldots, M$, we conclude that

$$
\begin{aligned}
\varphi^{*}\left(\left[\Lambda_{j}^{B}\right]\right) & =\left[\Lambda_{j}^{B} \circ \varphi\right]=\left[\Lambda_{j}^{B} \circ \psi\right]=\sum_{i=1}^{N}\left(s_{i}+l_{j i} \frac{n}{d_{i}}\right) \frac{e_{j}}{m}\left[\Lambda_{i}^{A}\right] \\
& =\sum_{i=1}^{N} h_{j i}\left[\Lambda_{i}^{A}\right]=h\left(\left[\Lambda_{j}^{B}\right]\right) .
\end{aligned}
$$

Lemma 4.5 Let $h: K^{0}(B) \rightarrow K^{0}(A)$ be a group homomorphism and assume that there exists a homomorphism $h^{\prime}: K^{0}(B) \rightarrow K^{0}(A)$ with standard form

$$
\left(\begin{array}{c}
h^{\prime}\left(\left[\Lambda_{1}^{B}\right]\right) \\
h^{\prime}\left(\left[\Lambda_{2}^{B}\right]\right) \\
\vdots \\
h^{\prime}\left(\left[\Lambda_{M}^{B}\right]\right)
\end{array}\right)=\left(\begin{array}{cccc}
h_{11}^{\prime} & h_{12}^{\prime} & \cdots & h_{1 N}^{\prime} \\
h_{21}^{\prime} & h_{22}^{\prime} & \cdots & h_{2 N}^{\prime} \\
\vdots & \vdots & & \vdots \\
h_{M 1}^{\prime} & h_{M 2}^{\prime} & \cdots & h_{M N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right)
$$

where $h_{j N}^{\prime} \geq \frac{n}{d_{N}}$ for $j=1,2, \ldots, M$, and $\sum_{i=1}^{N} h_{M i}^{\prime} d_{i}=e_{M}$. Then there is a $\kappa \in$ $K K(A, B)$ such that $\kappa^{*}=h$ in $\operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right)$.

Proof By Proposition 4.4 there exists an element $\nu \in K K(A, B)$ such that $\nu^{*}=h^{\prime}$. Let $h \in \operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right)$ have standard form

$$
\left(\begin{array}{c}
h\left(\left[\Lambda_{1}^{B}\right]\right) \\
h\left(\left[\Lambda_{2}^{B}\right]\right) \\
\vdots \\
h\left(\left[\Lambda_{M}^{B}\right]\right)
\end{array}\right)=\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 N} \\
h_{21} & h_{22} & \cdots & h_{2 N} \\
\vdots & \vdots & & \vdots \\
h_{M 1} & h_{M 2} & \cdots & h_{M N}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right)
$$

By adding an integer-multiple of h^{\prime} we may assume that $h_{j N} \geq 0$ for $j=1,2, \ldots, M$. Define $l_{j i}$ and $s_{i}, i=1,2, \ldots, N$, as in the proof of Proposition 4.4. Let

$$
c=\frac{m}{e_{M}} \sum_{i=1}^{N} h_{M i} d_{i}=\frac{m}{e_{j}} \sum_{i=1}^{N} h_{j i} d_{i}=\sum_{i=1}^{N}\left(l_{j i} n+s_{i} d_{i}\right), \quad j=1,2, \ldots, M
$$

Choose a positive integer d such that $c \leq d m$. Choose for each $j=1,2, \ldots, M$, a unitary $V_{j} \in M_{d m}$ such that the matrix

$$
V_{j} \operatorname{diag}(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), \underbrace{f\left(x_{1}\right), \ldots, f\left(x_{1}\right)}_{l_{j 1} \text { times }}, \ldots, \underbrace{f\left(x_{N}\right), \ldots, f\left(x_{N}\right)}_{l_{j N} \text { times }}, \underbrace{0, \ldots, 0}_{d m-c}) V_{j}^{*}
$$

belongs to $M_{d e_{j}} \subseteq M_{d m}$ for all $f \in A$.
As in the proof of Proposition 4.4 these matrices can be connected to define a $*-$ homomorphism $\varphi: A \rightarrow M_{d}(B)$. We leave it with the reader to check that $\varphi^{*}=h$ on $K^{0}(B)$. Set $\kappa=[\varphi]$.

Proposition 4.6 Assume that there exists a homomorphism $h^{\prime}: K^{0}(B) \rightarrow K^{0}(A)$ with standard form

$$
\left(\begin{array}{c}
h^{\prime}\left(\left[\Lambda_{1}^{B}\right]\right) \\
h^{\prime}\left(\left[\Lambda_{2}^{B}\right]\right) \\
\vdots \\
h^{\prime}\left(\left[\Lambda_{M}^{B}\right]\right)
\end{array}\right)=\left(\begin{array}{cccc}
h_{11}^{\prime} & h_{12}^{\prime} & \cdots & h_{1 N}^{\prime} \\
h_{21}^{\prime} & h_{22}^{\prime} & \cdots & h_{2 N}^{\prime} \\
\vdots & \vdots & & \vdots \\
h_{M 1}^{\prime} & h_{M 2}^{\prime} & \cdots & h_{M N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right)
$$

where $h_{j N}^{\prime} \geq \frac{n}{d_{N}}$ for $j=1,2, \ldots, M$, and $\sum_{i=1}^{N} h_{M i}^{\prime} d_{i}=e_{M}$. Then the map Γ : $K K(A, B) \rightarrow \operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right) \oplus K_{1}(B)$ is an isomorphism.

Proof By Theorem 3.2 there exist finite abelian groups G and H such that $K_{1}(A) \cong$ $\mathbb{Z} \oplus G, K_{1}(B) \cong \mathbb{Z} \oplus H$. By the universal coefficient theorem, [23, Theorem 1.17],

$$
\begin{aligned}
& K K(A, B) \cong \operatorname{Ext}\left(K_{0}(A), K_{1}(B)\right) \oplus \operatorname{Ext}\left(K_{1}(A), K_{0}(B)\right) \\
& \oplus \operatorname{Hom}\left(K_{0}(A), K_{0}(B)\right) \oplus \operatorname{Hom}\left(K_{1}(A), K_{1}(B)\right) \\
& \cong 0 \oplus G \oplus \mathbb{Z} \oplus \operatorname{Hom}(G, H) \oplus K_{1}(B)
\end{aligned}
$$

By the universal coefficient theorem again, $K^{0}(A) \cong K_{1}(A)$ and $K^{0}(B) \cong K_{1}(B)$. Hence

$$
\operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right) \oplus K_{1}(B) \cong K_{1}(A) \oplus \operatorname{Hom}(H, G) \oplus K_{1}(B)
$$

Note that $\operatorname{Hom}(G, H) \cong \operatorname{Hom}(H, G)$. Thus $\operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right) \oplus K_{1}(B)$ and $K K(A, B)$ are isomorphic groups. Since any surjective endomorphism of a finitely generated abelian group is an isomorphism, it suffices to show that Γ is surjective.

Let $(h, \chi) \in \operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right) \oplus K_{1}(B)$. By Lemma 4.5 there exists an element $\kappa \in K K(A, B)$ such that $\Gamma(\kappa)=\left(h-h^{\prime}, \eta\right)$ for some $\eta \in K_{1}(B)$. Next, by Proposition 4.4 there exists a $\nu \in K K(A, B)$ such that $\Gamma(\nu)=\left(h^{\prime}, \chi-\eta\right)$. Thus $\Gamma(\kappa+\nu)=(h, \chi)$.

Theorem 4.7 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ and $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ be building blocks such that $s(B) \geq N n$ and assume that there exists an element κ in $K K(A, B)_{e}$. Then the map $\Gamma: K K(A, B) \rightarrow \operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right) \oplus K_{1}(B)$ is an isomorphism and there exists a unital $*$-homomorphism $\varphi: A \rightarrow B$ such that $[\varphi]=\kappa$.

Proof Let $\kappa^{*}: K^{0}(B) \rightarrow K^{0}(A)$ have standard form

$$
\left(\begin{array}{c}
\kappa^{*}\left(\left[\Lambda_{1}^{B}\right]\right) \\
\kappa^{*}\left(\left[\Lambda_{2}^{B}\right]\right) \\
\vdots \\
\kappa^{*}\left(\left[\Lambda_{M}^{B}\right]\right)
\end{array}\right)=\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 N} \\
h_{21} & h_{22} & \cdots & h_{2 N} \\
\vdots & \vdots & & \vdots \\
h_{M 1} & h_{M 2} & \cdots & h_{M N}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right) .
$$

Let \cdot denote the Kasparov product. By assumption we have that $\left[1_{A}\right] \cdot \kappa=\left[1_{B}\right]$ in $K K(\mathbb{C}, B) \cong K_{0}(B)$. Thus

$$
\left[1_{B}\right] \cdot\left[\Lambda_{j}^{B}\right]=\left[1_{A}\right] \cdot \kappa \cdot\left[\Lambda_{j}^{B}\right]=\left[1_{A}\right] \cdot\left(\sum_{i=1}^{N} h_{j i}\left[\Lambda_{i}^{A}\right]\right)
$$

in $K K(\mathbb{C}, \mathbb{C}) \cong \mathbb{Z}$. Hence $e_{j}=\sum_{i=1}^{N} h_{j i} d_{i}$ for $j=1,2, \ldots, M$. This implies that $h_{j N}>\frac{n}{d_{N}}$ since

$$
N n \leq e_{j}=\sum_{i=1}^{N} h_{j i} d_{i}<\sum_{i=1}^{N-1} \frac{n}{d_{i}} d_{i}+h_{j N} d_{N}=(N-1) n+h_{j N} d_{N} .
$$

Therefore Γ is an isomorphism by Proposition 4.6. By Proposition 4.4 there is a unital $*$-homomorphism $\varphi: A \rightarrow B$ such that $\Gamma([\varphi])=\Gamma(\kappa)$. Thus $[\varphi]=\kappa$.

5 The Commutator Subgroup of the Unitary Group

In this section we analyze the unitary group modulo the closure of its commutator subgroup for building blocks.

Lemma 5.1 Let A be a unital inductive limit of a sequence of finite direct sums of building blocks. Then the canonical maps $\pi_{0}(U(A)) \rightarrow K_{1}(A)$ and $\pi_{1}(U(A)) \rightarrow$ $K_{0}(A)$ are isomorphisms.

Proof Following [24] we let $k_{n}(\cdot)=\pi_{n+1}(U(\cdot))$ for every integer $n \geq-1$. By [24, Proposition 2.6] it suffices to show that the canonical maps $k_{-1}(A) \rightarrow \bar{k}_{-1}(A \otimes \mathcal{K}) \cong$ $K_{1}(A)$ and $k_{0}(A) \rightarrow k_{0}(A \otimes \mathcal{K}) \cong K_{0}(A)$ are isomorphisms, where \mathcal{K} denotes the set of compact operators on a separable infinite dimensional Hilbert-space. As noted in [24] it follows from [14, Proposition 4.4] that k_{n} is a continuous functor. Since it is obviously additive, we may assume that A is a building block.

As in the proof of Theorem 3.2 we see that there exists finite dimensional C^{*} algebras F_{1} and F_{2} such that we have a short exact sequence of the form

$$
0 \longrightarrow S F_{1} \longrightarrow A \longrightarrow F_{2} \longrightarrow 0
$$

Apply [24, Proposition 2.5] to this short exact sequence and the one obtained by tensoring with \mathcal{K} to obtain two long exact sequences for k_{n}. It is well-known that the canonical maps $k_{i}\left(F_{2}\right) \rightarrow k_{i}\left(F_{2} \otimes \mathcal{K}\right)$ and $k_{i}\left(S F_{1}\right) \rightarrow k_{i}\left(S F_{1} \otimes \mathcal{K}\right)$ are isomorphisms for $i=-1,0$ (cf. [24, Lemma 2.3]), so the theorem follows from the five lemma in algebra.

Let A be a unital C^{*}-algebra. Let $\pi_{A}: U(A) / \overline{D U(A)} \rightarrow K_{1}(A)$ denote the group homomorphism $\pi_{A}\left(q_{A}^{\prime}(u)\right)=[u]$.

Proposition 5.2 Let A be a unital inductive limit of a sequence of finite direct sums of building blocks. There exists a group homomorphism

$$
\begin{gathered}
\lambda_{A}: \operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)} \longrightarrow U(A) / \overline{D U(A)}, \\
\lambda_{A}\left(q_{A}(\widehat{a})\right)=q_{A}^{\prime}\left(e^{2 \pi i a}\right), \quad a \in A_{\mathrm{sa}} .
\end{gathered}
$$

This map is an isometry when $\operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)}$ is equipped with the metric d_{A}, and it gives rise to a short exact sequence of abelian groups

$$
0 \longrightarrow \operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)} \xrightarrow{\lambda_{A}} U(A) / \overline{D U(A)} \xrightarrow{\pi_{A}} K_{1}(A) \longrightarrow 0
$$

This sequence is natural in A and splits unnaturally.
Proof Combine Lemma 5.1 with [27, Lemma 6.4].
Proposition 5.3 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block. Let $u \in A$ be a unitary. Assume that

$$
\begin{gathered}
\operatorname{Det}(u(z))=1, \quad z \in \mathbb{T} \\
\operatorname{Det}\left(\Lambda_{i}(u)\right)=1, \quad i=1,2, \ldots, N
\end{gathered}
$$

Then $u \in \overline{D U(A)}$.

Proof First note that $[u]=0$ in $K_{1}(A)$ by Lemma 3.3. Hence $q_{A}^{\prime}(u)=q_{A}^{\prime}\left(e^{2 \pi i a}\right)$ by Proposition 5.2 for some self-adjoint element $a \in A$. Since

$$
\operatorname{Det}(u(z))=\operatorname{Det}\left(e^{2 \pi i a(z)}\right)=e^{2 \pi i \operatorname{Tr}(a(z))}
$$

it follows that $\operatorname{Tr}(a(z))=k$ for some $k \in \mathbb{Z}$ and all $z \in \mathbb{T}$. Hence $\widehat{a}=\frac{k}{n} \widehat{1}$ in Aff $T(A)$ by Lemma 2.3. By applying λ_{A} we get that $q_{A}^{\prime}(u)=q_{A}^{\prime}\left(e^{2 \pi i a}\right)=q_{A}^{\prime}(\lambda 1)$, where $\lambda=e^{2 \pi i \frac{k}{n}}$. Since $\operatorname{Det}\left(\Lambda_{i}(u)\right)=1$ we see that $\lambda^{d_{i}}=1, i=1,2, \ldots, N$. Thus $\lambda^{d}=1$ where $d=\operatorname{gcd}\left(d_{1}, d_{2}, \ldots, d_{N}\right)$. But then $\frac{k}{n}=\frac{l}{d}$ for some $l \in \mathbb{Z}$. It follows by Corollary 3.7 that $\frac{k}{n} \widehat{1} \in \rho_{A}\left(K_{0}(A)\right)$ and hence by Proposition 5.2 we get that $\lambda 1 \in \overline{D U(A)}$.

Lemma 5.4 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block with exceptional points $x_{1}, x_{2}, \ldots, x_{N}$. Let $g: \mathbb{T} \rightarrow \mathbb{T}$ be a continuous function and let $h_{i} \in \mathbb{T}$ be such that $h_{i}^{\frac{n}{d_{i}}}=g\left(x_{i}\right), i=1,2, \ldots, N$. There exists a unitary $u \in A$ such that

$$
\begin{gathered}
\operatorname{Det}(u(z))=g(z), \quad z \in \mathbb{T} \\
\operatorname{Det}\left(\Lambda_{i}(u)\right)=h_{i}, \quad i=1,2, \ldots, N
\end{gathered}
$$

Proof Choose a continuous function $f: \mathbb{T} \rightarrow \mathbb{T}$ such that $f\left(x_{i}\right)^{d_{i}}=h_{i}$. Define a unitary $v \in A$ by $v=f \otimes 1$. Since

$$
f\left(x_{i}\right)^{n}=h_{i}^{\frac{n}{d_{i}}}=g\left(x_{i}\right)
$$

we can define a unitary $w \in A$ by

$$
w(z)=\operatorname{diag}\left(g(z) f(z)^{-n}, 1,1, \ldots, 1\right), \quad z \in \mathbb{T}
$$

Set $u=w v$.

Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block. By Lemma 5.4 there exist unitaries $w_{1}^{A}, w_{2}^{A}, \ldots, w_{N}^{A} \in A$ such that $\operatorname{Det}\left(w_{k}^{A}(z)\right)=1, z \in \mathbb{T}, k=1,2, \ldots, N$, and such that

$$
\operatorname{Det}\left(\Lambda_{l}\left(w_{k}^{A}\right)\right)= \begin{cases}1 & l \neq k \\ \exp \left(2 \pi i \frac{d_{l}}{n}\right) & l=k\end{cases}
$$

Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ and $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ be building blocks. Let $\varphi: A \rightarrow B$ be a unital $*$-homomorphism. As in [27, Chapter 1] we define $s^{\varphi}(j, i)$ to be the multiplicity of the representation Λ_{i}^{A} in the representation $\Lambda_{j}^{B} \circ \varphi$ for $i=$ $1,2, \ldots, N, j=1,2, \ldots, M$.

The following theorem shows that there is a connection between $K K(A, B)$ and the torsion subgroups of $U(A) / \overline{D U(A)}$ and $U(B) / \overline{D U(B)}$ when A and B are building blocks.

Theorem 5.5 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ and $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ be building blocks and let $\varphi, \psi: A \rightarrow B$ be unital $*$-homomorphisms. The following are equivalent.
(i) $\varphi^{*}=\psi^{*}$ in $\operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right)$,
(ii) $s^{\varphi}(j, i) \equiv s^{\psi}(j, i) \bmod \frac{n}{d_{i}}, i=1,2, \ldots, N, j=1,2, \ldots, M$,
(iii) $\varphi^{\#}(x)=\psi^{\#}(x), x \in \operatorname{Tor}(U(A) / \overline{D U(A)})$,
(iv) $\varphi^{\#}\left(q_{A}^{\prime}\left(w_{k}^{A}\right)\right)=\psi^{\#}\left(q_{A}^{\prime}\left(w_{k}^{A}\right)\right), k=1,2, \ldots, N$.

Proof For each $i=1,2, \ldots, N, j=1,2, \ldots, M$, let r_{i}^{j} and s_{i}^{j} be the integers with $0 \leq r_{i}^{j}, s_{i}^{j}<\frac{n}{d_{i}}$, and $r_{i}^{j} \equiv s^{\varphi}(j, i) \bmod \frac{n}{d_{i}}, s_{i}^{j} \equiv s^{\psi}(j, i) \bmod \frac{n}{d_{i}}$. By Lemma 2.1 there exist $a_{1}^{j}, \ldots, a_{K_{j}}^{j}, b_{1}^{j}, \ldots, b_{L_{j}}^{j} \in \mathbb{T}$ and unitaries $u_{j}, v_{j} \in M_{e_{j}}$ such that

$$
\begin{equation*}
\Lambda_{j}^{B} \circ \varphi(f)=u_{j} \operatorname{diag}\left(\Lambda_{1}^{r_{1}^{j}}(f), \Lambda_{2}^{r_{2}^{j}}(f), \ldots, \Lambda_{N}^{r_{N}^{j}}(f), f\left(a_{1}^{j}\right), f\left(a_{2}^{j}\right), \ldots, f\left(a_{K_{j}}^{j}\right)\right) u_{j}^{*} \tag{3}
\end{equation*}
$$

(4) $\Lambda_{j}^{B} \circ \psi(f)=v_{j} \operatorname{diag}\left(\Lambda_{1}^{s_{1}^{j}}(f), \Lambda_{2}^{s_{2}^{j}}(f), \ldots, \Lambda_{N}^{s_{N}^{j}}(f), f\left(b_{1}^{j}\right), f\left(b_{2}^{j}\right), \ldots, f\left(b_{L_{j}}^{j}\right)\right) v_{j}^{*}$.

Since

$$
e_{j}=\sum_{i=1}^{N} r_{i}^{j} d_{i}+K_{j} n=\sum_{i=1}^{N} s_{i}^{j} d_{i}+L_{j} n
$$

we remark that if (ii) holds then $K_{j}=L_{j}, j=1,2, \ldots, M$.
Note that

$$
\begin{aligned}
& \varphi^{*}\left(\left[\Lambda_{j}^{B}\right]\right)=\sum_{i=1}^{N} r_{i}^{j}\left[\Lambda_{i}^{A}\right]+K_{j} \frac{n}{d_{N}}\left[\Lambda_{N}^{A}\right]=\sum_{i=1}^{N-1} r_{i}^{j}\left[\Lambda_{i}^{A}\right]+\left(K_{j} \frac{n}{d_{N}}+r_{N}^{j}\right)\left[\Lambda_{N}^{A}\right] \\
& \psi^{*}\left(\left[\Lambda_{j}^{B}\right]\right)=\sum_{i=1}^{N} s_{i}^{j}\left[\Lambda_{i}^{A}\right]+L_{j} \frac{n}{d_{N}}\left[\Lambda_{N}^{A}\right]=\sum_{i=1}^{N-1} s_{i}^{j}\left[\Lambda_{i}^{A}\right]+\left(L_{j} \frac{n}{d_{N}}+s_{N}^{j}\right)\left[\Lambda_{N}^{A}\right]
\end{aligned}
$$

By Proposition 4.3 we see that $\varphi^{*}=\psi^{*}$ if and only if for every $j=1,2, \ldots, M$,

$$
K_{j} \frac{n}{d_{N}}+r_{N}^{j}=L_{j} \frac{n}{d_{N}}+s_{N}^{j}, \quad \text { and } \quad r_{i}^{j}=s_{i}^{j}, \quad i=1,2, \ldots, N-1
$$

It follows that (i) holds if and only if $r_{i}^{j}=s_{i}^{j}$ and $K_{j}=L_{j}$ for every i, j. But this statement is equivalent to (ii) by the remark above.

Assume (ii) holds. To prove (iii), let $u \in A$ be a unitary such that $q_{A}(u)$ has finite order in the group $U(A) / \overline{D U(A)}$. Then $\operatorname{Det}(u(\cdot))$ is constant. By (3), (4), and since $K_{j}=L_{j}, j=1,2, \ldots, M$, it follows that

$$
\operatorname{Det}\left(\Lambda_{j}(\varphi(u))\right)=\operatorname{Det}\left(\Lambda_{j}(\psi(u))\right), \quad j=1,2, \ldots, M
$$

In particular, $\operatorname{Det}(\varphi(u)(\cdot))$ equals $\operatorname{Det}(\psi(u)(\cdot))$ at the exceptional points of B. On the other hand, $\operatorname{Det}(\varphi(u)(\cdot))$ and $\operatorname{Det}(\psi(u)(\cdot))$ are constant functions on \mathbb{T} and
are hence equal everywhere. We may therefore use Proposition 5.3 to conclude that $\varphi^{\#}\left(q_{A}(u)\right)=\psi^{\#}\left(q_{A}(u)\right)$. (iii) \Rightarrow (iv) is trivial. Assume (iv). By (3) and (4),

$$
\exp \left(2 \pi i \frac{d_{k}}{n} r_{k}^{j}\right)=\operatorname{Det}\left(\Lambda_{j}^{B} \circ \varphi\left(w_{k}^{A}\right)\right)=\operatorname{Det}\left(\Lambda_{j}^{B} \circ \psi\left(w_{k}^{A}\right)\right)=\exp \left(2 \pi i \frac{d_{k}}{n} s_{k}^{j}\right)
$$

Hence $r_{k}^{j}=s_{k}^{j}$ for $k=1,2, \ldots, N, j=1,2, \ldots, M$, and we have (ii).

Proposition 5.6 Let A and B be finite direct sums of building blocks, let $\varphi, \psi: A \rightarrow$ B be unital *-homomorphisms, and let x be an element of finite order in the group $U(A) / \overline{D U(A)}$. If $[\varphi]=[\psi]$ in $K K(A, B)$ then $\varphi^{\#}(x)=\psi^{\#}(x)$.

Proof We may assume that B is a building block rather than a finite direct sum of building blocks. Let $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{R}$ where each A_{i} is a building block, and let $\iota_{i}: A_{i} \rightarrow A$ denote the inclusion. Let $p_{1}, p_{2}, \ldots, p_{R}$ be the minimal non-zero central projections in A. Since $\varphi_{*}\left[p_{i}\right]=\psi_{*}\left[p_{i}\right]$ in $K_{0}(B)$, it follows from Lemma 3.4 that there is a unitary $u \in B$ such that $u \varphi\left(p_{i}\right) u^{*}=\psi\left(p_{i}\right), i=1,2, \ldots, R$. Hence we may assume that $\varphi\left(p_{i}\right)=\psi\left(p_{i}\right), i=1,2, \ldots, R$. Set $q_{i}=\varphi\left(p_{i}\right)$.

Let $\varphi_{i}, \psi_{i}: A_{i} \rightarrow q_{i} B q_{i}$ be the induced maps and let $\epsilon_{i}: q_{i} B q_{i} \rightarrow B$ be the inclusion, $i=1,2, \ldots, R$. If $q_{i} \neq 0$ then $\left[\epsilon_{i}\right] \in K K\left(q_{i} B q_{i}, B\right)$ is a $K K$-equivalence by [23, Theorem 7.3]. Thus

$$
\left[\varphi_{i}\right]=\left[\epsilon_{i}\right]^{-1} \cdot[\varphi] \cdot\left[\iota_{i}\right]=\left[\epsilon_{i}\right]^{-1} \cdot[\psi] \cdot\left[\iota_{i}\right]=\left[\psi_{i}\right]
$$

in $K K\left(A_{i}, q_{i} B q_{i}\right)$. Let $x=q_{A}^{\prime}(u)$ where $u \in A$ is a unitary. Let $u=\sum_{i=1}^{R} \iota_{i}\left(u_{i}\right)$ where $u_{i} \in A_{i}$. By Theorem 5.5 and Corollary 3.5 we see that $\varphi_{i}\left(u_{i}\right)=\psi_{i}\left(u_{i}\right) \bmod$ $\overline{D U\left(q_{i} B q_{i}\right)}$ and thus $\epsilon_{i} \circ \varphi_{i}\left(u_{i}\right)+\left(1-q_{i}\right)=\epsilon_{i} \circ \psi_{i}\left(u_{i}\right)+\left(1-q_{i}\right) \bmod \overline{D U(B)}$. Hence

$$
\begin{aligned}
\varphi(u) & =\prod_{i=1}^{R} \varphi\left(\iota_{i}\left(u_{i}\right)+\left(1-p_{i}\right)\right)=\prod_{i=1}^{R}\left(\epsilon_{i} \circ \varphi_{i}\left(u_{i}\right)+\left(1-q_{i}\right)\right) \\
& =\prod_{i=1}^{R}\left(\epsilon_{i} \circ \psi_{i}\left(u_{i}\right)+\left(1-q_{i}\right)\right)=\prod_{i=1}^{R} \psi\left(\iota_{i}\left(u_{i}\right)+\left(1-p_{i}\right)\right)=\psi(u)
\end{aligned}
$$

modulo $\overline{D U(B)}$.

6 Homomorphisms Between Building Blocks

In this section we improve a result of Thomsen on $*$-homomorphisms between building blocks that will be needed in the next section.

Whenever $\theta_{1}, \theta_{2}, \ldots, \theta_{L}$ are real numbers such that

$$
\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{L} \leq \theta_{1}+1
$$

it will be convenient for us in the following to define θ_{n} for every $n \in \mathbb{Z}$ by the formula $\theta_{p L+r}=\theta_{r}+p$, where $p \in \mathbb{Z}, r=1,2, \ldots, L$. Note that for every $n \in \mathbb{Z}$,

$$
\theta_{n} \leq \theta_{n+1} \leq \cdots \leq \theta_{n+L} \leq \theta_{n}+1
$$

and

$$
\left(e^{2 \pi i \theta_{1}}, e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{L}}\right)=\left(e^{2 \pi i \theta_{n}}, e^{2 \pi i \theta_{n+1}}, \ldots, e^{2 \pi i \theta_{n+L}}\right)
$$

as unordered L-tuples.
Lemma 6.1 Let $a_{1}, a_{2}, \ldots, a_{L} \in \mathbb{T}$ and let k be an integer. There exist real numbers $\theta_{1}, \theta_{2}, \ldots, \theta_{L}$ such that

$$
\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{L} \leq \theta_{1}+1
$$

such that $\sum_{r=1}^{L} \theta_{r} \in[k, k+1[$ and such that

$$
\left(a_{1}, a_{2}, \ldots, a_{L}\right)=\left(e^{2 \pi i \theta_{1}}, e^{2 \pi i \theta_{2}}, \ldots, e^{2 \pi i \theta_{L}}\right)
$$

as unordered L-tuples.
Proof Choose $\omega_{1}, \omega_{2}, \ldots, \omega_{L} \in\left[0,1\left[\right.\right.$ such that $\omega_{1} \leq \omega_{2} \leq \cdots \leq \omega_{L}$ and such that

$$
\left(a_{1}, a_{2}, \ldots, a_{L}\right)=\left(e^{2 \pi i \omega_{1}}, e^{2 \pi i \omega_{2}}, \ldots, e^{2 \pi i \omega_{L}}\right)
$$

as unordered L-tuples. Let l be the integer such that $\sum_{r=1}^{L} \omega_{r} \in\left[l, l+1\left[\right.\right.$. Set $\theta_{r}=$ ω_{r+k-l}.

Lemma 6.2 Assume that

$$
\left(\exp \left(2 \pi i \theta_{1}\right), \ldots, \exp \left(2 \pi i \theta_{L}\right)\right)=\left(\exp \left(2 \pi i \omega_{1}\right), \ldots, \exp \left(2 \pi i \omega_{L}\right)\right)
$$

as unordered L-tuples, where $\theta_{1}, \theta_{2}, \ldots, \theta_{L}$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{L}$ are real numbers such that

$$
\begin{aligned}
& \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{L} \leq \theta_{1}+1 \\
& \omega_{1} \leq \omega_{2} \leq \cdots \leq \omega_{L} \leq \omega_{1}+1
\end{aligned}
$$

Then $\theta_{j}=\omega_{r+j}, j=1,2, \ldots, L$, where $r=\sum_{j=1}^{L}\left(\theta_{j}-\omega_{j}\right)$.
Proof Choose $m \in \mathbb{Z}$ such that $\theta_{m}<\theta_{m+1}$ and choose $n \in \mathbb{Z}$ such that

$$
\theta_{m+1}=\omega_{n+1}>\omega_{n}
$$

Assume that

$$
\theta_{m+p}=\omega_{n+q}+k
$$

for some integers p, q with $1 \leq p \leq L, 1 \leq q \leq L$, and an integer k. Then

$$
\begin{aligned}
& -1<\theta_{m+1}-\theta_{m+L} \leq \theta_{m+1}-\theta_{m+p}=\omega_{n+1}-\omega_{n+q}-k \leq-k \\
& 0 \leq \theta_{m+p}-\theta_{m+1}=\omega_{n+q}+k-\omega_{n+1}<\omega_{n+q}+k-\omega_{n} \leq 1+k
\end{aligned}
$$

Hence $k=0$. By assumption it follows that for every $x \in \mathbb{R}$,

$$
\#\left\{j=1,2, \ldots, L: \theta_{m+j}=x\right\}=\#\left\{j=1,2, \ldots, L: \omega_{n+j}=x\right\} .
$$

Thus

$$
\left(\theta_{m+1}, \theta_{m+2}, \ldots, \theta_{m+L}\right)=\left(\omega_{n+1}, \omega_{n+2}, \ldots, \omega_{n+L}\right)
$$

as unordered L-tuples. Therefore

$$
\theta_{m+j}=\omega_{n+j}, \quad j=1,2, \ldots, L
$$

Hence $\theta_{j}=\omega_{n-m+j}$ for $j=1,2, \ldots, L$. From this it follows that $r=n-m$.
Proposition 6.3 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}:[0,1] \rightarrow \mathbb{T}$ be continuous functions and let k be an integer. There exist continuous functions $F_{1}, F_{2}, \ldots, F_{L}:[0,1] \rightarrow \mathbb{R}$ such that $\sum_{j=1}^{L} F_{j}(0) \in[k, k+1[$ and such that for each $t \in[0,1]$,

$$
F_{1}(t) \leq F_{2}(t) \leq \cdots \leq F_{L}(t) \leq F_{1}(t)+1
$$

and
$\left(\lambda_{1}(t), \lambda_{2}(t), \ldots, \lambda_{L}(t)\right)=\left(\exp \left(2 \pi i F_{1}(t)\right), \exp \left(2 \pi i F_{2}(t)\right), \ldots, \exp \left(2 \pi i F_{L}(t)\right)\right)$
as unordered L-tuples.
Proof Choose a positive integer n such that

$$
|s-t| \leq \frac{1}{n} \Longrightarrow \rho\left(\lambda_{j}(s), \lambda_{j}(t)\right)<\frac{1}{2 L}, \quad s, t \in[0,1], j=1,2, \ldots, L
$$

We will prove by induction in m that there exist continuous functions F_{1}, \ldots, F_{L} that satisfy the above for $t \in\left[0, \frac{m}{n}\right]$. The case $m=0$ follows from Lemma 6.1.

Now assume that for some $m=0,1, \ldots, n-1$ we have constructed continuous functions $F_{1}, F_{2}, \ldots, F_{L}:\left[0, \frac{m}{n}\right] \rightarrow \mathbb{R}$ such that $\sum_{j=1}^{L} F_{j}(0) \in[k, k+1[$, and such that for each $t \in\left[0, \frac{m}{n}\right], F_{1}(t) \leq F_{2}(t) \leq \cdots \leq F_{L}(t) \leq F_{1}(t)+1$, and

$$
\left(\lambda_{1}(t), \lambda_{2}(t), \ldots, \lambda_{L}(t)\right)=\left(\exp \left(2 \pi i F_{1}(t)\right), \exp \left(2 \pi i F_{2}(t)\right), \ldots, \exp \left(2 \pi i F_{L}(t)\right)\right)
$$

as unordered L-tuples. Choose $\alpha_{m} \in \mathbb{R}$ such that $\rho\left(e^{2 \pi i \alpha_{m}}, \lambda_{j}\left(\frac{m}{n}\right)\right) \geq \frac{1}{2 L}$ for $j=$ $1,2, \ldots, L$. Choose continuous functions $\left.G_{j}:\left[\frac{m}{n}, \frac{m+1}{n}\right] \rightarrow\right] \alpha_{m}, \alpha_{m}+1[$ such that for each $t \in\left[\frac{m}{n}, \frac{m+1}{n}\right]$,

$$
G_{1}(t) \leq G_{2}(t) \leq \cdots \leq G_{L}(t)
$$

and

$$
\begin{aligned}
& \left(\lambda_{1}(t), \lambda_{2}(t), \ldots, \lambda_{L}(t)\right) \\
& \quad=\left(\exp \left(2 \pi i G_{1}(t)\right), \exp \left(2 \pi i G_{2}(t)\right), \ldots, \exp \left(2 \pi i G_{L}(t)\right)\right)
\end{aligned}
$$

as unordered L-tuples. Set for $j=1,2, \ldots, L, p \in \mathbb{Z}$,

$$
G_{p L+j}(t)=G_{j}(t)+p, \quad t \in\left[\frac{m}{n}, \frac{m+1}{n}\right] .
$$

By Lemma 6.2 there exists an integer r such that for $j=1,2, \ldots, L$,

$$
F_{j}\left(\frac{m}{n}\right)=G_{r+j}\left(\frac{m}{n}\right)
$$

Define for $j=1,2, \ldots, L$, a continuous function $F_{j}^{\prime}:\left[0, \frac{m+1}{n}\right] \rightarrow \mathbb{R}$ by

$$
F_{j}^{\prime}(t)= \begin{cases}F_{j}(t) & t \in\left[0, \frac{m}{n}\right], \\ G_{r+j}(t) & t \in\left[\frac{m}{n}, \frac{m+1}{n}\right]\end{cases}
$$

$F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{L}^{\prime}$ satisfy the conclusion of the lemma for $t \in\left[0, \frac{m+1}{n}\right]$.
Proposition 6.4 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ and $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ be building blocks and let $\varphi: A \rightarrow B$ be a unital $*$-homomorphism. There exist integers $r_{1}, r_{2}, \ldots, r_{N}$ with $0 \leq r_{i}<\frac{n}{d_{i}}$, an integer $L \geq 0$, and a unitary $w \in M_{m}$ such that if $\psi: A \rightarrow B$ is a unital $*$-homomorphism with $\varphi^{\#}\left(q_{A}^{\prime}\left(\omega_{k}^{A}\right)\right)=\psi^{\#}\left(q_{A}^{\prime}\left(\omega_{k}^{A}\right)\right)$, $k=1,2, \ldots, N$, and if $\gamma: \mathbb{T} \rightarrow \mathbb{R}$ is a continuous function such that

$$
\operatorname{Det}\left(\psi\left(v^{A}\right)(z)\right)=\operatorname{Det}\left(\varphi\left(v^{A}\right)(z)\right) \exp (2 \pi i \gamma(z)), \quad z \in \mathbb{T}
$$

then φ and ψ are approximately unitarily equivalent to $*$-homomorphisms of the form

$$
\begin{aligned}
\varphi^{\prime}(f)\left(e^{2 \pi i t}\right) & =u(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i F_{1}(t)}\right), \ldots, f\left(e^{2 \pi i F_{L}(t)}\right)\right) u(t)^{*} \\
\psi^{\prime}(f)\left(e^{2 \pi i t}\right) & =v(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i G_{1}(t)}\right), \ldots, f\left(e^{2 \pi i G_{L}(t)}\right)\right) v(t)^{*}
\end{aligned}
$$

where $u, v \in C[0,1] \otimes M_{m}$ are unitaries with $u(0)=v(0)=1, u(1)=v(1)=w$, and $F_{1}, F_{2}, \ldots, F_{L}:[0,1] \rightarrow \mathbb{R}$ and $G_{1}, G_{2}, \ldots, G_{L}:[0,1] \rightarrow \mathbb{R}$ are continuous functions such that for every $t \in[0,1]$,

$$
\begin{aligned}
& F_{1}(t) \leq F_{2}(t) \leq \cdots \leq F_{L}(t) \leq F_{1}(t)+1, \\
& G_{1}(t) \leq G_{2}(t) \leq \cdots \leq G_{L}(t) \leq G_{1}(t)+1,
\end{aligned}
$$

and such that $\gamma\left(e^{2 \pi i t}\right)=\sum_{r=1}^{L}\left(G_{r}(t)-F_{r}(t)\right)$ for every $t \in[0,1]$.

Proof By [27, Chapter 1] it follows that φ is approximately unitarily equivalent to a *-homomorphism $\varphi_{1}: A \rightarrow B$ of the form

$$
\begin{equation*}
\varphi_{1}(f)\left(e^{2 \pi i t}\right)=u_{0}(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(\lambda_{1}(t)\right), \ldots, f\left(\lambda_{L}(t)\right)\right) u_{0}(t)^{*} \tag{5}
\end{equation*}
$$

for $t \in[0,1]$, where $r_{1}, r_{2}, \ldots, r_{N}$ are integers, $0 \leq r_{i}<\frac{n}{d_{i}}, i=1,2, \ldots, N$, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}:[0,1] \rightarrow \mathbb{T}$ are continuous functions, and $u_{0} \in C[0,1] \otimes M_{m}$ is a unitary. Let l denote the winding number of $\operatorname{Det}\left(\varphi\left(v^{A}\right)(\cdot)\right)$. Let y be a unitary $(L n) \times(L n)$ matrix such that

$$
y \operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{L}\right) y^{*}=\operatorname{diag}\left(a_{L}, a_{1}, a_{2}, \ldots, a_{L-1}\right)
$$

for all $a_{1}, a_{2}, \ldots, a_{L} \in M_{m}$. Set

$$
w=\operatorname{diag}(\underbrace{1,1, \ldots, 1}_{m-L n \text { times }}, y^{l})
$$

Let now $\psi: A \rightarrow B$ be given. As above ψ is approximately unitarily equivalent to a $*$-homomorphism $\psi_{1}: A \rightarrow B$ of the form

$$
\psi_{1}(f)\left(e^{2 \pi i t}\right)=v_{0}(t) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\mu_{1}(t)\right), \ldots, f\left(\mu_{K}(t)\right)\right) v_{0}(t)^{*}
$$

Note that

$$
\begin{aligned}
& s^{\varphi}(j, i) \frac{m}{e_{j}}=s^{\varphi_{1}}(j, i) \frac{m}{e_{j}}=r_{i}+\#\left\{r=1,2, \ldots, L: \lambda_{r}\left(y_{j}\right)=x_{i}\right\} \frac{n}{d_{i}} \\
& s^{\psi}(j, i) \frac{m}{e_{j}}=s^{\psi_{1}}(j, i) \frac{m}{e_{j}}=s_{i}+\#\left\{r=1,2, \ldots, K: \mu_{r}\left(y_{j}\right)=x_{i}\right\} \frac{n}{d_{i}}
\end{aligned}
$$

By Theorem 5.5 it follows that $r_{i}=s_{i}, i=1,2, \ldots, N$. And since

$$
m=K n+\sum_{i=1}^{N} s_{i} d_{i}=L n+\sum_{i=1}^{N} r_{i} d_{i}
$$

we see that $K=L$.
By Proposition 6.3 choose continuous functions $F_{1}, F_{2}, \ldots, F_{L}:[0,1] \rightarrow \mathbb{R}$ such that for every $t \in[0,1]$,

$$
F_{1}(t) \leq F_{2}(t) \leq \cdots \leq F_{L}(t) \leq F_{1}(t)+1
$$

and such that

$$
\left(\lambda_{1}(t), \lambda_{2}(t), \ldots, \lambda_{L}(t)\right)=\left(e^{2 \pi i F_{1}(t)}, e^{2 \pi i F_{2}(t)}, \ldots, e^{2 \pi i F_{L}(t)}\right)
$$

as unordered L-tuples for each $t \in[0,1]$. Again by Proposition 6.3 there exist continuous functions $G_{1}, G_{2}, \ldots, G_{L}:[0,1] \rightarrow \mathbb{R}$ such that for every $t \in[0,1]$,

$$
G_{1}(t) \leq G_{2}(t) \leq \cdots \leq G_{L}(t) \leq G_{1}(t)+1
$$

such that

$$
\left(\mu_{1}(t), \mu_{2}(t), \ldots, \mu_{L}(t)\right)=\left(e^{2 \pi i G_{1}(t)}, e^{2 \pi i G_{2}(t)}, \ldots, e^{2 \pi i G_{L}(t)}\right)
$$

as unordered L-tuples for each $t \in[0,1]$, and such that

$$
\begin{equation*}
\left|\sum_{r=1}^{L} G_{r}(0)-\sum_{r=1}^{L} F_{r}(0)+\gamma(1)\right|<1 \tag{6}
\end{equation*}
$$

It follows from (5) that

$$
\left(\exp \left(2 \pi i F_{1}(0)\right), \ldots, \exp \left(2 \pi i F_{L}(0)\right)\right)=\left(\exp \left(2 \pi i F_{1}(1)\right), \ldots, \exp \left(2 \pi i F_{L}(1)\right)\right)
$$

as unordered L-tuples. Since $l=\sum_{r=1}^{L}\left(F_{r}(1)-F_{r}(0)\right)$ we see by Lemma 6.2 that $F_{r}(1)=F_{r+l}(0)$ for each $r=1,2, \ldots, L$. Similarly, as $\operatorname{Det}\left(\varphi\left(v^{A}\right)(\cdot)\right)$ and $\operatorname{Det}\left(\psi\left(v^{A}\right)(\cdot)\right)$ have the same winding number, $G_{r}(1)=G_{r+l}(0), r=1,2, \ldots, L$.

Let $\left.t_{1}, t_{2}, \ldots, t_{M} \in\right] 0,1\left[\right.$ be numbers such that $e^{2 \pi i t_{j}}, j=1,2, \ldots, M$, are the exceptional points of B. By (5) there exist a unitary $u_{j} \in M_{m}$ such that

$$
u_{j} \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i F_{1}\left(t_{j}\right)}\right), \ldots, f\left(e^{2 \pi i F_{L}\left(t_{j}\right)}\right)\right) u_{j}^{*} \in M_{e_{j}} \subseteq M_{m}
$$

for every $f \in A$. Choose a unitary $u \in C[0,1] \otimes M_{m}$ such that $u\left(t_{j}\right)=u_{j}, j=$ $1,2, \ldots, M, u(0)=1$ and $u(1)=w$. Note that for every $f \in A$,

$$
\begin{aligned}
& u(0) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i F_{1}(0)}\right), \ldots, f\left(e^{2 \pi i F_{L}(0)}\right)\right) u(0)^{*} \\
& \quad=u(1) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i F_{1}(1)}\right), \ldots, f\left(e^{2 \pi i F_{L}(1)}\right)\right) u(1)^{*}
\end{aligned}
$$

It follows that we may define a unital $*$-homomorphism $\varphi^{\prime}: A \rightarrow B$ by

$$
\varphi^{\prime}(f)\left(e^{2 \pi i t}\right)=u(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i F_{1}(t)}\right), \ldots, f\left(e^{2 \pi i F_{L}(t)}\right)\right) u(t)^{*}
$$

for $f \in A, t \in[0,1]$. Then for every $f \in A, z \in \mathbb{T}$,

$$
\operatorname{Tr}(\varphi(f)(z))=\operatorname{Tr}\left(\varphi_{1}(f)(z)\right)=\operatorname{Tr}\left(\varphi^{\prime}(f)(z)\right)
$$

Hence φ and φ^{\prime} are approximately unitarily equivalent by [27, Theorem 1.4].
Similarly we see that there exists a unitary $v \in C[0,1] \otimes M_{m}$ such that $v(0)=1$ and $v(1)=w$, and such that

$$
\psi^{\prime}(f)\left(e^{2 \pi i t}\right)=v(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i G_{1}(t)}\right), \ldots, f\left(e^{2 \pi i G_{L}(t)}\right)\right) v(t)^{*}
$$

defines a $*$-homomorphism that is approximately unitarily equivalent to ψ. Finally note that by (6) we have that $\gamma\left(e^{2 \pi i t}\right)=\sum_{r=1}^{L}\left(G_{r}(t)-F_{r}(t)\right)$ for every $t \in[0,1]$.

7 Uniqueness

The purpose of this section is to prove a uniqueness theorem, i.e., a theorem saying that two unital $*$-homomorphisms between (finite direct sums of) building blocks are close in a suitable sense if they approximately agree on the invariant. Many of the arguments here are inspired by similar arguments in [8], [10], [20], [27], and [16].

We start out with some definitions. Let k be a positive integer. A k-arc is an arcsegment of the form

$$
I=\left\{e^{2 \pi i t}: t \in\left[\frac{m}{k}, \frac{n}{k}\right]\right\}
$$

where m and n are integers, $m<n$. We set

$$
I \pm \epsilon=\left\{e^{2 \pi i t}: t \in\left[\frac{m}{k}-\epsilon, \frac{n}{k}+\epsilon\right]\right\} .
$$

Define a metric on the set of unordered L-tuples consisting of elements from \mathbb{T} by

$$
R_{L}\left(\left(a_{1}, a_{2}, \ldots, a_{L}\right),\left(b_{1}, b_{2}, \ldots, b_{L}\right)\right)=\min _{\sigma \in \Sigma_{L}}\left(\max _{1 \leq i \leq L} \rho\left(a_{i}, b_{\sigma(i)}\right)\right)
$$

where Σ_{L} denotes the group of permutations of the set $\{1,2, \ldots, L\}$. It follows from Lemma 7.3 below that it suffices to take the minimum over a certain subset of Σ_{L}.

Lemma 7.1 Let $a_{1}, a_{2}, \ldots, a_{L}, b_{1}, b_{2}, \ldots, b_{L} \in \mathbb{T}$ and let $\epsilon>0$. Assume that there is a positive integer k such that

$$
\#\left\{r: a_{r} \in I\right\} \leq \#\left\{r: b_{r} \in I \pm \epsilon\right\}
$$

for all k-arcs I. Then

$$
R_{L}\left(\left(a_{1}, a_{2}, \ldots, a_{L}\right),\left(b_{1}, b_{2}, \ldots, b_{L}\right)\right) \leq \epsilon+\frac{1}{k}
$$

Proof For $j=1,2, \ldots, L$, set

$$
X_{j}=\left\{x \in \mathbb{T}: \rho\left(x, a_{j}\right) \leq \epsilon+\frac{1}{k}\right\}
$$

and

$$
C_{j}=\left\{r=1,2, \ldots, L: b_{r} \in X_{j}\right\} .
$$

Let $S \subseteq\{1,2, \ldots, L\}$ be arbitrary. We will show that $\# S \leq \# \bigcup_{j \in S} C_{j}$.
Let $Y_{1}, Y_{2}, \ldots, Y_{m}$ be the connected components of $\bigcup_{j \in S} X_{j}$. Choose for each $n=1,2, \ldots, m$ a k-arc I_{n} such that $I_{n} \pm \epsilon \subseteq Y_{n}$ and $\left\{a_{j}: j \in S\right\} \cap Y_{n} \subseteq I_{n}$. Then

$$
\#\left\{r: a_{r} \in I_{n}\right\} \leq \#\left\{r: b_{r} \in I_{n} \pm \epsilon\right\} \leq \#\left\{r: b_{r} \in Y_{n}\right\}
$$

If $r \in S$ then $a_{r} \in I_{n}$ for some n. Hence

$$
\# S \leq \#\left\{r: a_{r} \in \bigcup_{n=1}^{m} I_{n}\right\} \leq \#\left\{r: b_{r} \in \bigcup_{n=1}^{m} Y_{n}\right\}=\#\left\{r: b_{r} \in \bigcup_{j \in S} X_{j}\right\}=\# \bigcup_{j \in S} C_{j} .
$$

By Hall's marriage lemma, see e.g. [4, Theorem 2.2], the sets $C_{j}, j=1,2, \ldots, L$, have distinct representatives. In other words, there exists a permutation σ of $\{1,2, \ldots, L\}$ such that $\rho\left(a_{j}, b_{\sigma(j)}\right) \leq \epsilon+\frac{1}{k}$ for $j=1,2, \ldots, L$.

Lemma 7.2 Let $a_{1} \leq a_{2} \leq \cdots \leq a_{L}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{L}$ be real numbers and let σ be a permutation of $\{1,2, \ldots, L\}$. Then

$$
\max _{1 \leq j \leq L}\left|a_{j}-b_{j}\right| \leq \max _{1 \leq j \leq L}\left|a_{j}-b_{\sigma(j)}\right|
$$

Proof Let $\epsilon=\max \left|a_{j}-b_{\sigma(j)}\right|$. If e.g. $b_{j}<a_{j}-\epsilon$ for some j then σ must map the set $\{1,2, \ldots, j\}$ into $\{1,2, \ldots, j-1\}$. Contradiction.

The corresponding statement for the circle is slightly more complicated. It can be viewed as a generalization of Lemma 6.2.

Lemma 7.3 Let $\theta_{1}, \theta_{2}, \ldots, \theta_{L}$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{L}$ be real numbers such that

$$
\begin{aligned}
\theta_{1} & \leq \theta_{2} \leq \cdots \leq \theta_{L} \leq \theta_{1}+1 \\
\omega_{1} & \leq \omega_{2} \leq \cdots \leq \omega_{L} \leq \omega_{1}+1
\end{aligned}
$$

There exists an integer p such that

$$
\max _{1 \leq j \leq L}\left|\theta_{j}-\omega_{j+p}\right|=R_{L}\left(\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{L}}\right),\left(e^{2 \pi i \omega_{1}}, \ldots, e^{2 \pi i \omega_{L}}\right)\right)
$$

Proof Let $\epsilon=R_{L}\left(\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{L}}\right),\left(e^{2 \pi i \omega_{1}}, \ldots, e^{2 \pi i \omega_{L}}\right)\right)$. Note that $0 \leq \epsilon \leq \frac{1}{2}$. There exist $y_{1}, y_{2}, \ldots, y_{L} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left(e^{2 \pi i \omega_{1}}, e^{2 \pi i \omega_{2}}, \ldots, e^{2 \pi i \omega_{L}}\right)=\left(e^{2 \pi i y_{1}}, e^{2 \pi i y_{2}}, \ldots, e^{2 \pi i y_{L}}\right) \tag{7}
\end{equation*}
$$

as unordered tuples, and such that

$$
\begin{equation*}
\left|\theta_{j}-y_{j}\right| \leq \epsilon, \quad j=1,2, \ldots, L \tag{8}
\end{equation*}
$$

By Lemma 7.2 we may assume that $y_{1} \leq y_{2} \leq \cdots \leq y_{L}$ and still have that (7) and (8) hold.

Choose an integer $n, 0 \leq n \leq L-1$, such that $y_{1}, y_{2}, \ldots, y_{n}<y_{L}-1$ and $y_{L}-1 \leq y_{n+1}, y_{n+2}, \ldots, y_{L}$. Then $y_{1}+1, \ldots, y_{n}+1 \in\left[y_{L}-1, y_{L}\right]$ since $y_{L} \leq y_{1}+2$ by (8). Choose $z_{1}, z_{2}, \ldots, z_{L} \in\left[y_{L}-1, y_{L}\right]$ such that $z_{1} \leq z_{2} \leq \cdots \leq z_{L}$ and

$$
\left(z_{1}, z_{2}, \ldots, z_{L}\right)=\left(y_{1}+1, \ldots, y_{n}+1, y_{n+1}, \ldots, y_{L}\right)
$$

as unordered L-tuples. By (8) and Lemma 7.2 we see that max $\left|z_{j}-\theta_{n+j}\right| \leq \epsilon$. By (7) and Lemma 6.2 we have that $z_{j}=\omega_{j+m}$ for some integer m. Hence

$$
\max _{j}\left|\theta_{j}-\omega_{j+m-n}\right|=\max _{j}\left|\theta_{n+j}-\omega_{j+m}\right| \leq \epsilon
$$

The reversed inequality is trivial.
The following lemma is fundamental in the proof of Theorem 7.5.

Lemma 7.4 Let $\theta_{1}, \theta_{2}, \ldots, \theta_{L}$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{L}$ be real numbers such that

$$
\begin{aligned}
& \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{L} \leq \theta_{1}+1, \\
& \omega_{1} \leq \omega_{2} \leq \cdots \leq \omega_{L} \leq \omega_{1}+1,
\end{aligned}
$$

and $\left|\sum_{j=1}^{L}\left(\theta_{j}-\omega_{j}\right)\right|<\delta$ for some $\delta>0$. Let $\epsilon>0$ satisfy that $L \epsilon \leq \delta$ and

$$
R_{L}\left(\left(e^{2 \pi i \theta_{1}}, e^{2 \pi i \theta_{2}}, \ldots, e^{2 \pi i \theta_{L}}\right),\left(e^{2 \pi i \omega_{1}}, e^{2 \pi i \omega_{2}}, \ldots, e^{2 \pi i \omega_{L}}\right)\right) \leq \epsilon
$$

Assume finally that for some positive integer s,

$$
\begin{equation*}
\#\left\{j: e^{2 \pi i \omega_{j}} \in I\right\} \geq 2 \delta, \quad j=1,2, \ldots, L \tag{9}
\end{equation*}
$$

for everys-arc I. Then

$$
\left|\theta_{j}-\omega_{j}\right|<\epsilon+\frac{2}{s}, \quad j=1,2, \ldots, L
$$

Proof By Lemma 7.3 there exists an integer p such that

$$
\left|\theta_{j}-\omega_{j+p}\right| \leq \epsilon, \quad j=1,2, \ldots, L
$$

Note that

$$
|p|=\left|\sum_{j=1}^{L}\left(\omega_{j+p}-\omega_{j}\right)\right| \leq\left|\sum_{j=1}^{L}\left(\omega_{j+p}-\theta_{j}\right)\right|+\left|\sum_{j=1}^{L}\left(\theta_{j}-\omega_{j}\right)\right|<L \epsilon+\delta \leq 2 \delta
$$

Fix some $j=1,2, \ldots, L$. Set

$$
J= \begin{cases}\left\{e^{2 \pi i t}: \omega_{j}<t<\omega_{j+p}\right\} & \text { if } p \geq 0 \\ \left\{e^{2 \pi i t}: \omega_{j+p}<t<\omega_{j}\right\} & \text { if } p<0\end{cases}
$$

Since $\#\left\{j: e^{2 \pi i \omega_{j}} \in J\right\}<|p|$ we see by (9) that J cannot contain an s-arc. Thus $\left|\omega_{j}-\omega_{j+p}\right|<\frac{2}{s}$. It follows that $\left|\theta_{j}-\omega_{j}\right|<\epsilon+\frac{2}{s}, j=1,2, \ldots, L$.

Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block and p a positive integer. Let I be a p-arc. Choose a continuous function $f_{A}^{I}: \mathbb{T} \rightarrow\left[0, \frac{1}{n}\right]$ such that $\varnothing \neq \operatorname{supp} f_{A}^{I} \subseteq I$ and such that f_{A}^{I} equals 0 at all the exceptional points of A. Choose a continuous function $g_{A}^{I}: \Pi \rightarrow[0,1]$ such that g_{A}^{I} equals 1 on I, such that supp $g_{A}^{I} \subseteq I \pm \frac{1}{2 p}$, and such that supp $g_{A}^{I} \backslash I$ contains no exceptional points of A. Set

$$
\begin{aligned}
H(A, p) & =\left\{f_{A}^{I} \otimes 1: I p-\operatorname{arc}\right\} \\
\widetilde{H}(A, p) & =\left\{g_{A}^{I} \otimes 1: I p-\operatorname{arc}\right\}
\end{aligned}
$$

Theorem 7.5 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block. Let $\epsilon>0$ and let $F \subseteq A$ be a finite set. There exists a positive integer l_{0} such that if l, p and q are positive integers with $l_{0} \leq l \leq p \leq q$, if $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ is a building block, if $\varphi, \psi: A \rightarrow B$ are unital $*$-homomorphisms, and if $\delta>0$, such that
(i) $\widehat{\psi}(\widehat{h})>\frac{8}{p}, h \in H(A, l)$,
(ii) $\widehat{\psi}(\widehat{h})>\frac{2}{q}, h \in H(A, p)$,
(iii) $\|\widehat{\varphi}(\widehat{h})-\widehat{\psi}(\widehat{h})\|<\delta, h \in \widetilde{H}(A, 2 q)$,
(iv) $\widehat{\psi}(\widehat{h})>\delta, h \in H(A, 4 q)$,
(v) $\varphi^{\#}\left(q_{A}^{\prime}\left(\omega_{k}^{A}\right)\right)=\psi^{\#}\left(q_{A}^{\prime}\left(\omega_{k}^{A}\right)\right), k=1,2, \ldots, N$,
(vi) $D_{B}\left(\varphi^{\#}\left(q_{A}^{\prime}\left(v^{A}\right)\right), \psi^{\#}\left(q_{A}^{\prime}\left(v^{A}\right)\right)\right)<\frac{1}{q}$;
then there exists a unitary $W \in B$ such that

$$
\left\|\varphi(f)-W \psi(f) W^{*}\right\|<\epsilon, \quad f \in F
$$

Proof Choose l_{0} such that for $x, y \in \mathbb{T}$,

$$
\rho(x, y) \leq \frac{6}{l_{0}} \Longrightarrow\|f(x)-f(y)\|<\frac{\epsilon}{6}, \quad f \in F
$$

Let integers $q \geq p \geq l \geq l_{0}$, a building block $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$, and unital $*$-homomorphisms $\varphi, \psi: A \rightarrow B$ be given such that (i)-(vi) are satisfied. Choose $c>0$ such that for $x, y \in \mathbb{T}$,

$$
\begin{aligned}
& \rho(x, y)<c \Longrightarrow\|\varphi(f)(x)-\varphi(f)(y)\|<\frac{\epsilon}{6}, \quad f \in F \\
& \rho(x, y)<c \Longrightarrow\|\psi(f)(x)-\psi(f)(y)\|<\frac{\epsilon}{6}, \quad f \in F
\end{aligned}
$$

Let $x_{1}, x_{2}, \ldots, x_{N}$ denote the exceptional points of A and let $y_{1}, y_{2}, \ldots, y_{M}$ be those of B. Let for each $\left.j=1,2, \ldots, M, t_{j} \in\right] 0,1\left[\right.$ be the number such that $e^{2 \pi i t_{j}}=y_{j}$. Let $\tau: \mathbb{T} \rightarrow \mathbb{T}$ be a continuous function such that $\rho(\tau(z), z)<c$ for every $z \in \mathbb{T}$, and such that for each $j=1,2, \ldots, M, \tau$ is constantly equal to y_{j} on some arc

$$
I_{j}=\left\{e^{2 \pi i t}: t \in\left[a_{j}, b_{j}\right]\right\}
$$

where $0<a_{j}<t_{j}<b_{j}<1$. Define a unital $*$-homomorphism $\chi: B \rightarrow B$ by $\chi(f)=f \circ \tau$. Set $\varphi_{1}=\chi \circ \varphi$ and $\psi_{1}=\chi \circ \psi$. Then

$$
\begin{array}{ll}
\left\|\varphi(f)-\varphi_{1}(f)\right\|<\frac{\epsilon}{6}, & f \in F \\
\left\|\psi(f)-\psi_{1}(f)\right\|<\frac{\epsilon}{6}, & f \in F
\end{array}
$$

φ_{1} and ψ_{1} satisfy (i)-(vi). Let

$$
\varphi_{1}\left(v^{A}\right)=c \psi_{1}\left(v^{A}\right) e^{2 \pi i b}
$$

where $c \in \overline{D U(B)}$ and $b \in B$ is a self-adjoint element with $\|b\|<\frac{1}{q}$. Note that

$$
\begin{equation*}
\operatorname{Det}\left(\varphi_{1}\left(v^{A}\right)(z)\right)=\operatorname{Det}\left(\psi_{1}\left(v^{A}\right)(z)\right) \exp (2 \pi i \operatorname{Tr}(b(z))), \quad z \in \mathbb{T} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Det}\left(\Lambda_{j} \circ \varphi_{1}\left(v^{A}\right)\right)=\operatorname{Det}\left(\Lambda_{j} \circ \psi_{1}\left(v^{A}\right)\right) \exp \left(2 \pi i \operatorname{Tr}\left(\Lambda_{j}(b)\right)\right), \quad j=1,2, \ldots, M \tag{11}
\end{equation*}
$$

Fix some $j=1,2, \ldots, M$. Let $\iota_{j}: M_{e_{j}} \rightarrow M_{m}$ denote the (unital) inclusion. By Theorem 5.5 and (v) we have that $s^{\varphi_{1}}(j, i) \equiv s^{\psi_{1}}(j, i) \bmod \frac{n}{d_{i}}, i=1,2, \ldots, N$, $j=1,2, \ldots, M$. Choose $s_{i}^{j}, 0 \leq s_{i}^{j}<\frac{n}{d_{i}}$, such that $s_{i}^{j} \equiv s^{\varphi_{1}}(j, i) \bmod \frac{n}{d_{i}}$. By Lemma 2.1 we see that for each $z \in I_{j}$,

$$
\begin{aligned}
& \varphi_{1}(f)(z)=\iota_{j}\left(y_{1}^{j} \operatorname{diag}\left(\Lambda_{1}^{s_{1}^{j}}(f), \ldots, \Lambda_{N}^{s_{N}^{j}}(f), f\left(e^{2 \pi i \theta_{1}^{j}}\right), \ldots, f\left(e^{2 \pi i \theta_{D_{j}}^{j}}\right)\right) y_{1}^{j *}\right) \\
& \psi_{1}(f)(z)=\iota_{j}\left(y_{2}^{j} \operatorname{diag}\left(\Lambda_{1}^{s_{1}^{j}}(f), \ldots, \Lambda_{N}^{s_{N}^{j}}(f), f\left(e^{2 \pi i \omega_{1}^{j}}\right), \ldots, f\left(e^{2 \pi i \omega_{D_{j}}^{j}}\right)\right) y_{2}^{j *}\right)
\end{aligned}
$$

for some unitaries $y_{1}^{j}, y_{2}^{j} \in M_{e_{j}}$ and numbers $\theta_{1}^{j}, \ldots, \theta_{D_{j}}^{j}, \omega_{1}^{j}, \ldots, \omega_{D_{j}}^{j} \in \mathbb{R}$. By changing y_{1}^{j} and y_{2}^{j} we may by (11) and Lemma 6.1 assume that

$$
\begin{gathered}
\theta_{1}^{j} \leq \theta_{2}^{j} \leq \cdots \leq \theta_{D_{j}}^{j} \leq \theta_{1}^{j}+1 \\
\omega_{1}^{j} \leq \omega_{2}^{j} \leq \cdots \leq \omega_{D_{j}}^{j} \leq \omega_{1}^{j}+1
\end{gathered}
$$

and

$$
\begin{equation*}
\sum_{r=1}^{D_{j}}\left(\theta_{r}^{j}-\omega_{r}^{j}\right)=\operatorname{Tr}\left(\Lambda_{j}(b)\right) \tag{12}
\end{equation*}
$$

Let I be a $2 q$-arc. By (iii),

$$
\begin{aligned}
\#\left\{r: e^{2 \pi i \theta_{r}^{j}} \in I\right\} n+\sum_{\left\{i: x_{i} \in I\right\}} s_{i}^{j} d_{i} & \leq \operatorname{Tr}\left(\Lambda_{j} \circ \varphi_{1}\left(g_{I}^{A} \otimes 1\right)\right) \\
& <e_{j} \delta+\operatorname{Tr}\left(\Lambda_{j} \circ \psi_{1}\left(g_{I}^{A} \otimes 1\right)\right) \\
& \leq e_{j} \delta+\#\left\{r: e^{2 \pi i \omega_{r}^{j}} \in I \pm \frac{1}{4 q}\right\} n+\sum_{\left\{i: x_{i} \in \operatorname{supp} g_{I}^{A}\right\}} s_{i}^{j} d_{i} \\
& \leq \#\left\{r: e^{2 \pi i \omega_{r}^{j}} \in I \pm \frac{1}{2 q}\right\} n+\sum_{\left\{i: x_{i} \in \operatorname{supp} g_{I}^{A}\right\}} s_{i}^{j} d_{i} .
\end{aligned}
$$

The last inequality uses (iv) and that $\left\|f_{A}^{K}\right\|_{\infty} \leq 1$ for some $4 q$-arc K. Hence

$$
\#\left\{r: e^{2 \pi i \theta_{r}^{j}} \in I\right\} \leq \#\left\{r: e^{2 \pi i \omega_{r}^{j}} \in I \pm \frac{1}{2 q}\right\}
$$

Therefore by Lemma 7.1,

$$
R_{D_{j}}\left(\left(e^{2 \pi i \theta_{1}^{j}}, e^{2 \pi i \theta_{2}^{j}}, \ldots, e^{2 \pi i \theta_{D_{j}}^{j}}\right),\left(e^{2 \pi i \omega_{1}^{j}}, e^{2 \pi i \omega_{2}^{j}}, \ldots, e^{2 \pi i \omega_{D_{j}}^{j}}\right)\right) \leq \frac{1}{2 q}+\frac{1}{2 q} \leq \frac{1}{q}
$$

By (ii), if J is a p-arc then

$$
\#\left\{r: e^{2 \pi i \omega_{r}^{j}} \in J\right\} \geq 2 \frac{e_{j}}{q}
$$

since $\left\|f_{A}^{J}\right\|_{\infty} \leq \frac{1}{n}$. Clearly $\frac{D_{j}}{q} \leq \frac{e_{j}}{q}$. Furthermore,

$$
\left|\sum_{r=1}^{D_{j}}\left(\theta_{r}^{j}-\omega_{r}^{j}\right)\right|=\left|\operatorname{Tr}\left(\Lambda_{j}(b)\right)\right| \leq e_{j}\|b\|<\frac{e_{j}}{q}
$$

By Lemma 7.4 it follows that

$$
\left|\theta_{r}^{j}-\omega_{r}^{j}\right| \leq \frac{1}{q}+\frac{2}{p} \leq \frac{3}{p}, \quad r=1,2, \ldots, D_{j}
$$

Let $g_{r}^{j}:\left[a_{j}, b_{j}\right] \rightarrow \mathbb{R}$ be the continuous function such that $g_{r}^{j}\left(a_{j}\right)=g_{r}^{j}\left(b_{j}\right)=\theta_{r}^{j}$, $g_{r}^{j}\left(t_{j}\right)=\omega_{r}^{j}$, and such that g_{r}^{j} is linear when restricted to each of the two intervals [a_{j}, t_{j}] and $\left[t_{j}, b_{j}\right]$. Note that

$$
\begin{equation*}
\left|g_{r}^{j}(t)-\theta_{r}^{j}\right| \leq \frac{3}{p}, \quad r=1,2, \ldots, D_{j} \tag{13}
\end{equation*}
$$

Finally, define a $*$-homomorphism $\xi_{j}: A \rightarrow C\left(I_{j}\right) \otimes M_{m}$ by

$$
\xi_{j}(f)\left(e^{2 \pi i t}\right)=\iota_{j}\left(y_{1}^{j} \operatorname{diag}\left(\Lambda_{1}^{s_{1}^{j}}(f), \ldots, \Lambda_{N}^{j_{N}^{j}}(f), f\left(e^{2 \pi i g_{1}^{j}(t)}\right), \ldots, f\left(e^{2 \pi i g_{D_{j}}^{j}(t)}\right)\right) y_{1}^{j *}\right)
$$

for $t \in\left[a_{j}, b_{j}\right], f \in A$.
Define a unital $*$-homomorphism $\xi: A \rightarrow B$ by

$$
\xi(f)(z)= \begin{cases}\xi_{j}(f)(z), & z \in I_{j}, j=1,2, \ldots, M \\ \varphi_{1}(f)(z), & z \in \mathbb{T} \backslash \bigcup_{j=1}^{M} I_{j}\end{cases}
$$

Then by (13)

$$
\left\|\varphi_{1}(f)-\xi(f)\right\|<\frac{\epsilon}{6}, \quad f \in F
$$

Note that $f \mapsto \Lambda_{j} \circ \xi(f)$ and $f \mapsto \Lambda_{j} \circ \psi_{1}(f)$ are equivalent representations of A on $M_{e_{j}}, j=1,2, \ldots, M$. In particular, $s^{\xi}(j, i)=s^{\psi_{1}}(j, i), i=1,2, \ldots, N$, $j=1,2, \ldots, M$, and hence $\xi^{\#}\left(q_{A}^{\prime}\left(\omega_{k}^{A}\right)\right)=\psi_{1}^{\#}\left(q_{A}^{\prime}\left(\omega_{k}^{A}\right)\right), k=1,2, \ldots, N$ by Theorem 5.5. Let $\eta: \mathbb{T} \rightarrow \mathbb{R}$ be the continuous function

$$
\eta\left(e^{2 \pi i t}\right)= \begin{cases}\frac{m}{e_{j}} \sum_{r=1}^{D_{j}}\left(g_{r}^{j}(t)-\theta_{r}^{j}\right) & t \in\left[a_{j}, b_{j}\right], j=1,2, \ldots, M \\ 0 & \text { otherwise }\end{cases}
$$

For $z \in \mathbb{T}$,

$$
\begin{aligned}
\operatorname{Det}\left(\xi\left(v^{A}\right)(z)\right) & =\operatorname{Det}\left(\varphi_{1}\left(v^{A}\right)(z)\right) \exp (2 \pi i \eta(z)) \\
& =\operatorname{Det}\left(\psi_{1}\left(v^{A}\right)(z)\right) \exp (2 \pi i \operatorname{Tr}(b(z))) \exp (2 \pi i \eta(z)) \\
& =\operatorname{Det}\left(\psi_{1}\left(v^{A}\right)(z)\right) \exp (2 \pi i \gamma(z))
\end{aligned}
$$

where $\gamma: \mathbb{T} \rightarrow \mathbb{R}$ is defined by $\gamma(z)=\eta(z)+\operatorname{Tr}(b(z))$. Note that by (12)

$$
\begin{aligned}
\gamma\left(y_{j}\right) & =\eta\left(y_{j}\right)+\operatorname{Tr}\left(b\left(y_{j}\right)\right) \\
& =\frac{m}{e_{j}} \sum_{r=1}^{D_{j}}\left(\omega_{r}^{j}-\theta_{r}^{j}\right)+\frac{m}{e_{j}} \operatorname{Tr}\left(\Lambda_{j}(b)\right)=0, \quad j=1,2, \ldots, M
\end{aligned}
$$

and

$$
\|\gamma\|_{\infty} \leq\|\eta\|_{\infty}+\|\operatorname{Tr}(b(\cdot))\|_{\infty}<\frac{m}{e_{j}} \frac{3}{p} D_{j}+\frac{m}{q} \leq 3 \frac{m}{p}+\frac{m}{q} \leq 4 \frac{m}{p}
$$

By Proposition 6.4, φ_{1}, ψ_{1}, and ξ are approximately unitarily equivalent to $\varphi_{1}^{\prime}, \psi_{1}^{\prime}$, and ξ^{\prime}, respectively, where $\varphi_{1}^{\prime}, \psi_{1}^{\prime}, \xi^{\prime}: A \rightarrow B$ are $*$-homomorphisms of the form

$$
\begin{aligned}
& \varphi_{1}^{\prime}(f)\left(e^{2 \pi i t}\right)=u(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i F_{1}(t)}\right), \ldots, f\left(e^{2 \pi i F_{L}(t)}\right)\right) u(t)^{*} \\
& \psi_{1}^{\prime}(f)\left(e^{2 \pi i t}\right)=v(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i G_{1}(t)}\right), \ldots, f\left(e^{2 \pi i G_{L}(t)}\right)\right) v(t)^{*} \\
& \xi^{\prime}(f)\left(e^{2 \pi i t}\right)=w(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i H_{1}(t)}\right), \ldots, f\left(e^{2 \pi i H_{L}(t)}\right)\right) w(t)^{*}
\end{aligned}
$$

for integers $r_{1}, r_{2}, \ldots, r_{N}$ with $0 \leq r_{i}<\frac{n}{d_{i}}, i=1,2, \ldots, N$, unitaries u, v, w in $C[0,1] \otimes M_{m}$ with $u(0)=v(0)=w(0), u(1)=v(1)=w(1)$, and continuous functions $F_{r}, G_{r}, H_{r}:[0,1] \rightarrow \mathbb{R}, r=1,2, \ldots, L$, such that for $t \in[0,1]$,

$$
\begin{aligned}
& F_{1}(t) \leq F_{2}(t) \\
& \leq \cdots \leq F_{L}(t) \leq F_{1}(t)+1 \\
& G_{1}(t) \leq G_{2}(t) \\
& \leq \cdots \leq G_{L}(t) \leq G_{1}(t)+1 \\
& H_{1}(t) \leq H_{2}(t) \leq \cdots \leq H_{L}(t) \leq H_{1}(t)+1
\end{aligned}
$$

and such that for each $t \in[0,1]$,

$$
\begin{equation*}
\gamma\left(e^{2 \pi i t}\right)=\sum_{r=1}^{L}\left(H_{r}(t)-G_{r}(t)\right) \tag{14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|\sum_{r=1}^{L}\left(H_{r}(t)-G_{r}(t)\right)\right|<4 \frac{m}{p} \tag{15}
\end{equation*}
$$

It follows from (13) that for each $t \in[0,1]$,

$$
R_{L}\left(\left(e^{2 \pi i F_{1}(t)}, \ldots, e^{2 \pi i F_{L}(t)}\right),\left(e^{2 \pi i H_{1}(t)}, \ldots, e^{2 \pi i H_{L}(t)}\right)\right) \leq \frac{3}{p}
$$

Let $t \in[0,1]$ and let I be a $2 q$-arc. Then by (iii) and (iv)

$$
\begin{aligned}
\#\{r: & \left.e^{2 \pi i F_{r}(t)} \in I\right\} n+\sum_{\left\{i: x_{i} \in I\right\}} r_{i} d_{i} \\
& \leq \operatorname{Tr}\left(\varphi_{1}^{\prime}\left(g_{I}^{A} \otimes 1\right)\left(e^{2 \pi i t}\right)\right) \\
& <m \delta+\operatorname{Tr}\left(\psi_{1}^{\prime}\left(g_{I}^{A} \otimes 1\right)\left(e^{2 \pi i t}\right)\right) \\
& \leq m \delta+\#\left\{r: e^{2 \pi i G_{r}(t)} \in I \pm \frac{1}{4 q}\right\} n+\sum_{\left\{i: x_{i} \in \operatorname{supp} g_{I}^{A}\right\}} r_{i} d_{i} \\
& \leq \#\left\{r: e^{2 \pi i G_{r}(t)} \in I \pm \frac{1}{2 q}\right\} n+\sum_{\left\{i: x_{i} \in \operatorname{supp} g_{I}^{A}\right\}} r_{i} d_{i} .
\end{aligned}
$$

Hence

$$
\#\left\{r: e^{2 \pi i F_{r}(t)} \in I\right\} \leq \#\left\{r: e^{2 \pi i G_{r}(t)} \in I \pm \frac{1}{2 q}\right\}
$$

It follows from Lemma 7.1 that for each $t \in[0,1]$,

$$
R_{L}\left(\left(e^{2 \pi i F_{1}(t)}, \ldots, e^{2 \pi i F_{L}(t)}\right),\left(e^{2 \pi i G_{1}(t)}, \ldots, e^{2 \pi i G_{L}(t)}\right)\right) \leq \frac{1}{2 q}+\frac{1}{2 q}=\frac{1}{q}
$$

We conclude that

$$
R_{L}\left(\left(e^{2 \pi i G_{1}(t)}, \ldots, e^{2 \pi i G_{L}(t)}\right),\left(e^{2 \pi i H_{1}(t)}, \ldots, e^{2 \pi i H_{L}(t)}\right)\right) \leq \frac{1}{q}+\frac{3}{p} \leq \frac{4}{p}
$$

Since $f \mapsto \psi_{1}^{\prime}(f)\left(y_{j}\right)$ and $f \mapsto \xi^{\prime}(f)\left(y_{j}\right)$ are equivalent representations of A on M_{m} for $j=1,2, \ldots, M$, it follows that

$$
\left(e^{2 \pi i G_{1}\left(t_{j}\right)}, \ldots, e^{2 \pi i G_{L}\left(t_{j}\right)}\right)=\left(e^{2 \pi i H_{1}\left(t_{j}\right)}, \ldots, e^{2 \pi i H_{L}\left(t_{j}\right)}\right)
$$

as unordered L-tuples. Therefore, as $\gamma\left(y_{j}\right)=0, j=1,2, \ldots, M$, we see by Lemma 6.2 and (14) that

$$
G_{r}\left(t_{j}\right)=H_{r}\left(t_{j}\right), \quad r=1,2, \ldots, L, j=1,2, \ldots, M
$$

As $v(0)=w(0), v(1)=w(1)$, we may thus define a $*$-homomorphism $\mu: A \rightarrow B$ by

$$
\mu(f)\left(e^{2 \pi i t}\right)=v(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(e^{2 \pi i H_{1}(t)}\right), \ldots, f\left(e^{2 \pi i H_{L}(t)}\right)\right) v(t)^{*}
$$

for $f \in A, t \in[0,1]$. Since

$$
\operatorname{Tr}(\mu(f)(z))=\operatorname{Tr}\left(\xi^{\prime}(f)(z)\right)=\operatorname{Tr}(\xi(f)(z)), \quad z \in \mathbb{T}, f \in A
$$

we get from [27, Theorem 1.4] that μ and ξ are approximately unitarily equivalent.
By (i) we have that for every l-arc J,

$$
\#\left\{r: e^{2 \pi i G_{r}(t)} \in J\right\}>8 \frac{m}{p} .
$$

As $L \frac{4}{p} \leq 4 \frac{m}{p}$, we conclude from (15) and Lemma 7.4 that

$$
\left|G_{r}(t)-H_{r}(t)\right| \leq \frac{4}{p}+\frac{2}{l} \leq \frac{6}{l}
$$

Hence

$$
\left\|\mu(f)-\psi_{1}^{\prime}(f)\right\|<\frac{\epsilon}{6}, \quad f \in F
$$

Choose unitaries $U, V \in B$ such that

$$
\begin{gathered}
\left\|\xi(f)-U \mu(f) U^{*}\right\|<\frac{\epsilon}{6}, \quad f \in F \\
\left\|\psi_{1}^{\prime}(f)-V \psi_{1}(f) V^{*}\right\|<\frac{\epsilon}{6}, \quad f \in F
\end{gathered}
$$

Set $W=U V$. Then for $f \in F$,

$$
\begin{aligned}
\| \varphi(f)- & W \psi(f) W^{*} \| \\
\leq & \left\|\varphi(f)-\varphi_{1}(f)\right\|+\left\|\varphi_{1}(f)-\xi(f)\right\|+\left\|\xi(f)-U \mu(f) U^{*}\right\| \\
& +\left\|U \mu(f) U^{*}-U \psi_{1}^{\prime}(f) U^{*}\right\|+\left\|U \psi_{1}^{\prime}(f) U^{*}-U V \psi_{1}(f) V^{*} U^{*}\right\| \\
& +\left\|W \psi_{1}(f) W^{*}-W \psi(f) W^{*}\right\| \\
< & \frac{\epsilon}{6}+\frac{\epsilon}{6}+\frac{\epsilon}{6}+\frac{\epsilon}{6}+\frac{\epsilon}{6}+\frac{\epsilon}{6}=\epsilon
\end{aligned}
$$

Lemma 7.6 Let $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ be a building block and let $r \in B$ be a non-zero projection of rank $s \in \mathbb{Z}$. Let $C=r B r$ and let $u, v \in C$ be unitaries. Then

$$
D_{C}\left(q_{C}^{\prime}(u), q_{C}^{\prime}(v)\right) \leq 2 \pi \frac{m}{s} D_{B}\left(q_{B}^{\prime}(u+(1-r)), q_{B}^{\prime}(v+(1-r))\right)
$$

Proof Let $\epsilon=D_{B}\left(q_{B}^{\prime}(u+(1-r)), q_{B}^{\prime}(v+(1-r))\right)$. We may assume that $\epsilon<1$. Let $b \in B$ be a self-adjoint element such that $u v^{*}+(1-r)=e^{2 \pi i b}$ modulo $\overline{D U(B)}$ and $\|b\| \leq \epsilon$. Define $c \in C$ by $c(z)=\frac{1}{s} \operatorname{Tr}(b(z)) r$. Since $\widehat{b}=\widehat{c}$ we have that $e^{2 \pi i b}=e^{2 \pi i c}$ modulo $\overline{D U(B)}$. Thus

$$
u v^{*}+(1-r)=e^{2 \pi i c}=r e^{2 \pi i c} r+(1-r) \quad \text { modulo } \overline{D U(B)}
$$

C is a building block by Corollary 3.5, and therefore it follows from Proposition 5.3 that $u v^{*}=r e^{2 \pi i c} r$ modulo $\overline{D U(C)}$. Thus

$$
D_{C}\left(q_{C}^{\prime}(u), q_{C}^{\prime}(v)\right) \leq\left\|r e^{2 \pi i c} r-r\right\| \leq\left\|e^{2 \pi i c}-1\right\| \leq 2 \pi\|c\| \leq 2 \pi \frac{m}{s} \epsilon
$$

Let $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{R}$, where $A_{i}=A\left(n_{i}, d_{1}^{i}, d_{2}^{i}, \ldots, d_{N_{i}}^{i}\right)$ is a building block. For each $i=1,2, \ldots, R$, we define unitaries in A by

$$
\begin{gathered}
v_{i}^{A}=\left(1, \ldots, 1, v^{A_{i}}, 1, \ldots, 1\right) \\
w_{i, k}^{A}=\left(1, \ldots, 1, w_{k}^{A_{i}}, 1, \ldots, 1\right), \quad k=1,2, \ldots, N_{i}
\end{gathered}
$$

Set $U^{A}=\bigcup_{i=1}^{R}\left\{w_{i, k}^{A}: k=1,2, \ldots, N_{i}\right\}$. If p is a positive integer, we set

$$
\begin{aligned}
& H(A, p)=\bigcup_{i=1}^{R} \iota_{i}\left(H\left(A_{i}, p\right)\right) \\
& \widetilde{H}(A, p)=\bigcup_{i=1}^{R} \iota_{i}\left(\widetilde{H}\left(A_{i}, p\right)\right)
\end{aligned}
$$

where $\iota_{i}: A_{i} \rightarrow A$ denotes the inclusion, $i=1,2, \ldots, R$.

Theorem 7.7 Let $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{R}$ be a finite direct sum of building blocks. Let $p_{1}, p_{2}, \ldots, p_{R}$ be the minimal non-zero central projections in A. Let $\epsilon>0$ and let $F \subseteq A$ be a finite set. There exists a positive integer l such that if p and q are positive integers with $l \leq p \leq q$, if B is a finite direct sum of building blocks, if $\varphi, \psi: A \rightarrow B$ are unital $*$-homomorphisms, if $\delta>0$, if
(i) $\widehat{\psi}(\widehat{h})>\frac{8}{p}, h \in H(A, l)$,
(ii) $\widehat{\psi}(\widehat{h})>\frac{2}{q}, h \in H(A, p) \cup\left\{p_{1}, p_{2}, \ldots, p_{R}\right\}$,
(iii) $\|\widehat{\varphi}(\widehat{h})-\widehat{\psi}(\widehat{h})\|<\delta, h \in \widetilde{H}(A, 2 q)$,
(iv) $\widehat{\psi}(\widehat{h})>\delta, h \in H(A, 4 q)$,
(v) $\quad D_{B}\left(\varphi^{\#}\left(q_{A}^{\prime}\left(v_{i}^{A}\right)\right), \psi^{\#}\left(q_{A}^{\prime}\left(v_{i}^{A}\right)\right)\right)<\frac{1}{4 q^{2}}, i=1,2, \ldots, R$;
and if at least one of the two statements
(vi) $[\varphi]=[\psi]$ in $K K(A, B)$,
(vii) $\varphi_{*}=\psi_{*}$ on $K_{0}(A)$ and $\varphi^{\#}(x)=\psi^{\#}(x), x \in U^{A}$,
are true; then there exists a unitary $W \in B$ such that

$$
\left\|\varphi(f)-W \psi(f) W^{*}\right\|<\epsilon, \quad f \in F
$$

Proof For each $i=1,2, \ldots, R$, let $\iota_{i}: A_{i} \rightarrow A$ be the inclusion and let $\pi_{i}: A \rightarrow A_{i}$ be the projection. Choose by Theorem 7.5 a positive integer l_{0}^{i} with respect to the finite set $\pi_{i}(F) \subseteq A_{i}$ and $\epsilon>0$. Set $l=\max _{i} l_{0}^{i}$.

Let integers $q \geq p \geq l$, a finite direct sum of building blocks B, and unital $*-$ homomorphisms $\varphi, \psi: A \rightarrow B$ be given such that the above holds. Since (vi) implies (vii) by Proposition 5.6, we may assume that (vii) holds. It is easy to reduce to the case where $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ is a single building block.

Since $\varphi_{*}\left[p_{i}\right]=\psi_{*}\left[p_{i}\right]$ in $K_{0}(B)$ for $i=1,2, \ldots, R$, there is by Lemma 3.4 a unitary $u \in B$ such that $u \varphi\left(p_{i}\right) u^{*}=\psi\left(p_{i}\right)$ for every $i=1,2, \ldots, R$. Hence we may assume that $\varphi\left(p_{i}\right)=\psi\left(p_{i}\right), i=1,2, \ldots, R$. Set $q_{i}=\psi\left(p_{i}\right)$. It follows from (ii) that $q_{i} \neq 0, i=1,2, \ldots, R$. Let t_{i} be the (normalized) trace of q_{i}.

Let $\varphi_{i}, \psi_{i}: A_{i} \rightarrow q_{i} B q_{i}$ be the induced maps. Note that $q_{i} B q_{i}$ is a building block by Corollary 3.5. Fix some $i=1,2, \ldots, R$.

Every tracial state on $q_{i} B q_{i}$ is of the form $\left.\frac{1}{t_{i}} \omega\right|_{q_{i} B q_{i}}$ for some $\omega \in T(B)$. Therefore φ_{i} and ψ_{i} satisfy (i)-(iv) of Theorem 7.5, with δ replaced by $\frac{\delta}{t_{i}}$. Note that $t_{i}>\frac{2}{q}$ by (ii). Since

$$
D_{B}\left(q_{B}^{\prime}\left(\varphi_{i}\left(v^{A_{i}}\right)+\left(1-q_{i}\right)\right), q_{B}^{\prime}\left(\psi_{i}\left(v^{A_{i}}\right)+\left(1-q_{i}\right)\right)\right)<\frac{1}{4 q^{2}}
$$

by (vi), we have that

$$
D_{q_{i} B q_{i}}\left(\varphi_{i}^{\#}\left(q_{A_{i}}^{\prime}\left(v^{A_{i}}\right)\right), \psi_{i}^{\#}\left(q_{A_{i}}^{\prime}\left(v^{A_{i}}\right)\right)\right) \leq 2 \pi \frac{1}{t_{i}} \frac{1}{4 q^{2}}<2 \pi \frac{q}{2} \frac{1}{4 q^{2}}<\frac{1}{q}
$$

by Lemma 7.6 , which is (v) of Theorem 7.5 for φ_{i} and ψ_{i}. Similarly we get that $\varphi_{i}^{\#}\left(w_{k}^{A_{i}}\right)=\psi_{i}^{\#}\left(w_{k}^{A_{i}}\right), k=1,2, \ldots, N_{i}$, which is (vi) of Theorem 7.5. Hence there exists a unitary $W_{i} \in q_{i} B q_{i}$ such that

$$
\left\|\varphi_{i}(f)-W_{i} \psi_{i}(f) W_{i}{ }^{*}\right\|<\epsilon, \quad f \in \pi_{i}(F) .
$$

Set $W=\sum_{i=1}^{R} W_{i}$. Then $W \in B$ is a unitary and

$$
\left\|\varphi(f)-W \psi(f) W^{*}\right\|<\epsilon, \quad f \in F
$$

8 Existence

The goal of this section is to prove an existence theorem that is the counterpart of the uniqueness theorem of the previous section.

Let A and B be building blocks and let $\varphi: A \rightarrow B$ be a $*$-homomorphism. We say that continuous functions $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}: \mathbb{T} \rightarrow \mathbb{T}$ are eigenvalue functions for φ if $\lambda_{1}(z), \lambda_{2}(z), \ldots, \lambda_{N}(z)$ are eigenvalues for the matrix $\varphi(\iota \otimes 1)(z)$ (counting multiplicities) for every $z \in \mathbb{T}$, where $\iota: \mathbb{T} \rightarrow \mathbb{C}$ denotes the inclusion.

Theorem 8.1 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block, let $\epsilon>0$, and let C be a positive integer. There exists a positive integer K such that if
(i) $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ is a building block with $s(B) \geq K$,
(ii) $\kappa \in K K(A, B)_{e}$,
(iii) $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{C}: \Pi \rightarrow \mathbb{T}$ are continuous functions,
(iv) $u \in B$ is a unitary such that $\kappa_{*}\left[v^{A}\right]=[u]$ in $K_{1}(B)$;
then there exists a unital $*$-homomorphism $\varphi: A \rightarrow B$ such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{C}$ are eigenvalue functions for φ, and such that

$$
\begin{gathered}
{[\varphi]=\kappa \quad \text { in } K K(A, B),} \\
\varphi^{\#}\left(q_{A}^{\prime}\left(v^{A}\right)\right)=q_{B}^{\prime}(u), \quad \text { in } U(B) / \overline{D U(B)}, \\
\left\|\widehat{\varphi}(f)-\frac{1}{C} \sum_{k=1}^{C} f \circ \lambda_{k}\right\|<\epsilon\|f\|, \quad f \in \operatorname{Aff} T(A),
\end{gathered}
$$

when we identify $\operatorname{Aff} T(A)$ and $\operatorname{Aff} T(B)$ with $C_{\mathbb{R}}(\mathbb{T})$ as order unit spaces.
Proof We may assume that $\epsilon<4$ and, by repeating the functions $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{C}$, that $C>\frac{8}{\epsilon}$. Let K be a positive integer such that

$$
K \geq \frac{4(N+C+2) n}{\epsilon}
$$

Let $B, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{C}, \kappa$, and u be as above. By Proposition 4.3 there are integers $h_{j i}$, $i=1,2, \ldots, N, j=1,2, \ldots, M$, with $0 \leq h_{j i}<\frac{n}{d_{i}}$ for $i \neq N$, such that

$$
\left(\begin{array}{c}
\kappa^{*}\left(\left[\Lambda_{1}^{B}\right]\right) \\
\kappa^{*}\left(\left[\Lambda_{2}^{B}\right]\right) \\
\vdots \\
\kappa^{*}\left(\left[\Lambda_{M}^{B}\right]\right)
\end{array}\right)=\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 N} \\
h_{21} & h_{22} & \cdots & h_{2 N} \\
\vdots & \vdots & & \vdots \\
h_{M 1} & h_{M 2} & \cdots & h_{M N}
\end{array}\right)\left(\begin{array}{c}
{\left[\Lambda_{1}^{A}\right]} \\
{\left[\Lambda_{2}^{A}\right]} \\
\vdots \\
{\left[\Lambda_{N}^{A}\right]}
\end{array}\right)
$$

As in the proof of Theorem 4.7 we see that

$$
\begin{equation*}
\sum_{i=1}^{N} h_{j i} d_{i}=e_{j} \tag{16}
\end{equation*}
$$

since $\kappa_{*}: K_{0}(A) \rightarrow K_{0}(B)$ preserves the order unit, and $h_{j N}>\frac{n}{d_{N}}$, because $s(B) \geq$ $N n$. By Proposition 4.3 we have for $i=1,2, \ldots, N, j=1,2, \ldots, M$,

$$
\begin{equation*}
\frac{m}{e_{j}} h_{j i}=l_{j i} \frac{n}{d_{i}}+s_{i} \tag{17}
\end{equation*}
$$

where $l_{j i}$ and s_{i} are integers such that $0 \leq s_{i}<\frac{n}{d_{i}}$. Note that $l_{j i} \geq 0$. For $j=$ $1,2, \ldots, M$, choose integers $h_{j N}^{o}, 0 \leq h_{j N}^{o}<\frac{n}{d_{N}}$, and $r_{j} \geq 0$ such that

$$
\begin{equation*}
h_{j N}=r_{j} \frac{n}{d_{N}}+h_{j N}^{o} \tag{18}
\end{equation*}
$$

and note that

$$
\begin{equation*}
\frac{m}{e_{j}} h_{j N}^{o}=l_{j N}^{o} \frac{n}{d_{N}}+s_{N} \tag{19}
\end{equation*}
$$

for some integers $l_{j N}^{o} \geq 0, j=1,2, \ldots, M$. Then

$$
\begin{equation*}
l_{j N}-l_{j N}^{o}=\frac{m}{e_{j}} r_{j} \tag{20}
\end{equation*}
$$

Let for each j

$$
\begin{equation*}
r_{j}=k_{j}(C+2)+u_{j} \tag{21}
\end{equation*}
$$

for some integers $k_{j} \geq 0$ and $0 \leq u_{j}<C+2$ and set

$$
b=\min _{1 \leq j \leq M} k_{j} \frac{m}{e_{j}}
$$

Note that for $j=1,2, \ldots, M$,

$$
\begin{aligned}
e_{j} & =\sum_{i=1}^{N} h_{j i} d_{i}<(N-1) n+r_{j} n+h_{j N}^{o} d_{N}<N n+r_{j} n \\
& =(N+C+2) n+\left(r_{j}-(C+2)\right) n \leq \frac{\epsilon}{4} e_{j}+\left(r_{j}-(C+2)\right) n
\end{aligned}
$$

Hence

$$
\left(1-\frac{\epsilon}{4}\right) e_{j}<\left(r_{j}-(C+2)\right) n
$$

Therefore

$$
\begin{equation*}
n k_{j}(C+2) \frac{m}{e_{j}}=n\left(r_{j}-u_{j}\right) \frac{m}{e_{j}}>n\left(r_{j}-(C+2)\right) \frac{m}{e_{j}}>\left(1-\frac{\epsilon}{4}\right) m \tag{22}
\end{equation*}
$$

Since by (16)

$$
n k_{j}(C+2) \frac{m}{e_{j}} \leq n r_{j} \frac{m}{e_{j}} \leq h_{j N} d_{N} \frac{m}{e_{j}} \leq m
$$

we see that

$$
\begin{equation*}
n b \frac{8}{\epsilon} \leq n b C \leq n b(C+2) \leq m \tag{23}
\end{equation*}
$$

By this and (22),

$$
m\left(1-\frac{\epsilon}{4}\right)<n b(C+2) \leq n b C+\frac{\epsilon}{4} m
$$

Hence from (23) we conclude that

$$
0 \leq 1-\frac{n b C}{m}<\frac{\epsilon}{2}
$$

Let $x_{1}, x_{2}, \ldots, x_{N}$ denote the exceptional points of A and let $y_{1}, y_{2}, \ldots, y_{M}$ be those of B. Set for $j=1,2, \ldots, M$,

$$
a_{j}=\left(\prod_{i=1}^{N-1} \operatorname{Det}\left(\Lambda_{i}\left(v^{A}\right)\right)^{h_{j i}}\right) \operatorname{Det}\left(\Lambda_{N}\left(v^{A}\right)\right)^{h_{j N}^{o}}
$$

then by (17) and (19)

$$
\begin{equation*}
a_{j}{ }^{\frac{m}{e_{j}}}=\left(\prod_{i=1}^{N-1} x_{i}^{l_{j i}}\right) x_{N}{ }^{l^{\circ}}{ }^{o} \prod_{i=1}^{N} \operatorname{Det}\left(\Lambda_{i}\left(v^{A}\right)\right)^{s_{i}} \tag{24}
\end{equation*}
$$

Set for $j=1,2, \ldots, M$,

$$
c_{j}=\operatorname{Det}\left(\Lambda_{j}(u)\right)
$$

and note that

$$
\begin{equation*}
c_{j}{ }^{\frac{m}{e_{j}}}=\operatorname{Det}\left(u\left(y_{j}\right)\right) \tag{25}
\end{equation*}
$$

By (22) we see that $k_{j} \neq 0, j=1,2, \ldots, M$, and hence there exists a continuous function $\lambda_{C+1}: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\begin{equation*}
\left(\lambda_{C+1}\left(y_{j}\right)\right)^{-k_{j}}=a_{j} c_{j}^{-1} \prod_{k=1}^{C}\left(\lambda_{k}\left(y_{j}\right)\right)^{k_{j}}, \quad j=1,2, \ldots, M \tag{26}
\end{equation*}
$$

Let for $f \in A$ and $j=1,2, \ldots, M, D_{j}(f)$ be the $m \times m$ matrix

$$
\begin{aligned}
\operatorname{diag}\left(\Lambda_{1}^{s_{1}}\right. & (f), \ldots, \Lambda_{N}^{s_{N}}(f), \underbrace{f\left(x_{1}\right), \ldots, f\left(x_{1}\right)}_{l_{j 1} \text { times }}, \ldots, \underbrace{f\left(x_{N-1}\right), \ldots, f\left(x_{N-1}\right)}_{l_{j(N-1)} \text { times }}, \\
& \underbrace{f\left(x_{N}\right), \ldots, f\left(x_{N}\right)}_{l_{j N} \text { times }}, \underbrace{f\left(\lambda_{1}\left(y_{j}\right)\right), \ldots, f\left(\lambda_{1}\left(y_{j}\right)\right)}_{k_{j} \frac{m}{e_{j}}-b \text { times }}, \ldots, \\
& \underbrace{f\left(\lambda_{C+1}\left(y_{j}\right)\right), \ldots, f\left(\lambda_{C+1}\left(y_{j}\right)\right)}_{k_{j} \frac{m}{e_{j}}-b \text { times }}, \underbrace{f(1)}_{\left(k_{j}+u_{j}\right) \frac{m}{c_{j}-b \text { times }} f(1), \ldots, f(1)} \\
& \underbrace{f\left(\lambda_{1}\left(y_{j}\right)\right), \ldots, f\left(\lambda_{1}\left(y_{j}\right)\right)}_{b \text { times }}, \ldots, \underbrace{f\left(\lambda_{C+1}\left(y_{j}\right)\right), \ldots, f\left(\lambda_{C+1}\left(y_{j}\right)\right)}_{b \text { times }},
\end{aligned}
$$

Since $D_{j}(f)$ is a block-diagonal matrix with $\frac{m}{e_{j}} h_{j i}$ blocks of the form $\Lambda_{i}(f), i=$ $1,2, \ldots, N-1, \frac{m}{e_{j}} h_{j N}^{o}$ blocks of the form $\Lambda_{N}(f), k_{j} \frac{m}{e_{j}}$ blocks of the form $f\left(\lambda_{k}\left(y_{j}\right)\right)$,
$k=1,2, \ldots, C+1$, and $\left(k_{j}+u_{j}\right) \frac{m}{e_{j}}$ blocks of the form $f(1)$, there exists a unitary $W_{j} \in M_{m}$ such that

$$
W_{j} D_{j}(f) W_{j}^{*} \in M_{e_{j}} \subseteq M_{m}
$$

for every $f \in A$. Set $L=\frac{1}{n}\left(m-\sum_{i=1}^{N} s_{i} d_{i}\right)-(C+2) b$. For each $j=1,2, \ldots, M$, we have by (16), (17), (20), (21) that

$$
L=\sum_{i=1}^{N} l_{j i}-(C+2) b=\sum_{i=1}^{N-1} l_{j i}+l_{j N}^{o}+\frac{m}{e_{j}}\left(k_{j}(C+2)+u_{j}\right)-(C+2) b
$$

Choose for $k=1,2, \ldots, L$ continuous functions $\mu_{k}: \mathbb{T} \rightarrow \mathbb{T}$ such that for each $j=1,2, \ldots, M$,

$$
\begin{aligned}
& \left(\mu_{1}\left(y_{j}\right), \mu_{2}\left(y_{j}\right), \ldots, \mu_{L}\left(y_{j}\right)\right) \\
& \quad=(\underbrace{x_{1}, \ldots, x_{1}}_{l_{j 1} \text { times }}, \ldots, \underbrace{x_{N-1}, \ldots, x_{N-1}}_{l_{j(N-1)} \text { times }}, \underbrace{x_{N}, \ldots, x_{N}}_{l_{j N}^{o} \text { times }}, \\
& \\
& \quad \underbrace{\lambda_{1}\left(y_{j}\right), \ldots, \lambda_{1}\left(y_{j}\right)}_{k_{j} \frac{m}{e_{j}}-b \text { times }}, \ldots, \underbrace{\lambda_{C+1}\left(y_{j}\right), \ldots, \lambda_{C+1}\left(y_{j}\right)}_{k_{j} \frac{m}{e_{j}}-b \text { times }}, \underbrace{1,1, \ldots, 1}_{\left(k_{j}+u_{j}\right) \frac{m}{e_{j}}-b \text { times }})
\end{aligned}
$$

as ordered tuples.
Choose a unitary $W \in C(\mathbb{T}) \otimes M_{m}$ such that $W\left(y_{j}\right)=W_{j}$ for $j=1,2, \ldots, M$. Define a continuous function $g: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
g(z) \prod_{k=1}^{L} \mu_{k}(z) \prod_{k=1}^{C+1}\left(\lambda_{k}(z)\right)^{b} \prod_{i=1}^{N} \operatorname{Det}\left(\Lambda_{i}\left(v^{A}\right)\right)^{s_{i}}=\operatorname{Det}(u(z)), \quad z \in \mathbb{T}
$$

Then by (24), (25), and (26) we have that $g\left(y_{j}\right)=1$ for $j=1,2, \ldots, M$. Define a unital $*$-homomorphism $\varphi: A \rightarrow B$ by

$$
\begin{aligned}
& \varphi(f)(z)=W(z) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\mu_{1}(z)\right), \ldots, f\left(\mu_{L}(z)\right),\right. \\
& \underbrace{f\left(\lambda_{1}(z)\right), \ldots, f\left(\lambda_{1}(z)\right)}_{b \text { times }}, \ldots, \\
& \underbrace{f\left(\lambda_{C+1}(z)\right), \ldots, f\left(\lambda_{C+1}(z)\right)}_{b \text { times }}, \\
&f(g(z)), \underbrace{f(1), \ldots, f(1)}_{b-1 \text { times }}) W(z)^{*}
\end{aligned}
$$

By the remarks following the definition of $D_{j}(f)$ we see that for $j=1,2, \ldots, M$,

$$
\begin{aligned}
\varphi^{*}\left[\Lambda_{j}^{B}\right] & =\sum_{i=1}^{N-1} h_{j i}\left[\Lambda_{i}^{A}\right]+h_{j N}^{o}\left[\Lambda_{N}^{A}\right]+\left(k_{j}(C+1)+\left(k_{j}+u_{j}\right)\right) \frac{n}{d_{N}}\left[\Lambda_{N}^{A}\right] \\
& =\sum_{i=1}^{N-1} h_{j i}\left[\Lambda_{i}^{A}\right]+\left(h_{j N}^{o}+r_{j} \frac{n}{d_{N}}\right)\left[\Lambda_{N}^{A}\right]=\sum_{i=1}^{N} h_{j i}\left[\Lambda_{i}^{A}\right]=\kappa^{*}\left[\Lambda_{j}^{B}\right]
\end{aligned}
$$

and hence $\varphi^{*}=\kappa^{*}$ in $\operatorname{Hom}\left(K^{0}(B), K^{0}(A)\right)$. Furthermore, as $\operatorname{Det}\left(v^{A}(\cdot)\right)$ is the identity map on \mathbb{T}, we have that for $z \in \mathbb{T}$,

$$
\operatorname{Det}\left(\varphi\left(v^{A}\right)(z)\right)=\prod_{i=1}^{N} \operatorname{Det}\left(\Lambda_{i}\left(v^{A}\right)\right)^{s_{i}} \prod_{k=1}^{L} \mu_{k}(z)\left(\prod_{k=1}^{C+1} \lambda_{k}(z)^{b}\right) g(z)=\operatorname{Det}(u(z))
$$

and by (26), for $j=1,2, \ldots, M$,

$$
\begin{aligned}
\operatorname{Det}\left(\Lambda_{j} \circ \varphi\left(v^{A}\right)\right) & =\left(\prod_{i=1}^{N-1} \operatorname{Det}\left(\Lambda_{i}\left(v^{A}\right)\right)^{h_{j i}}\right) \operatorname{Det}\left(\Lambda_{N}\left(v^{A}\right)\right)^{h_{j N}^{o}} \prod_{k=1}^{C+1} \lambda_{k}\left(y_{j}\right)^{k_{j}} \\
& =\left(\prod_{i=1}^{N-1} \operatorname{Det}\left(\Lambda_{i}\left(v^{A}\right)\right)^{h_{j i}}\right) \operatorname{Det}\left(\Lambda_{N}\left(v^{A}\right)\right)^{h_{j N}^{o}} a_{j}^{-1} c_{j}=\operatorname{Det}\left(\Lambda_{j}(u)\right)
\end{aligned}
$$

Hence $q_{B}^{\prime}\left(\varphi\left(v^{A}\right)\right)=q_{B}^{\prime}(u)$ in $U(B) / \overline{D U(B)}$ by Proposition 5.3. It follows from Theorem 4.7 that $[\varphi]=\kappa$ in $K K(A, B)$.

Finally, for $\omega \in T(B)$ and $f \in \operatorname{Aff} T(A) \cong C_{\mathbb{R}}(\mathbb{T})$,

$$
\begin{aligned}
& \left|\widehat{\varphi}(f)(\omega)-\frac{1}{C} \sum_{i=1}^{C} f \circ \lambda_{k}(\omega)\right| \\
& \quad=\left|\omega(\varphi(f \otimes 1))-\frac{1}{C} \sum_{k=1}^{C} \omega\left(\left(f \circ \lambda_{k}\right) \otimes 1\right)\right| \\
& \quad \leq\left|\frac{1}{m}(m-C b n)\right|\|f\|+\left|\frac{1}{m} b n \sum_{k=1}^{C} f \circ \lambda_{k}-\frac{1}{C} \sum_{k=1}^{C} f \circ \lambda_{k}\right| \\
& \quad \leq\left|\frac{1}{m}(m-C b n)\right|\|f\|+\left|\frac{1}{m} b n-\frac{1}{C}\right| C\|f\|=2\left|1-\frac{C b n}{m}\right|\|f\|<\epsilon\|f\|
\end{aligned}
$$

Hence

$$
\left\|\widehat{\varphi}(f)-\frac{1}{C} \sum_{k=1}^{C} f \circ \lambda_{k}\right\|<\epsilon\|f\|
$$

The following result is due to Li [17, Theorem 2.1]. It generalizes a theorem of Thomsen [26, Theorem 2.1] and it is the key stone in the proof of Theorem 8.3 below.

Theorem 8.2 Let X be a path-connected compact metric space, let $F \subseteq C_{\mathbb{R}}(X)$ be a finite subset and let $\epsilon>0$. There exists a positive integer L such that for all integers $N \geq$ L, for all compact metric spaces Y, and for all positive linear order unit preserving maps $\Theta: C_{\mathbb{R}}(X) \rightarrow C_{\mathbb{R}}(Y)$, there exist continuous functions $\lambda_{k}: Y \rightarrow X, k=1,2, \ldots, N$, such that

$$
\left\|\Theta(f)-\frac{1}{N} \sum_{k=1}^{N} f \circ \lambda_{k}\right\|<\epsilon, \quad f \in F
$$

Theorem 8.3 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block, let $\epsilon>0$, let $F \subseteq$ Aff $T(A)$ be a finite set, and let C be a non-negative integer. There exists a positive integer K such that if
(i) $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ is a building block with $s(B) \geq K$,
(ii) $\kappa \in K K(A, B)_{e}$,
(iii) $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{C}: \mathbb{T} \rightarrow \mathbb{T}$ are continuous functions,
(iv) $\Theta: \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(B)$ is a positive linear order unit preserving map,
(v) $u \in B$ is a unitary such that $\kappa_{*}\left[v^{A}\right]=[u]$ in $K_{1}(B)$;
then there exists a unital $*$-homomorphism $\varphi: A \rightarrow B$ such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{C}$ are eigenvalue functions for φ and such that

$$
\begin{gathered}
{[\varphi]=\kappa \quad \text { in } K K(A, B),} \\
\varphi^{\#}\left(q_{A}^{\prime}\left(v^{A}\right)\right)=q_{B}^{\prime}(u) \quad \text { in } U(B) / \overline{D U(B)} \\
\|\widehat{\varphi}(f)-\Theta(f)\|<\epsilon, \quad f \in F .
\end{gathered}
$$

Proof We may assume that $\|f\| \leq 1, f \in F$. Choose by Theorem 8.2 an integer L with respect to $F \subseteq \operatorname{Aff} T(A) \cong C_{\mathbb{R}}(\mathbb{T})$ and $\frac{\epsilon}{3}$. We may assume that $L>C$ and that $1-\frac{L-C}{C+L}<\frac{\epsilon}{3}$. Then choose by Theorem 8.1 an integer K with respect to $C+L$ and $\frac{\epsilon}{3}$.

Now let $B, \Theta, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{C}, \kappa$ and u be given as above. Choose continuous functions $\lambda_{C+1}, \lambda_{C+2}, \ldots, \lambda_{C+L}: \mathbb{T} \rightarrow \mathbb{T}$ such that in $\operatorname{Aff} T(B) \cong C_{\mathbb{R}}(\mathbb{T})$,

$$
\left\|\Theta(f)-\frac{1}{L} \sum_{k=C+1}^{C+L} f \circ \lambda_{k}\right\|<\frac{\epsilon}{3}, \quad f \in F
$$

By Theorem 8.1 there exists a unital $*$-homomorphism $\varphi: A \rightarrow B$ such that λ_{1}, $\lambda_{2}, \ldots, \lambda_{C+L}$ are eigenvalue functions for φ and such that

$$
\begin{gathered}
{[\varphi]=\kappa \quad \text { in } K K(A, B),} \\
\varphi^{\#}\left(q_{A}^{\prime}\left(v^{A}\right)\right)=q_{B}^{\prime}(u) \quad \text { in } U(B) / \overline{D U(B)}, \\
\left\|\widehat{\varphi}(f)-\frac{1}{C+L} \sum_{k=1}^{C+L} f \circ \lambda_{k}\right\|<\frac{\epsilon}{3}\|f\|, \quad f \in \operatorname{Aff} T(A) .
\end{gathered}
$$

Since for $f \in \operatorname{Aff} T(A)$,

$$
\begin{aligned}
& \left\|\frac{1}{C+L} \sum_{k=1}^{C+L} f \circ \lambda_{k}-\frac{1}{L} \sum_{k=C+1}^{C+L} f \circ \lambda_{k}\right\| \\
& \quad \leq\left\|\frac{1}{C+L} \sum_{k=C+1}^{C+L} f \circ \lambda_{k}-\frac{1}{L} \sum_{k=C+1}^{C+L} f \circ \lambda_{k}\right\|+\left\|\frac{1}{C+L} \sum_{k=1}^{C} f \circ \lambda_{k}\right\| \\
& \quad \leq\left|\frac{1}{C+L}-\frac{1}{L}\right| L\|f\|+\frac{1}{C+L} C\|f\|=\left(1-\frac{L-C}{C+L}\right)\|f\|<\frac{\epsilon}{3}\|f\|
\end{aligned}
$$

we get that

$$
\|\widehat{\varphi}(f)-\Theta(f)\|<\epsilon, \quad f \in F
$$

Lemma 8.4 Let $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be a building block, let $p \in A$ be a non-zero projection, and let $u \in A$ be a unitary. Then there exists a unitary $w \in p A p$ such that

$$
q_{A}^{\prime}(u)=q_{A}^{\prime}(w+(1-p)) \quad \text { in } U(A) / \overline{D U(A)}
$$

Proof Note that $p A p$ is a building block by Corollary 3.5. Hence by Lemma 5.4 there exists a unitary $w \in p A p$ such that

$$
\begin{gathered}
\operatorname{Det}(w(z))=\operatorname{Det}(u(z)), \quad z \in \mathbb{T} \\
\operatorname{Det}\left(\Lambda_{i}(w)\right)=\operatorname{Det}\left(\Lambda_{i}(u)\right), \quad i=1,2, \ldots, N
\end{gathered}
$$

Then $q_{A}^{\prime}(u)=q_{A}^{\prime}(w+(1-p))$ in $U(A) / \overline{D U(A)}$ by Theorem 5.3.
Theorem 8.5 Let $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{R}$ be a finite direct sum of building blocks. Let $F \subseteq \operatorname{Aff} T(A)$ be a finite set and let $\epsilon>0$. There exists a positive integer K such that if
(i) $B=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{S}$ is a finite direct sum of building blocks and κ is an element in $K K(A, B)_{e}$,
(ii) for every minimal non-zero central projection p in A we have that

$$
s(B) \rho_{B}\left(\kappa_{*}[p]\right) \geq K \quad \text { in } \operatorname{Aff} T(B)
$$

(iii) there exists a linear positive order unit preserving map Θ : $\operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(B)$ such that the diagram

commutes,
(iv) $u_{1}, u_{2}, \ldots, u_{N} \in B$ are unitaries such that

$$
\kappa_{*}\left[v_{i}^{A}\right]=\left[u_{i}\right] \quad \text { in } K_{1}(A), \quad i=1,2, \ldots, R
$$

then there exists a unital $*$-homomorphism $\varphi: A \rightarrow B$ such that $[\varphi]=\kappa$ in $K K(A, B)$, and such that

$$
\begin{gathered}
\|\widehat{\varphi}(f)-\Theta(f)\|<\epsilon, \quad f \in F, \\
\varphi^{\#}\left(q_{A}^{\prime}\left(v_{i}^{A}\right)\right)=q_{B}^{\prime}\left(u_{i}\right) \quad \text { in } U(B) / \overline{D U(B)}, \quad i=1,2, \ldots, R .
\end{gathered}
$$

Proof Let $\pi_{i}^{A}: A \rightarrow A_{i}$ be the projection and $\iota_{i}^{A}: A_{i} \rightarrow A$ be the inclusion, $i=$ $1,2, \ldots, R$. Let $p_{1}, p_{2}, \ldots, p_{R}$ denote the minimal non-zero central projections in A. Choose by Theorem 8.3 an integer K_{i} with respect to $\widehat{\pi_{i}^{A}}(F) \subseteq \operatorname{Aff} T\left(A_{i}\right), \epsilon>0$ and $C=0$. Set $K=\max _{1 \leq i \leq R} K_{i}$.

Let B, κ, Θ, and $u_{1}, u_{2}, \ldots, u_{N}$ be as above. We may assume that $S=1$. To see this, assume that the case $S=1$ has been settled. Let $\pi_{l}^{B}: B \rightarrow B_{l}$ be the projection and let $\iota_{l}^{B}: B_{l} \rightarrow B$ be the inclusion. As the diagram

commutes for $l=1,2, \ldots, S$, and since $s\left(B_{l}\right) \rho_{B_{l}}\left(\pi_{l *}^{B} \circ_{*}\left[p_{i}\right]\right) \geq K$ for $i=1,2, \ldots, R$, $l=1,2, \ldots, S$, we get unital $*$-homomorphisms $\varphi_{l}: A \rightarrow B_{l}$ such that

$$
\begin{gathered}
{\left[\varphi_{l}\right]=\left[\pi_{l}^{B}\right] \cdot \kappa \quad \text { in } K K\left(A, B_{l}\right),} \\
\left\|\widehat{\varphi}_{l}(f)-\widehat{\pi_{l}^{B}} \circ \Theta(f)\right\|<\epsilon, \quad f \in F, \\
\varphi_{l}^{\#}\left(q_{A}^{\prime}\left(v_{i}^{A}\right)\right)=q_{B_{l}}^{\prime}\left(\pi_{l}^{B}\left(u_{i}\right)\right) \quad \text { in } U\left(B_{l}\right) / \overline{D U\left(B_{l}\right)}, \quad i=1,2, \ldots, R .
\end{gathered}
$$

Define $\varphi: A \rightarrow B$ by $\varphi(a)=\left(\varphi_{1}(a), \varphi_{2}(a), \ldots, \varphi_{S}(a)\right)$. Then

$$
\begin{gathered}
{[\varphi]=\left[\sum_{l=1}^{S} \iota_{l}^{B} \circ \varphi_{l}\right]=\sum_{l=1}^{S}\left[\iota_{l}^{B}\right] \cdot\left[\pi_{l}^{B}\right] \cdot \kappa=\kappa \quad \text { in } K K(A, B),} \\
\|\widehat{\varphi}(f)-\Theta(f)\|=\max _{l}\left\|\widehat{\pi_{l}^{B}} \circ \widehat{\varphi}(f)-\widehat{\pi_{l}^{B}} \circ \Theta(f)\right\|<\epsilon, \quad f \in F, \\
\varphi^{\#}\left(q_{A}^{\prime}\left(v_{i}^{A}\right)\right)=q_{B}^{\prime}\left(u_{i}\right) \quad \text { in } U(B) / \overline{D U(B)}, \quad i=1,2, \ldots, R .
\end{gathered}
$$

So assume $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$. Note that by assumption $\kappa_{*}\left[p_{i}\right]>0$ in $K_{0}(B)$ for $i=1,2, \ldots, R$. Let $e=\operatorname{gcd}\left(e_{1}, e_{2}, \ldots, e_{M}\right)$. Choose by Corollary 3.6 orthogonal non-zero projections $q_{i} \in M_{e} \subseteq B$, for $i=1,2, \ldots, R$, with sum 1 such
that $\kappa_{*}\left[p_{i}\right]=\left[q_{i}\right]$. Let $t_{i}>0$ be the normalized trace of q_{i}. Note that we have a welldefined map J_{i} : Aff $T\left(A_{i}\right) \rightarrow \operatorname{Aff} T(A)$ such that $J_{i}(\widehat{a})=\widehat{\iota_{i}^{A}(a)}$ for every self-adjoint element $a \in A_{i}$. Define $\Theta_{i}: \operatorname{Aff} T\left(A_{i}\right) \rightarrow \operatorname{Aff} T\left(q_{i} B q_{i}\right)$ by

$$
\Theta_{i}(f)\left(\frac{1}{t_{i}} \tau \circ \epsilon_{i}\right)=\frac{1}{t_{i}} \Theta\left(J_{i}(f)\right)(\tau), \quad \tau \in T(B),
$$

where $\epsilon_{i}: q_{i} B q_{i} \rightarrow B$ denotes the inclusion.
Θ_{i} is a linear positive map, and it preserves the order unit since

$$
\Theta_{i}(1)\left(\frac{1}{t_{i}} \tau \circ \epsilon_{i}\right)=\frac{1}{t_{i}} \Theta\left(\widehat{p}_{i}\right)(\tau)=\frac{1}{t_{i}} \rho_{B} \circ \kappa_{*}\left[p_{i}\right](\tau)=1
$$

By [23, Theorem 7.3] we get that $\left[\epsilon_{i}\right] \in K K\left(q_{i} B q_{i}, B\right)$ is a $K K$-equivalence. Note that

$$
\left[\epsilon_{i}\right]^{-1} \cdot \kappa \cdot\left[\iota_{i}^{A}\right] \in K K\left(A_{i}, q_{i} B q_{i}\right)_{e} .
$$

By Corollary 3.5 we have that $q_{i} B q_{i} \cong A\left(t_{i} m, t_{i} e_{1}, t_{i} e_{2}, \ldots, t_{i} e_{M}\right)$. Using Lemma 8.4, choose a unitary $w_{i} \in q_{i} B q_{i}$ such that

$$
q_{B}^{\prime}\left(w_{i}+\left(1-q_{i}\right)\right)=q_{B}^{\prime}\left(u_{i}\right) \quad \text { in } U(B) / \overline{D U(B)}
$$

Since $t_{i} e_{j} \geq K$ for $j=1,2, \ldots, M$, we get by Theorem 8.3 a unital $*$-homomorphism $\varphi_{i}: A_{i} \rightarrow q_{i} B q_{i}$ such that

$$
\begin{gathered}
{\left[\varphi_{i}\right]=\left[\epsilon_{i}\right]^{-1} \cdot \kappa \cdot\left[\iota_{i}^{A}\right] \quad \text { in } K K\left(A_{i}, q_{i} B q_{i}\right)} \\
\left\|\widehat{\varphi}_{i}(f)-\Theta_{i}(f)\right\|<\epsilon, \quad f \in \widehat{\pi_{i}^{A}}(F) \\
\varphi_{i}\left(v^{A_{i}}\right)=w_{i} \quad \bmod \overline{D U\left(q_{i} B q_{i}\right)}
\end{gathered}
$$

Now define $\varphi: A \rightarrow B$ by

$$
\varphi(a)=\sum_{i=1}^{R} \epsilon_{i} \circ \varphi_{i} \circ \pi_{i}^{A}(a)
$$

φ is a unital $*$-homomorphism and

$$
[\varphi]=\sum_{i=1}^{R}\left[\epsilon_{i}\right] \cdot\left[\varphi_{i}\right] \cdot\left[\pi_{i}^{A}\right]=\sum_{i=1}^{R} \kappa \cdot\left[\iota_{i}^{A}\right] \cdot\left[\pi_{i}^{A}\right]=\kappa \quad \text { in } K K(A, B)
$$

For $f \in \operatorname{Aff} T(A), \tau \in T(B)$, we have that

$$
\Theta(f)(\tau)=\sum_{i=1}^{R} \Theta\left(J_{i}\left(\widehat{\pi_{i}^{A}}(f)\right)\right)(\tau)=\sum_{i=1}^{R} t_{i} \Theta_{i}\left(\widehat{\pi_{i}^{A}}(f)\right)\left(\frac{1}{t_{i}} \tau \circ \epsilon_{i}\right)
$$

and
$\left.\widehat{\varphi}(f)(\tau)=f(\tau \circ \varphi)=f\left(\sum_{i=1}^{R} t_{i} \frac{1}{t_{i}} \tau \circ \epsilon_{i} \circ \varphi_{i} \circ \pi_{i}^{A}\right)=\sum_{i=1}^{R} t_{i} \widehat{\varphi_{i}} \widehat{\left(\pi_{i}^{A}\right.}(f)\right)\left(\frac{1}{t_{i}} \tau \circ \epsilon_{i}\right)$.
It follows that

$$
\|\widehat{\varphi}(f)-\Theta(f)\|<\epsilon, \quad f \in F
$$

Finally, for $i=1,2, \ldots, R$,

$$
\varphi\left(v_{i}^{A}\right)=\epsilon_{i} \circ \varphi_{i}\left(v^{A_{i}}\right)+\left(1-q_{i}\right)=w_{i}+\left(1-q_{i}\right)=u_{i}
$$

modulo $\overline{D U(B)}$.

9 Injective Connecting Maps

The purpose of this section is to show that a simple unital infinite dimensional inductive limit of a sequence of finite direct sums of building blocks can be realized as an inductive limit of a sequence of finite direct sums of building blocks with unital and injective connecting maps.

From now on, we will consider inductive limits in the category of order unit spaces and linear positive order unit preserving maps, as introduced by Thomsen [26]. It follows from [26, Lemma 3.3] that Aff $T(\cdot)$ is a continuous functor from the category of separable unital C^{*}-algebras and unital $*$-homomorphisms to the category of order unit spaces. We will also need Elliott's approximative intertwining argument, see [9, Theorem 2.1] or [25].

Lemma 9.1 Let A be a finite direct sum of building blocks, interval building blocks, and matrix algebras. Let $\epsilon>0$ and let $F \subseteq A$ be a finite set. There exists a finite set of positive non-zero elements $H \subseteq A$ such that if B is a building block or an interval building block, and $\varphi: A \rightarrow B$ is a unital $*$-homomorphism with $\varphi(h) \neq 0, h \in H$, then there exists a unital injective $*$-homomorphism $\psi: A \rightarrow B$ such that $\|\varphi(f)-\psi(f)\|<$ $\epsilon, f \in F$.

Proof By Corollary 3.5 (and the corresponding result for interval building blocks) we may assume that A is a building block, an interval building block or a matrix algebra rather than a finite direct sum of such algebras. We will carry out the proof in the case that $A=A\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ is a circle building block. The proof in the case that A is an interval building block is similar, and the matrix algebra case is trivial.

Choose $\delta>0$ such that for $x, y \in \mathbb{T}$,

$$
\rho(x, y)<2 \delta \Longrightarrow\|f(x)-f(y)\|<\epsilon, \quad f \in F
$$

Let $\mathbb{T}=\bigcup_{i=1}^{K} V_{i}$ where each V_{i} is an open arc-segment of length less than δ. Choose for each $i=1,2, \ldots, K$, a non-zero continuous function $\chi_{i}: \mathbb{T} \rightarrow[0,1]$ with support in V_{i} such that χ_{i} is zero at every exceptional point of A. Set

$$
H=\left\{\chi_{1} \otimes 1, \chi_{2} \otimes 1, \ldots, \chi_{K} \otimes 1\right\}
$$

Let $\varphi: A \rightarrow B$ be given such that $\varphi(h) \neq 0, h \in H$. By [27, Chapter 1] we may assume that

$$
\varphi(f)\left(e^{2 \pi i t}\right)=u(t) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\lambda_{1}(t)\right), \ldots, f\left(\lambda_{L}(t)\right)\right) u(t)^{*}
$$

if $B=A\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ is a circle building block, and

$$
\varphi(f)(t)=u(t) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\lambda_{1}(t)\right), \ldots, f\left(\lambda_{L}(t)\right)\right) u(t)^{*}
$$

if $B=I\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ is an interval building block. Here $u \in C[0,1] \otimes M_{m}$ is a unitary, $\lambda_{1}, \ldots, \lambda_{L}:[0,1] \rightarrow \mathbb{T}$ are continuous functions, and $s_{1}, s_{2}, \ldots, s_{N}$ are non-negative integers. Since $\varphi(h) \neq 0, h \in H$, it follows that the set $\bigcup_{k=1}^{L} \lambda_{k}([0,1])$ intersects non-trivially with every V_{i}.

If B is an interval building block, let $t_{1}, t_{2}, \ldots, t_{M} \in[0,1]$ be the exceptional points of B. If B is a circle building block, let $t_{1}, t_{2}, \ldots, t_{M} \in[0,1]$ be numbers such that $e^{2 \pi i t_{j}}, j=1,2, \ldots, M$, are the exceptional points of B.

For each $k=1,2, \ldots, L$, choose a continuous function $\mu_{k}:[0,1] \rightarrow \mathbb{T}$ such that $\rho\left(\mu_{k}(t), \lambda_{k}(t)\right)<2 \delta, t \in[0,1]$, such that $\mu_{k}(t)=\lambda_{k}(t)$ for $t \in\left\{t_{1}, t_{2}, \ldots, t_{M}, 0,1\right\}$, and such that $\bigcup_{i=1}^{k} \mu_{k}([0,1])=\bigcup_{i=1}^{k} V_{i}=\mathbb{T}$. Define $\psi: A \rightarrow B$ by

$$
\psi(f)\left(e^{2 \pi i t}\right)=u(t) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\mu_{1}(t)\right), \ldots, f\left(\mu_{L}(t)\right)\right) u(t)^{*}
$$

if B is a circle building block, and

$$
\psi(f)(t)=u(t) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\mu_{1}(t)\right), \ldots, f\left(\mu_{L}(t)\right)\right) u(t)^{*}
$$

if B is an interval building block. Note that ψ is injective and $\|\varphi(f)-\psi(f)\|<\epsilon$, $f \in F$.

Lemma 9.2 Let A be a unital C*-algebra that is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks. Then A is the inductive limit of a similar sequence, with unital connecting maps.

Proof Note that we may assume that $\alpha_{n, \infty}(p) \neq 0$ for every positive integer n and every minimal non-zero central projection $p \in A_{n}$. By Lemma 2.2 it follows that $\alpha_{n, \infty}(q) \neq 0$ for every non-zero projection $q \in A_{n}$. Let $1_{n} \in A_{n}$ denote the unit. Since $\left\{\alpha_{n, \infty}\left(1_{n}\right)\right\}_{n=1}^{\infty}$ is an approximate unit for A there exists a positive integer N such that $\alpha_{k, \infty}\left(1_{k}\right)=1$ for all $k \geq N$. Hence $\alpha_{k}\left(1_{k}\right)=1_{k+1}, k \geq N$.

Lemma 9.3 Let $X \subseteq \mathbb{T}$ be a closed set and let $G \subseteq X$ be a finite subset. Let $\delta>0$ be given. There exist a closed subset $R \subseteq X$ with finitely many connected components such that $G \subseteq R$, together with a continuous surjective map $g: X \rightarrow R$ such that $g(z)=z$, $z \in G$, and $\rho(g(z), z) \leq \delta, z \in X$.

Proof Let $G=\left\{e^{2 \pi i t_{j}}: j=1,2, \ldots, N\right\}$ where $0 \leq t_{1}<t_{2}<\cdots<t_{N}<1$. Set $t_{N+1}=t_{1}+1$. Set $I_{j}=\left\{e^{2 \pi i t}: t \in\left[t_{j}, t_{j+1}\right]\right\}$. We may assume that $t_{j+1}-t_{j}<\delta$ unless the interior of I_{j} intersects non-trivially with X. On each I_{j} let either g be the identity map (if $I_{j} \subseteq X$) or a continuous map onto $\left\{e^{2 \pi i t_{j}}, e^{2 \pi i t_{j+1}}\right\}$ that is constant on the set of boundary points of I_{j}. Set $R=g(X)$.

Lemma 9.4 Let A be a quotient of a finite direct sum of building blocks. Let $F \subseteq A$ be a finite set and let $\epsilon>0$. There exists a finite direct sum of building blocks, interval building blocks and matrix algebras B, and unital $*$-homomorphisms $\varphi: A \rightarrow B$ and $\psi: B \rightarrow A$ such that ψ is injective and $\|\psi \circ \varphi(f)-f\|<\epsilon, f \in F$.

Proof We may assume that A is a quotient of a building block rather than of a finite direct sum of building blocks. Hence by Lemma 2.2

$$
A=\left\{f \in C(X) \otimes M_{n}: f\left(x_{i}\right) \in M_{d_{i}}, i=1,2, \ldots, N\right\}
$$

where $X \subseteq \mathbb{T}$ is a closed subset and $x_{1}, x_{2}, \ldots, x_{N} \in X$. Choose $\delta>0$ such that

$$
y, z \in X, \quad \rho(y, z) \leq \delta \Longrightarrow\|f(y)-f(z)\|<\epsilon, \quad f \in F
$$

Choose by Lemma 9.3 a closed subset $R \subseteq X$ with finitely many connected components such that $x_{1}, x_{2}, \ldots, x_{N} \in R$, and a continuous surjective map $g: X \rightarrow R$ such that $g\left(x_{i}\right)=x_{i}, i=1,2, \ldots, N$, and such that $\rho(g(z), z) \leq \delta, z \in X$. Let

$$
B=\left\{f \in C(R) \otimes M_{n}: f\left(x_{i}\right) \in M_{d_{i}}, i=1,2, \ldots, N\right\} .
$$

Define $\psi: B \rightarrow A$ by $\psi(f)=f \circ g$ and let $\varphi: A \rightarrow B$ be restriction. Then $\|\psi \circ \varphi(f)-f\|<\epsilon, f \in F$.

Proposition 9.5 Let A be a unital simple inductive limit of a sequence of finite direct sums of building blocks. Then A is the inductive limit of a sequence of finite direct sums of building blocks, interval building blocks and matrix algebras, with unital and injective connecting maps.

Proof By Lemma 9.2 we have that A is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

where each α_{n} is unital and injective and each A_{n} is a quotient of a finite direct sum of building blocks. We will construct a strictly increasing sequence of positive integers $\left\{n_{k}\right\}$, a sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

of finite direct sums of building blocks, interval building blocks and matrix algebras with unital connecting maps, unital $*$-homomorphisms $\mu_{k}: A_{n_{k}} \rightarrow B_{k+1}$, and unital injective $*$-homomorphisms $\psi_{k}: B_{k} \rightarrow A_{n_{k}}$ such that the diagram

becomes an approximate intertwining. Furthermore β_{k} should be injective unless B_{k+1} is finite dimensional. This is sufficient since the proposition is trivial if A is an AF-algebra.

It is easy to construct B_{1}, n_{1} and ψ_{1}. Assume that B_{k}, n_{k} and ψ_{k} have been constructed. Let $\epsilon>0$ and finite sets $F \subseteq A_{n_{k}}$ and $G \subseteq B_{k}$ be given. Choose $H \subseteq B_{k}$ by Lemma 9.1 with respect to $\epsilon>0$ and G. Since A is simple we may choose n_{k+1} such that $\widehat{\alpha_{n_{k}, n_{k+1}}}\left(\widehat{\psi_{k}(h)}\right)>0$ for $h \in H$. Choose B_{k+1}, φ_{k+1} and ψ_{k+1} by Lemma 9.4 with respect to $\epsilon>0$ and $\alpha_{n_{k}, n_{k+1}}(F)$. Set $\mu_{k}=\varphi_{k+1} \circ \alpha_{n_{k}, n_{k+1}}$. Then

$$
\left\|\psi_{k+1} \circ \mu_{k}(x)-\alpha_{n_{k}, n_{k+1}}(x)\right\|<\epsilon, \quad x \in F
$$

Since $\widehat{\mu_{k}} \circ \widehat{\psi_{k}}(\widehat{h})>0, h \in H$, there exists by Lemma 9.1 a unital $*$-homomorphism $\beta_{k}: B_{k} \rightarrow B_{k+1}$ such that

$$
\left\|\mu_{k} \circ \psi_{k}(x)-\beta_{k}(x)\right\|<\epsilon, \quad x \in G
$$

and such that β_{k} is injective if B_{k+1} is infinite dimensional.
Lemma 9.6 Let A be a simple infinite dimensional inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks, interval building blocks and matrix algebras, with unital and injective connecting maps. Then $s\left(A_{m}\right) \rightarrow \infty$.

Proof The lemma is well-known if A is an AF-algebra. We may therefore assume that A_{k} is infinite dimensional for some k. Let L be a positive integer. Let b_{1}, b_{2}, \ldots, $b_{L} \in A_{k}$ be positive non-zero mutually orthogonal elements. Since A is simple and the connecting maps are injective, there exists an integer $N \geq k$ such that

$$
\widehat{\alpha_{k, N}}\left(\widehat{b_{j}}\right)>0, \quad j=1,2, \ldots, L
$$

Hence if $m \geq N$ and $\mu: A_{m} \rightarrow M_{n}$ is a unital $*$-homomorphism, we see that the elements $\mu \circ \alpha_{1, m}\left(b_{j}\right), j=1,2, \ldots, L$, are non-zero and mutually orthogonal. Thus $n \geq L$.

Proposition 9.7 Let A be a simple unital infinite dimensional inductive limit of a sequence of finite direct sums of building blocks. Then A is the inductive limit of a sequence of finite direct sums of building blocks and interval building blocks with unital and injective connecting maps.

Proof By Proposition 9.5 we have that A is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

where each α_{k} is unital and injective and each A_{k} is of the form $C_{k} \oplus F_{k}$ for a finite (possibly trivial) direct sum of building blocks C_{k} and a finite dimensional C^{*} algebra F_{k}. Set $B_{k}=C_{k} \oplus\left(C(\mathbb{T}) \otimes F_{k}\right)$ and let $\psi_{k}: A_{k} \rightarrow B_{k}$ be the canonical *-homomorphism. It suffices to construct a strictly increasing sequence of positive integers $\left\{n_{k}\right\}$, unital $*$-homomorphisms $\mu_{k}: B_{n_{k}} \rightarrow A_{n_{k+1}}$, and unital injective *-homomorphisms $\beta_{k}: B_{n_{k}} \rightarrow B_{n_{k+1}}$ such that the diagram

becomes an approximate intertwining. This is done by induction. Set $n_{1}=1$.
Assume that n_{k} has been constructed. Let $\epsilon>0$ and a finite set $G \subseteq B_{n_{k}}$ be given. It suffices to construct $n_{k+1}>n_{k}$, a unital $*$-homomorphism $\mu_{k}: B_{n_{k}} \rightarrow A_{n_{k+1}}$ such that $\mu_{k} \circ \psi_{n_{k}}$ and $\alpha_{n_{k}, n_{k+1}}$ are approximately unitarily equivalent, and a unital injective *-homomorphism $\beta_{k}: B_{n_{k}} \rightarrow B_{n_{k+1}}$ such that

$$
\begin{equation*}
\left\|\beta_{k}(x)-\psi_{n_{k+1}} \circ \mu_{k}(x)\right\|<\epsilon, \quad x \in G \tag{27}
\end{equation*}
$$

Let $F_{n_{k}}=M_{m_{1}} \oplus M_{m_{2}} \oplus \cdots \oplus M_{m_{N}}$ and let $p_{1}, p_{2}, \ldots, p_{N}$ be the minimal nonzero central projections in $F_{n_{k}} \subseteq A_{n_{k}}$. Let $\pi_{i}: B_{n_{k}} \rightarrow C(\mathbb{T}) \otimes M_{m_{i}}$ be the projection, $i=1,2, \ldots, N$. Choose by Lemma 9.1 a finite set $H_{i} \subseteq C(\mathbb{T}) \otimes M_{m_{i}}$ of positive non-zero elements with respect to ϵ and $\pi_{i}(G)$. Let h_{i} be the cardinality of H_{i}.

Since A is simple there exists a $\delta>0$ such that

$$
\widehat{\alpha_{n_{k}, \infty}}\left(\widehat{p_{i}}\right)>\delta, \quad i=1,2, \ldots, N
$$

By Lemma 9.6 there exists an integer $n_{k+1}>n_{k}$ such that

$$
\begin{gathered}
\widehat{\alpha_{n_{k}, n_{k+1}}}\left(\widehat{p_{i}}\right)>\delta, \quad i=1,2, \ldots, N, \\
s\left(A_{n_{k+1}}\right)>\delta^{-1} \max _{i}\left(h_{i} m_{i}\right), \quad i=1,2, \ldots, N .
\end{gathered}
$$

Let $q_{i}=\alpha_{n_{k}, n_{k+1}}\left(p_{i}\right)$ and note that

$$
s\left(q_{i} A_{n_{k+1}} q_{i}\right)>\delta s\left(A_{n_{k+1}}\right)>h_{i} m_{i}, \quad i=1,2, \ldots, N
$$

Hence there exists a unital $*$-homomorphism $\lambda_{i}: C(\mathbb{T}) \otimes M_{m_{i}} \rightarrow q_{i} A_{n_{k+1}} q_{i}$ such that $\widehat{\lambda_{i}}(\widehat{h})>0, h \in H_{i}$. Let $\mu_{k}: B_{n_{k}} \rightarrow A_{n_{k+1}}$ be the $*$-homomorphism that agrees with $\alpha_{n_{k}, n_{k+1}}$ on $C_{n_{k}}$ and with λ_{i} on $C(\mathbb{T}) \otimes M_{m_{i}}$. The $*$-homomorphism $x \mapsto \lambda_{i}(1 \otimes x)$ from $M_{m_{i}}$ to $q_{i} A_{n_{k+1}} q_{i}$ is by [27, Chapter 1] approximately unitarily equivalent to the *-homomorphism induced by $\alpha_{n_{k}, n_{k+1}}$. Hence $\mu_{k} \circ \psi_{n_{k}}$ and $\alpha_{n_{k}, n_{k+1}}$ are approximately unitarily equivalent.

Let $e_{i}=\psi_{n_{k+1}}\left(q_{i}\right), i=1,2, \ldots, N$ and let $\xi_{i}: q_{i} A_{n_{k+1}} q_{i} \rightarrow e_{i} B_{n_{k+1}} e_{i}$ be the unital *-homomorphism induced by $\psi_{n_{k+1}}$. Since $\widehat{\xi}_{i} \circ \widehat{\lambda_{i}}(\widehat{h})>0$ there exists by Lemma 9.1 a unital injective $*$-homomorphism $\varphi_{i}: C(\mathbb{T}) \otimes M_{m_{i}} \rightarrow e_{i} B_{n_{k+1}} e_{i}$ such that

$$
\left\|\varphi_{i}(x)-\xi_{i} \circ \lambda_{i}(x)\right\|<\epsilon, \quad x \in \pi_{i}(G), \quad i=1,2, \ldots, N
$$

Let β_{k} be the $*$-homomorphism that agrees with $\psi_{n_{k+1}} \circ \mu_{k}$ on $C_{n_{k}}$ and with φ_{i} on $C(\mathbb{T}) \otimes M_{m_{i}}$. Note that β_{k} is unital and injective and that (27) holds.

It remains to replace interval building blocks with building blocks. This turns out to be much more complicated than in [20, Lemma 1.5] or [27, Lemma 4.7], since our building blocks may be unital projectionless. We will use the following lemma, which resembles a uniqueness result for interval building blocks. The proof is inspired by Elliott's proof of the uniqueness lemma for interval algebras [8].

Lemma 9.8 Let $A=I\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be an interval building block. Let $F \subseteq A$ be a finite set and let $\epsilon>0$ be given. There is a finite set $H \subseteq A$ of positive elements of norm 1 such that if $B=I\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$ is an interval building block with exceptional points $y_{1}, y_{2}, \ldots, y_{M}$, if $\varphi, \psi: A \rightarrow B$ are unital $*$-homomorphisms and if $\delta>0$, such that
(i) $\|\widehat{\varphi}(\widehat{h})-\widehat{\psi}(\widehat{h})\|<\delta, \quad h \in H$,
(ii) $\widehat{\varphi}(\widehat{h})>\delta, h \in H$,
(iii) $\widehat{\psi}(\widehat{h})>\delta, h \in H$,
(iv) $f \mapsto \varphi(f)\left(y_{j}\right)$ and $f \mapsto \psi(f)\left(y_{j}\right)$ are equivalent representations of A on M_{m}, $j=1,2, \ldots, M ;$
then there is a unitary $W \in B$ such that

$$
\left\|\varphi(f)-W \psi(f) W^{*}\right\|<\epsilon, \quad f \in F
$$

Proof We may assume that $\|f\| \leq 1$ for $f \in F$. Let $x_{1}, x_{2}, \ldots, x_{N}$ be the exceptional points of A. Choose a positive integer q such that

$$
\begin{gathered}
\frac{2}{q}<\min \left\{\left|x_{i}-x_{j}\right|: i \neq j\right\} \\
|x-y| \leq \frac{3}{q} \Rightarrow\|f(x)-f(y)\|<\frac{\epsilon}{3}, \quad f \in F
\end{gathered}
$$

For $r=1,2, \ldots, q$, define a continuous function $h_{r}:[0,1] \rightarrow[0,1]$ by

$$
h_{r}(t)= \begin{cases}0 & 0 \leq t \leq \frac{r-1}{q}, \\ q t-(r-1) & \frac{r-1}{q} \leq t \leq \frac{r}{q} \\ 1 & \frac{r}{q} \leq t \leq 1\end{cases}
$$

Set

$$
H=\left\{h_{1} \otimes 1, h_{2} \otimes 1, \ldots, h_{q} \otimes 1\right\} \cup\left\{\left(h_{1}-h_{2}\right) \otimes 1, \ldots,\left(h_{q-1}-h_{q}\right) \otimes 1\right\}
$$

Let $\varphi, \psi: A \rightarrow B$ be unital $*$-homomorphisms that satisfy (i)-(iv). By [27, Chapter 1] we see that φ and ψ are approximately unitarily equivalent to $*$-homomorphisms of the form

$$
\begin{aligned}
& \varphi^{\prime}(f)(t)=u(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(\lambda_{1}(t)\right), \ldots, f\left(\lambda_{L}(t)\right)\right) u(t)^{*} \\
& \psi^{\prime}(f)(t)=v(t) \operatorname{diag}\left(\Lambda_{1}^{s_{1}}(f), \ldots, \Lambda_{N}^{s_{N}}(f), f\left(\mu_{1}(t)\right), \ldots, f\left(\mu_{K}(t)\right)\right) v(t)^{*}
\end{aligned}
$$

for continuous functions $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{L}, \mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{K}:[0,1] \rightarrow$ $[0,1]$, integers r_{i} and s_{i} with $0 \leq r_{i}<\frac{n}{d_{i}}, 0 \leq s_{i}<\frac{n}{d_{i}}$ for $i=1,2, \ldots, N$, and unitaries $u, v \in C[0,1] \otimes M_{m}$. By (iv) we have that $f \mapsto \varphi^{\prime}(f)\left(y_{j}\right)$ and $f \mapsto$ $\psi^{\prime}(f)\left(y_{j}\right)$ are equivalent representations of A on $M_{m}, j=1,2, \ldots, M$. It follows that $r_{i}=s_{i}, i=1,2, \ldots, N$, that $K=L$, and that

$$
\left(\lambda_{1}\left(y_{j}\right), \lambda_{2}\left(y_{j}\right), \ldots, \lambda_{L}\left(y_{j}\right)\right)=\left(\mu_{1}\left(y_{j}\right), \mu_{2}\left(y_{j}\right), \ldots, \mu_{L}\left(y_{j}\right)\right)
$$

as unordered L-tuples, $j=1,2, \ldots, M$. Hence

$$
\begin{equation*}
\lambda_{k}\left(y_{j}\right)=\mu_{k}\left(y_{j}\right), \quad j=1,2, \ldots, M, k=1,2, \ldots, L \tag{28}
\end{equation*}
$$

For every $t \in[0,1], r=2,3, \ldots, q$, we have that

$$
\begin{aligned}
\#\left\{k: \lambda_{k}(t) \geq \frac{r}{q}\right\} n+\sum_{i: x_{i} \geq \frac{r}{q}} r_{i} d_{i} & \leq \operatorname{Tr}\left(\varphi^{\prime}\left(h_{r} \otimes 1\right)(t)\right) \\
& <m \delta+\operatorname{Tr}\left(\psi^{\prime}\left(h_{r} \otimes 1\right)(t)\right) \\
& <\operatorname{Tr}\left(\psi^{\prime}\left(h_{r-1} \otimes 1\right)(t)\right) \\
& \leq \#\left\{k: \mu_{k}(t) \geq \frac{r-2}{q}\right\} n+\sum_{i: x_{i} \geq \frac{r-2}{q}} r_{i} d_{i} .
\end{aligned}
$$

As $\left[\frac{r-2}{q}, \frac{r}{q}\right]$ at most contains one of the exceptional points of A, we see that

$$
\#\left\{k: \lambda_{k}(t) \geq \frac{r}{q}\right\} n<\#\left\{k: \mu_{k}(t) \geq \frac{r-2}{q}\right\} n+n
$$

Thus

$$
\#\left\{k: \lambda_{k}(t) \geq \frac{r}{q}\right\} \leq \#\left\{k: \mu_{k}(t) \geq \frac{r-2}{q}\right\}
$$

It follows that $\lambda_{k}(t) \leq \mu_{k}(t)+\frac{3}{q}$. Symmetry allows us to conclude that for all $t \in$ $[0,1]$,

$$
\left|\lambda_{k}(t)-\mu_{k}(t)\right| \leq \frac{3}{q}, \quad k=1,2, \ldots, L
$$

By (28) we can define a $*$-homomorphism $\beta: A \rightarrow B$ by

$$
\beta(f)(t)=v(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(\lambda_{1}(t)\right), \ldots, f\left(\lambda_{L}(t)\right)\right) v(t)^{*}
$$

Note that

$$
\left\|\psi^{\prime}(f)-\beta(f)\right\|<\frac{\epsilon}{3}, \quad f \in F
$$

Since $\operatorname{Tr}(\beta(f)(t))=\operatorname{Tr}(\varphi(f)(t)), f \in A, t \in[0,1]$, it follows that β and φ are approximately unitarily equivalent by [27, Corollary 1.5]. Hence there exists a unitary $U \in B$ such that

$$
\left\|\varphi(f)-U \beta(f) U^{*}\right\|<\frac{\epsilon}{3}, \quad f \in F
$$

Choose a unitary $V \in B$ such that

$$
\left\|\psi^{\prime}(f)-V \psi(f) V^{*}\right\|<\frac{\epsilon}{3}, \quad f \in F
$$

Set $W=U V$. Then for $f \in F$,

$$
\begin{aligned}
\left\|\varphi(f)-W \psi(f) W^{*}\right\| \leq & \left\|\varphi(f)-U \beta(f) U^{*}\right\|+\left\|U \beta(f) U^{*}-U \psi^{\prime}(f) U^{*}\right\| \\
& +\left\|U \psi^{\prime}(f) U^{*}-U V \psi(f) V^{*} U^{*}\right\| \\
< & \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

Define a continuous function $\kappa: \mathbb{T} \rightarrow[0,1]$ by

$$
\kappa\left(e^{2 \pi i t}\right)= \begin{cases}2 t & t \in\left[0, \frac{1}{2}\right] \\ 2-2 t & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Define continuous functions $\iota_{1}, \iota_{2}:[0,1] \rightarrow \mathbb{T}$ by $\iota_{1}(t)=e^{\pi i t}, \iota_{2}(t)=e^{-\pi i t}$. Note that $\kappa \circ \iota_{1}=\kappa \circ \iota_{2}=\mathrm{id}_{[0,1]}$.

Let $A=I\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$ be an interval building block with exceptional points $t_{1}, t_{2}, \ldots, t_{N}$. Define a circle building block by

$$
A^{\mathbb{T}}=\left\{f \in C(\mathbb{T}) \otimes M_{n}: f\left(\iota_{1}\left(t_{i}\right)\right), f\left(\iota_{2}\left(t_{i}\right)\right) \in M_{d_{i}}, i=1,2, \ldots, N\right\}
$$

Define unital $*$-homomorphisms $\xi_{A}: A \rightarrow A^{\mathbb{T}}$ by $\xi_{A}(f)=f \circ \kappa, f \in A$, and $j_{A}^{1}, j_{A}^{2}: A^{\mathbb{T}} \rightarrow A$ by $j_{A}^{1}(g)=g \circ \iota_{1}, j_{A}^{2}(g)=g \circ \iota_{2}, g \in A^{\mathbb{T}}$. Then $j_{A}^{1} \circ \xi_{A}=j_{A}^{2} \circ \xi_{A}=\mathrm{id}_{A}$.

Let A be a finite direct sum of building blocks and interval building blocks. It follows from the above that there exists a finite direct sum of building blocks A^{T} together with unital $*$-homomorphisms $\xi_{A}: A \rightarrow A^{\mathbb{T}}$ and $j_{A}^{1}, j_{A}^{2}: A^{\mathbb{T}} \rightarrow A$ such that $j_{A}^{1} \circ \xi_{A}=j_{A}^{2} \circ \xi_{A}=\mathrm{id}_{A}$ and

$$
\begin{equation*}
j_{A}^{1}(f)=j_{A}^{2}(f)=0 \Longrightarrow f=0, \quad f \in A^{\mathbb{T}} \tag{29}
\end{equation*}
$$

Theorem 9.9 Let A be a simple unital infinite dimensional inductive limit of a sequence of finite direct sums of circle building blocks. Then A is the inductive limit of a sequence of finite direct sums of circle building blocks with unital and injective connecting maps.

Proof By Proposition 9.7 we see that A is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

where each A_{n} is a finite direct sum of circle and interval building blocks and each α_{n} is a unital and injective $*$-homomorphism.

By passing to a subsequence, if necessary, we may assume that either, every A_{n} is a circle or an interval building block or, every A_{n} is a finite direct sum of at least two circle or interval building blocks.

Let us first assume that the latter is the case.
Let $A_{n}=A_{1}^{n} \oplus A_{2}^{n} \oplus \cdots \oplus A_{N_{n}}^{n}$ where each A_{i}^{n} is a circle or an interval building block. For each n let $\pi_{i}^{n}: A_{n} \rightarrow A_{i}^{n}$ denote the coordinate projections, $i=1,2, \ldots, N_{n}$. First we claim that we may assume that all the maps $\pi_{i}^{n+1} \circ \alpha_{n}$ are injective.

By Elliott's approximate intertwining argument it suffices to show that given a finite set $G \subseteq A_{n}$ and $\epsilon>0$ there exists an integer $m>n$ and a unital $*$-homomorphism $\psi: A_{n} \rightarrow A_{m}$ such that $\left\|\alpha_{n, m}(g)-\psi(g)\right\|<\epsilon, g \in G$, and such that $\pi_{i}^{m} \circ \psi$ is injective, $i=1,2, \ldots, N_{m}$. Choose by Lemma 9.1 a finite set $H \subseteq A_{n}$ of positive non-zero elements with respect to G and ϵ. As A is simple and the connecting maps are injective, we have that $\widehat{\alpha_{n, \infty}}(\widehat{h})>0, h \in H$. Thus there exists an integer $m>n$ such that $\widehat{\alpha_{n, m}}(\widehat{h})>0, h \in H$. Hence $\pi_{i}^{m} \circ \alpha_{n, m}(h) \neq 0, i=1,2, \ldots, N_{m}$, and the claim follows by N_{m} applications of Lemma 9.1.

Define a unital $*$-homomorphism $\psi_{n}: A_{n}^{\mathbb{T}} \rightarrow A_{n+1}$ by

$$
\psi_{n}(x)=\left(\pi_{1}^{n+1} \circ \alpha_{n} \circ j_{A_{n}}^{1}(x), \pi_{2}^{n+1} \circ \alpha_{n} \circ j_{A_{n}}^{2}(x), \ldots, \pi_{N_{n+1}}^{n+1} \circ \alpha_{n} \circ j_{A_{n}}^{2}(x)\right) .
$$

Since the maps $\pi_{i}^{n+1} \circ \alpha_{n}$ are injective, $i=1,2, \ldots, N_{n+1}$, and as $N_{n+1} \geq 2$, it follows from (29) that ψ_{n} is injective. The theorem therefore follows in this case from the commutativity of the diagram

It remains to prove the theorem in the first case. By passing to a subsequence we may assume that each A_{n} is an interval building block. Let $\epsilon>0$, let k be a positive integer, and let $F \subseteq A_{k}$ be finite. Again by Elliott's approximative intertwining argument, it suffices to show that there exists an integer $l>k$ and a unital and injective $*$-homomorphism $\psi: A_{k}^{\mathbb{T}} \rightarrow A_{l}$ such that

$$
\left\|\alpha_{k, l}(x)-\psi \circ \xi_{A_{k}}(x)\right\|<\epsilon, \quad x \in F
$$

Choose by Lemma 9.8 a finite set $H \subseteq A_{k}$ of positive elements of norm 1 with respect to F and ϵ. Since A is simple and the connecting maps are injective there exists a $\delta>0$ such that $\widehat{\alpha_{k, \infty}}(\widehat{h})>2 \delta, h \in H$. Let $A_{k}=I\left(n, d_{1}, d_{2}, \ldots, d_{N}\right)$. By Lemma 9.6 there exists an integer $l>k$ such that $s\left(A_{l}\right)>\frac{2 n}{\delta}$ and such that

$$
\widehat{\alpha_{k, l}}(\widehat{h})>2 \delta, \quad h \in H
$$

Let $A_{l}=I\left(m, e_{1}, e_{2}, \ldots, e_{M}\right)$. By [27, Chapter 1] $\alpha_{k, l} \circ j_{A_{k}}^{1}: A_{k}^{\mathbb{T}} \rightarrow A_{l}$ is approximately unitarily equivalent to a $*$-homomorphism $\beta: A_{k}^{\mathbb{T}} \rightarrow A_{l}$ of the form

$$
\begin{aligned}
& \beta(f)(t)=u(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(\mu_{1}(t)\right), \ldots, f\left(\mu_{L}(t)\right)\right) u(t)^{*} \\
& t \in[0,1]
\end{aligned}
$$

where $u \in C[0,1] \otimes M_{m}$ is a unitary and $\mu_{1}, \mu_{2}, \ldots, \mu_{L}:[0,1] \rightarrow \mathbb{T}$ are continuous functions. Choose a continuous function $\mu_{1}^{\prime}:[0,1] \rightarrow \mathbb{T}$ such that $\mu_{1}^{\prime}=\mu_{1}$ at the exceptional points of A_{l} and such that μ_{1}^{\prime} is surjective. Define $\varphi: A_{k}^{\mathbb{T}} \rightarrow A_{l}$ by

$$
\begin{aligned}
& \varphi(f)(t) \\
& \quad=u(t) \operatorname{diag}\left(\Lambda_{1}^{r_{1}}(f), \ldots, \Lambda_{N}^{r_{N}}(f), f\left(\mu_{1}^{\prime}(t)\right), f\left(\mu_{2}(t)\right), \ldots, f\left(\mu_{L}(t)\right)\right) u(t)^{*}
\end{aligned}
$$

Note that φ is injective, and that for $h \in H$,

$$
\left\|\widehat{\varphi} \circ \widehat{\xi_{A_{k}}}(\widehat{h})-\widehat{\alpha_{k, l}}(\widehat{h})\right\|=\left\|\widehat{\varphi}\left(\widehat{\xi_{A_{k}}}(\widehat{h})\right)-\widehat{\alpha_{k, l}} \circ \widehat{j_{A_{k}}^{1}}\left(\widehat{\xi_{A_{k}}}(\widehat{h})\right)\right\| \leq\|\widehat{\varphi}-\widehat{\beta}\| \leq \frac{2 n}{m}<\delta
$$

Finally, as $\Lambda_{j} \circ \varphi=\Lambda_{j} \circ \beta, j=1,2, \ldots, M$, we see by Lemma 9.8 that there exists a unitary $W \in A_{l}$ such that

$$
\left\|W \varphi \circ \xi_{A_{k}}(f) W^{*}-\alpha_{k, l}(f)\right\|<\epsilon, \quad f \in F
$$

Set $\psi(x)=W \varphi(x) W^{*}, x \in A_{k}^{\mathbb{T}}$.

10 Construction of a Certain Map

In [22] Rørdam defined the bifunctor $K L$ to be a certain quotient of $K K$. Some of our main results are more elegantly formulated in terms of $K L$ than $K K$, and we will
therefore from now on use $K L$ instead of $K K$. Recall from [22] that the Kasparov product yields a product $K L(B, C) \times K L(A, B) \rightarrow K L(A, C)$. Furthermore, if $K_{*}(A)$ is finitely generated then $K L(A, \cdot) \cong K K(A, \cdot)$, and this functor is continuous by [23, Theorem 1.14] and [23, Theorem 7.13]. Finally, approximately unitarily equivalent *-homomorphisms define the same element of $K L$ [22, Proposition 5.4]. It should be noted that $K L$ is related to homomorphisms of K-theory with coefficients, [6].

Let A and B be unital C^{*}-algebras. Let $K L(A, B)_{e}$ be the set of elements $\kappa \in$ $K K(A, B)$ for which $\kappa_{*}: K_{0}(A) \rightarrow K_{0}(B)$ preserves the order unit. Let $K L(A, B)_{T}$ be those elements $\kappa \in K L(A, B)_{e}$ for which there exists an affine continuous map $\varphi_{T}: T(B) \rightarrow T(A)$ such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

Lemma 10.1 Let C be a finite direct sum of building blocks, let $\epsilon>0$, and let $F \subseteq$ Aff $T(C)$ be a finite set. Let B be the inductive limit of a sequence of finite direct sums of building blocks

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps. Let $J:$ Aff $T(C) \rightarrow$ Aff $T(B)$ be a linear positive order unit preserving map and let $\kappa \in K L(C, B)_{e}$. There exists a positive integer n, a linear positive order unit preserving map $M: \operatorname{Aff} T(C) \rightarrow \operatorname{Aff} T\left(B_{n}\right)$, and an element $\omega \in$ $K K\left(C, B_{n}\right)_{e}$ such that

$$
\begin{gathered}
\left\|J(f)-\widehat{\beta_{n, \infty}} \circ M(f)\right\|<\epsilon, \quad f \in F \\
\kappa=\left[\beta_{n, \infty}\right] \cdot \omega \quad \text { in } K L(C, B)
\end{gathered}
$$

Proof We may assume that $\|f\| \leq 1, f \in F$. Decompose $C=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{N}$ as a finite direct sum of building blocks and let $\pi_{i}: C \rightarrow C_{i}$ denote the projection, $i=1,2, \ldots, N$.

For every $i=1,2, \ldots, N$, identify $\operatorname{Aff} T\left(C_{i}\right)$ and $C_{\mathbb{R}}(\mathbb{T})$. Choose open sets V_{1}, $V_{2}, \ldots, V_{k_{i}} \subseteq \mathbb{T}$ such that $\bigcup_{j=1}^{k_{i}} V_{j}=\mathbb{T}$ and such that

$$
x, y \in V_{j} \Longrightarrow|f(x)-f(y)|<\frac{\epsilon}{2}, \quad f \in \widehat{\pi}_{i}(F)
$$

Let $\left\{h_{j}: j=1,2, \ldots, k_{i}\right\}$ be a continuous partition of unity in $C_{\mathbb{R}}(\mathbb{T})$ subordinate to the cover $\left\{V_{j}: j=1,2, \ldots, k_{i}\right\}$ and let $x_{j} \in V_{j}$ be an arbitrary point, $j=$ $1,2, \ldots, k_{i}$. Define linear positive order unit preserving maps $T_{i}: \operatorname{Aff} T\left(C_{i}\right) \rightarrow \mathbb{R}^{k_{i}}$ and $S_{i}: \mathbb{R}^{k_{i}} \rightarrow \operatorname{Aff} T\left(C_{i}\right)$ by

$$
\begin{gathered}
T_{i}(f)=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{k_{i}}\right)\right) \\
S_{i}\left(t_{1}, t_{2}, \ldots, t_{k_{i}}\right)=\sum_{j=1}^{k_{i}} t_{j} h_{j}
\end{gathered}
$$

Note that

$$
\left\|S_{i} \circ T_{i}(f)-f\right\|<\frac{\epsilon}{2}, \quad f \in \widehat{\pi}_{i}(F)
$$

Hence there exist linear positive order unit preserving maps

$$
\begin{aligned}
& T: \operatorname{Aff} T(C) \longrightarrow \mathbb{R}^{k} \\
& S: \mathbb{R}^{k} \longrightarrow \operatorname{Aff} T(C),
\end{aligned}
$$

where $k=\sum_{i=1}^{N} k_{i}$, such that

$$
\|S \circ T(f)-f\|<\frac{\epsilon}{2}, \quad f \in F
$$

Let $\left\{e_{j}: j=1,2, \ldots, k\right\}$ be the standard basis in \mathbb{R}^{k}. As $\left\{J \circ S\left(e_{j}\right): j=1,2, \ldots, k\right\}$ are positive elements with sum 1 in $\operatorname{Aff} T(B)$, there exist a positive integer l and positive elements $x_{1}, x_{2}, \ldots, x_{k} \in \operatorname{Aff} T\left(B_{l}\right)$ such that $\sum_{j=1}^{k} x_{j}=1$ and

$$
\left\|\widehat{\beta_{l, \infty}}\left(x_{j}\right)-J \circ S\left(e_{j}\right)\right\|<\frac{\epsilon}{2 k}, \quad j=1,2, \ldots, k
$$

Define linear positive order unit preserving maps $V: \mathbb{R}^{k} \rightarrow \operatorname{Aff} T\left(B_{l}\right)$ by

$$
V\left(\sum_{j=1}^{k} t_{j} e_{j}\right)=\sum_{j=1}^{k} t_{j} x_{j}
$$

and $W: \operatorname{Aff} T(C) \rightarrow \operatorname{Aff} T\left(B_{l}\right)$ by $W=V \circ T$. Since

$$
\left\|\widehat{\beta_{l, \infty}} \circ V-J \circ S\right\|<\frac{\epsilon}{2}
$$

we see that

$$
\left\|\widehat{\beta_{l, \infty}} \circ W(f)-J(f)\right\|<\epsilon, \quad f \in F
$$

By continuity of $K L(C, \cdot)$ there exist an integer m and an element $\nu \in K L\left(C, B_{m}\right)$ such that $\left[\beta_{m, \infty}\right] \cdot \nu=\kappa$. As

$$
\beta_{m, \infty_{*}} \circ \nu_{*}[1]=\kappa_{*}[1]=[1]=\beta_{m, \infty_{*}}[1] \quad \text { in } K_{0}(B)
$$

we see that there exists an integer $n \geq m, l$ such that $\left[\beta_{m, n}\right] \cdot \nu \in K L\left(C, B_{n}\right)_{e}$. Set $\omega=\left[\beta_{m, n}\right] \cdot \nu$ and $M=\widehat{\beta_{l, n}} \circ W$.

Proposition 10.2 Let A be a simple unital inductive limit of a sequence of finite direct sums of building blocks. Let B be the inductive limit of a sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

of finite direct sums of building blocks with unital connecting maps. Assume that there exist a $\kappa \in K L(A, B)_{e}$ and an affine continuous map $\varphi_{T}: T(B) \rightarrow T(A)$ such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

Let C be a finite direct sum of building blocks and let $\psi: C \rightarrow A$ be a unital *homomorphism. Let $\epsilon>0$ and let $F \subseteq \operatorname{Aff} T(C)$ be a finite subset. There exist a positive integer m and a linear positive order unit preserving map $M: \operatorname{Aff} T(C) \rightarrow \operatorname{Aff} T\left(B_{m}\right)$ such that

$$
\left\|\widehat{\beta_{m, \infty}} \circ M(f)-\varphi_{T_{*}} \circ \widehat{\psi}(f)\right\|<\epsilon, \quad f \in F,
$$

and an element $\omega \in K L\left(C, B_{m}\right)_{e}$ such that

$$
\begin{gathered}
{\left[\beta_{m, \infty}\right] \cdot \omega=\kappa \cdot[\psi] \quad \text { in } K L(C, B),} \\
M \circ \rho_{C}=\rho_{B_{m}} \circ \omega_{*} \quad \text { on } K_{0}(C) .
\end{gathered}
$$

Proof We may assume that $\|f\| \leq 1, f \in F$. Decompose $C=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{N}$ as a finite direct sum of building blocks. Let $r_{1}, r_{2}, \ldots, r_{N} \in C$ be projections such that $\left[r_{1}\right],\left[r_{2}\right], \ldots,\left[r_{N}\right]$ generate $K_{0}(C)$. By factoring ψ through the C^{*}-algebra obtained from C by erasing those direct summands C_{i} for which $\psi\left(r_{i}\right)=0$, we may assume that $\psi\left(r_{i}\right) \neq 0, i=1,2, \ldots, N$. There exist positive integers $d_{1}, d_{2}, \ldots, d_{N}$ such that

$$
\sum_{i=1}^{N} d_{i}\left[r_{i}\right]=[1] \quad \text { in } K_{0}(C)
$$

Since A is simple there exists a $\delta_{0}>0$ such that

$$
\widehat{\psi}\left(\widehat{r_{i}}\right)>\delta_{0}, \quad i=1,2, \ldots, N
$$

Choose $\delta>0$ such that $\delta<\delta_{0}$ and $\delta\left(1+\sum_{i=1}^{N} d_{i}\right)<\epsilon$.
By Lemma 10.1 there exist a positive integer l and a linear positive order unit preserving map $V:$ Aff $T(C) \rightarrow \operatorname{Aff} T\left(B_{l}\right)$ such that

$$
\left\|\widehat{\beta_{l, \infty}} \circ V(f)-\varphi_{T *} \circ \widehat{\psi}(f)\right\|<\delta, \quad f \in F \cup\left\{\widehat{r_{1}}, \widehat{r_{2}}, \ldots, \widehat{r_{N}}\right\}
$$

and an element $\nu \in K K\left(C, B_{l}\right)_{e}$ such that

$$
\left[\beta_{l, \infty}\right] \cdot \nu=\kappa \cdot[\psi] \quad \text { in } K L(C, B)
$$

Since by assumption $\rho_{B} \circ \kappa_{*}=\varphi_{T *} \circ \rho_{A}$ on $K_{0}(A)$ we see that for $i=1,2, \ldots, N$,

$$
\widehat{\beta_{l, \infty}} \circ \rho_{B_{l}} \circ \nu_{*}\left[r_{i}\right]=\rho_{B} \circ \beta_{l, \infty_{*}} \circ \nu_{*}\left[r_{i}\right]=\varphi_{T_{*}} \circ \rho_{A} \circ \psi_{*}\left[r_{i}\right]=\varphi_{T_{*}} \circ \widehat{\psi}\left(\widehat{r_{i}}\right)>\delta_{0} .
$$

Hence

$$
\left\|\widehat{\beta_{l, \infty}} \circ \rho_{B_{l}} \circ \nu_{*}\left[r_{i}\right]-\widehat{\beta_{l, \infty}} \circ V\left(\widehat{r_{i}}\right)\right\|<\delta, \quad i=1,2, \ldots, N
$$

Choose $m>l$ such that for $i=1,2, \ldots, N$,

$$
\begin{gathered}
\widehat{\beta_{l, m}} \circ \rho_{B_{l}} \circ \nu_{*}\left[r_{i}\right]>\delta_{0} \\
\left\|\widehat{\beta_{l, m}} \circ \rho_{B_{l}} \circ \nu_{*}\left[r_{i}\right]-\widehat{\beta_{l, m}} \circ V\left(\widehat{r_{i}}\right)\right\|<\delta
\end{gathered}
$$

Define $W:$ Aff $T(C) \rightarrow \operatorname{Aff} T\left(B_{m}\right)$ by $W=\widehat{\beta_{l, m}} \circ V$. Define $\omega \in K K\left(C, B_{m}\right)_{e}$ by $\omega=\left[\beta_{l, m}\right] \cdot \nu$.

Decompose $B_{m}=B_{1}^{m} \oplus B_{2}^{m} \oplus \cdots \oplus B_{L}^{m}$ as a finite direct sum of building blocks and let $\pi_{j}: B_{m} \rightarrow B_{j}^{m}$ be the projection, $j=1,2, \ldots, L$. Identify $\operatorname{Aff} T\left(B_{m}\right)$ with $\bigoplus_{j=1}^{L} C_{\mathbb{R}}(\mathbb{T})$. Fix some $j=1,2, \ldots, L$. Set $W_{j}=\widehat{\pi}_{j} \circ W . W_{j}\left(\widehat{r}_{i}\right)$ is a strictly positive function in $C_{\mathbb{R}}(\mathbb{T})$, since $\delta<\delta_{0}$. Thus for each $i=1,2, \ldots, N$, we can define $M_{j}: \operatorname{Aff} T\left(A_{n}\right) \cong \bigoplus_{i=1}^{N} \operatorname{Aff} T\left(C_{i}\right) \rightarrow C_{\mathbb{R}}(\mathbb{T})$ by

$$
M_{j}\left(f_{1}, f_{2}, \ldots, f_{N}\right)=\sum_{i=1}^{N} W_{j}\left(0, \ldots, 0, f_{i}, 0, \ldots, 0\right) \frac{1}{W_{j}\left(\widehat{r}_{i}\right)} \widehat{\pi}_{j}\left(\rho_{B_{m}} \circ \omega_{*}\left[r_{i}\right]\right)
$$

M_{j} is positive and linear, and it preserves the order unit since

$$
M_{j}(1)=\sum_{i=1}^{N} W_{j}\left(d_{i} \widehat{r}_{i}\right) \frac{1}{W_{j}\left(\widehat{r}_{i}\right)} \widehat{\pi}_{j}\left(\rho_{B_{m}} \circ \omega_{*}\left[r_{i}\right]\right)=\sum_{i=1}^{N} \widehat{\pi}_{j}\left(\rho_{B_{m}} \circ \omega_{*}\left(d_{i}\left[r_{i}\right]\right)\right)=1
$$

Let now $g \in C_{\mathbb{R}}(\mathbb{T}) \cong \operatorname{Aff} T\left(C_{i}\right),\|g\| \leq 1$, for $i=1,2, \ldots, N$. Since

$$
-d_{i} \widehat{r_{i}} \leq(0, \ldots, 0, g, 0, \ldots, 0) \leq d_{i} \widehat{r_{i}}
$$

in $\operatorname{Aff} T(C)$ we have that

$$
\begin{aligned}
& \left\|M_{j}(0, \ldots, g, \ldots, 0)-W_{j}(0, \ldots, g, \ldots, 0)\right\| \\
& \quad=\left\|W_{j}(0, \ldots, g, \ldots, 0) \frac{1}{W_{j}\left(\widehat{r}_{i}\right)}\left(\widehat{\pi}_{j}\left(\rho_{B_{m}} \circ \omega_{*}\left[r_{i}\right]\right)-W_{j}\left(\widehat{r}_{i}\right)\right)\right\| \\
& \quad \leq d_{i}\left\|\widehat{\pi}_{j}\left(\rho_{B_{m}} \circ \omega_{*}\left[r_{i}\right]\right)-W_{j}\left(\widehat{r}_{i}\right)\right\|<\delta d_{i} .
\end{aligned}
$$

Hence if $f \in \operatorname{Aff} T(C),\|f\| \leq 1$, then

$$
\left\|M_{j}(f)-W_{j}(f)\right\|<\sum_{i=1}^{N} \delta d_{i}
$$

Define M : Aff $T(C) \rightarrow$ Aff $T\left(B_{m}\right)$ by

$$
M(f)=\left(M_{1}(f), M_{2}(f), \ldots, M_{L}(f)\right)
$$

Then

$$
\|M(f)-W(f)\|<\sum_{i=1}^{N} \delta d_{i}, \quad f \in \operatorname{Aff} T(C),\|f\| \leq 1
$$

and hence

$$
\left\|\widehat{\boldsymbol{\beta}_{m, \infty}} \circ M(f)-\varphi_{T_{*}} \circ \widehat{\psi}(f)\right\|<\delta+\sum_{i=1}^{N} \delta d_{i}<\epsilon, \quad f \in F .
$$

Finally, $M\left(\widehat{r_{i}}\right)=\rho_{B_{m}} \circ \omega_{*}\left[r_{i}\right], i=1,2, \ldots, N$. It follows that $M \circ \rho_{C}=\rho_{B_{m}} \circ \omega_{*}$ on $K_{0}(C)$.

Lemma 10.3 Let A be a unital simple inductive limit of a sequence of finite direct sums of building blocks with $K_{0}(A)$ non-cyclic. Then $\operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)}$ is torsion free.

Proof The image of the canonical map $K_{0}(A) \rightarrow \operatorname{Aff} S K_{0}(A)$ is dense by [1, Proposition 3.1], since $K_{0}(A)$ is a simple countable dimension group. By definition ρ_{A} is the composition of this map with the linear bounded map $\operatorname{Aff} S K_{0}(A) \rightarrow \operatorname{Aff} T(A)$ induced by r_{A}. It follows that $\rho_{A}\left(K_{0}(A)\right)$ is dense in some subspace of Aff $T(A)$.

Lemma 10.4 Let A be an inductive limit of a sequence of finite direct sums of building blocks

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

with unital connecting maps. Assume that ρ_{A} is injective and that $\rho_{A}\left(K_{0}(A)\right)$ is a discrete subgroup of $\operatorname{Aff} T(A)$. Let n be a positive integer and let x, y be elements of the torsion subgroup of $U\left(A_{n}\right) / \overline{D U\left(A_{n}\right)}$ such that $\alpha_{n, \infty}^{\#}(x)=\alpha_{n, \infty}^{\#}(y)$. There exists an integer $k \geq n$ such that $\alpha_{n, k}^{\#}(x)=\alpha_{n, k}^{\#}(y)$.

Proof Since $\alpha_{n, \infty_{*}}\left(\pi_{A_{n}}(x)\right)=\alpha_{n, \infty_{*}}\left(\pi_{A_{n}}(y)\right)$ in $K_{1}(A)$ there is an integer $l \geq n$ such that $\alpha_{n, l_{*}}\left(\pi_{A_{n}}(x)\right)=\alpha_{n, l_{*}}\left(\pi_{A_{n}}(y)\right)$. By Proposition 5.2 we see that

$$
\alpha_{n, l}^{\#}(x-y)=\lambda_{A_{l}}\left(q_{A_{l}}\left(\frac{1}{m} \rho_{A_{l}}(z)\right)\right)
$$

for some positive integer m and an element $z \in K_{0}\left(A_{l}\right)$. Since $\rho_{A}\left(K_{0}(A)\right)$ is discrete and since $\lambda_{A}\left(q_{A}\left(\frac{1}{m} \rho_{A}\left(\alpha_{l, \infty_{*}}(z)\right)\right)\right)=0$ we see that $\frac{1}{m} \rho_{A}\left(\alpha_{l, \infty_{*}}(z)\right)=$ $\rho_{A}\left(\alpha_{j, \infty_{*}}(w)\right)$ for some positive integer j and an element $w \in K_{0}\left(A_{j}\right)$. Since ρ_{A} is injective we may choose an integer $k \geq l, j$ such that $\alpha_{l, k_{*}}(z)=\alpha_{j, k_{*}}(m w)$ in $K_{0}(A)$.
Note that $\alpha_{n, k}^{\#}(x-y)=\lambda_{A_{k}}\left(q_{A_{k}}\left(\frac{1}{m} \rho_{A_{k}}\left(\alpha_{k, l_{*}}(z)\right)\right)\right)=0$.
Proposition 10.5 Let A be a unital C^{*}-algebra and let B be a unital inductive limit of a sequence of finite direct sums of building blocks such that the torsion subgroup of $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is totally disconnected. Let $\varphi, \psi: A \rightarrow B$ be unital $*$-homomorphisms that are homotopic and let $x \in U(A) / \overline{D U(A)}$ be an element of finite order. Then $\varphi^{\#}(x)=\psi^{\#}(x)$.

Proof Let $u \in A$ be a unitary such that $x=q_{A}^{\prime}(u)$. Let $\left(\varphi_{t}\right)_{t \in[0,1]}$ be a homotopy connecting φ to ψ. We may assume that $\left\|\varphi_{t}(u)-\varphi_{0}(u)\right\|<1$ for $t \in[0,1]$. Thus

$$
\varphi_{t}(u) \varphi_{0}(u)^{*}=e^{2 \pi i b_{t}}
$$

where $t \mapsto b_{t}$ is a continuous path of self-adjoint elements in B. Since $\lambda_{B}\left(q_{B}\left(\widehat{b_{t}}\right)\right)=$ $q_{B}^{\prime}\left(e^{2 \pi i b_{t}}\right)$ we see that $q_{B}\left(\widehat{b_{t}}\right)$ has finite order in $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$. Thus $t \mapsto q_{B}\left(\widehat{b_{t}}\right)$ is a continuous path in a totally disconnected subset of a metric space. It follows that it is constant and hence $q_{B}\left(\widehat{b_{t}}\right)=0$ for every $t \in[0,1]$. We conclude that $\varphi_{0}^{\#}\left(q_{A}^{\prime}(u)\right)=\varphi_{1}^{\#}\left(q_{A}^{\prime}(u)\right)$.

We leave it as an open question whether the torsion subgroup of the group $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ always is totally disconnected.

Proposition 10.6 Let A be a finite direct sum of building blocks and let B be a unital inductive limit of a sequence of finite direct sums of building blocks such that the torsion subgroup of $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is totally disconnected. Let $\varphi, \psi: A \rightarrow B$ be unital *-homomorphisms such that $[\varphi]=[\psi]$ in $K L(A, B)$. Let x be an element of the torsion subgroup of $U(A) / \overline{D U(A)}$. Then $\varphi^{\#}(x)=\psi^{\#}(x)$.

Proof By [18, Corollary 15.1.3] and Theorem 2.4 there exist a positive integer m and $*$-homomorphisms $\lambda, \mu: A \rightarrow B_{m}$ such that φ is homotopic to $\beta_{m, \infty} \circ \lambda$ and ψ is homotopic to $\beta_{m, \infty} \circ \mu$. By increasing m we may assume that λ and μ are unital. There exists an integer $k \geq m$ such that $\left[\beta_{m, k}\right] \cdot[\lambda]=\left[\beta_{m, k}\right] \cdot[\mu]$ in $K L\left(A, B_{k}\right)$. Thus $\beta_{m, k}^{\#} \circ \lambda^{\#}(x)=\beta_{m, k}^{\#} \circ \mu^{\#}(x)$ by Proposition 5.6. Hence $\varphi^{\#}(x)=\beta_{m, \infty}^{\#} \circ \lambda^{\#}(x)=$ $\beta_{m, \infty}^{\#} \circ \mu^{\#}(x)=\psi^{\#}(x)$ by Proposition 10.5 .

Lemma 10.7 Let A be a simple unital inductive limit of a sequence of finite direct sums of building blocks such that $K_{0}(A)$ is non-cyclic, and let B be a unital inductive limit of a sequence of finite direct sums of building blocks. If there exists an element $\kappa \in K L(A, B)_{T}$ then $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is torsion free.

Proof By Lemma 9.2 we may assume that A is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks with unital connecting maps. Similarly B is the inductive limit of a sequence of finite direct sums of building blocks

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps. Let $\epsilon>0$. There exists a positive integer n such that for every $t \in \mathbb{R}$ we have that $d_{A_{n}}^{\prime}\left(q_{A_{n}}(\widehat{\widehat{l}}), 0\right)<\epsilon$. To see this choose a positive integer k such that $\frac{1}{k}<\epsilon$. Since $\operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)}$ is torsion free by Lemma 10.3 , we may
choose n such that $d_{A_{n}}^{\prime}\left(q_{A_{n}}\left(\frac{j}{k} \hat{1}\right), 0\right)<\frac{\epsilon}{2}, j=1,2, \ldots, k-1$. Let $t \in \mathbb{R}$. We may assume that $0<t<1$. Choose $j=0,1,2, \ldots, k$ such that $\left|t-\frac{j}{k}\right| \leq \frac{1}{2 k}<\frac{\epsilon}{2}$. Then $d_{A_{n}}^{\prime}\left(q_{A_{n}}(\widehat{t}), 0\right)<\epsilon$.

By Proposition 10.2 we get a positive integer l and a contractive group homomorphism S: Aff $T\left(A_{n}\right) / \overline{\rho_{A_{n}}\left(K_{0}\left(A_{n}\right)\right)} \rightarrow \operatorname{Aff} T\left(B_{l}\right) / \overline{\rho_{B_{l}}\left(K_{0}\left(B_{l}\right)\right)}$ such that $S\left(q_{A_{n}}(r \widehat{1})\right)=q_{B_{l}}(\widehat{r})$ for every $r \in \mathbb{R}$. Let $x \in \operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ be an element of order m. There is an integer $k \geq l$ such that $d_{B}^{\prime}\left(x, q_{B}\left(\frac{1}{m} \rho_{B}\left(\beta_{k, \infty_{*}}(y)\right)\right)\right)<\epsilon$ for some element $y \in K_{0}\left(B_{k}\right)$. We claim that $d_{B_{k}}^{\prime}\left(q_{B_{k}}\left(\frac{1}{m} \rho_{B_{k}}(y)\right), 0\right)<\epsilon$. To this end we may assume that B_{k} is a building block. Then $\rho_{B_{k}}(y)=w \widehat{1}$ for some $w \in(\mathbb{O})$. Hence

$$
\begin{aligned}
d_{B_{k}}^{\prime}\left(q_{B_{k}}\left(\frac{1}{m} \rho_{B_{k}}(y)\right), 0\right) & =d_{B_{k}}^{\prime}\left(\widetilde{\beta_{l, k}} \circ S\left(q_{A_{n}}\left(\frac{w}{m} \widehat{l}\right)\right), 0\right) \\
& \leq d_{A_{n}}^{\prime}\left(q_{A_{n}}\left(\frac{w}{m} \widehat{l}\right), 0\right)<\epsilon
\end{aligned}
$$

Thus $d_{B}^{\prime}(x, 0)<2 \epsilon$. Since $\epsilon>0$ was arbitrary we conclude that $x=0$.

Lemma 10.8 Let A be a simple inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks with unital connecting maps. Let y be an element in $U(A) / \overline{D U(A)}$ of order $k<\infty$. Then there exist a positive integer m and an element $w \in U\left(A_{m}\right) / \overline{D U\left(A_{m}\right)}$ of order k such that $\alpha_{m, \infty}^{\#}(w)=y$.

Proof By continuity of K_{1} there exist a positive integer l and an element z in $U\left(A_{l}\right) / \overline{D U\left(A_{l}\right)}$ such that $\alpha_{l, \infty_{*}}\left(\pi_{A_{l}}(z)\right)=\pi_{A}(y)$ in $K_{1}(A)$. Since the short exact sequence of Proposition 5.2 splits we may assume that $k z=0$. Note that $\pi_{A}\left(\alpha_{l, \infty}^{\#}(z)\right)=$ $\pi_{A}(y)$ and hence

$$
y=\alpha_{l, \infty}^{\#}(z)+\lambda_{A}\left(q_{A}(f)\right) \quad \text { in } U(A) / \overline{D U(A)}
$$

for some $f \in \operatorname{Aff} T(A)$ with $k q_{A}(f)=0$ in the group $\operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)}$. If $K_{0}(A)$ is non-cyclic then we see that $q_{A}(f)=0$ by Lemma 10.3. Thus we may assume that $K_{0}(A) \cong \mathbb{Z}$ such that $\rho_{A}\left(K_{0}(A)\right)$ is a discrete subgroup of $\operatorname{Aff} T(A)$. It follows that $f=\frac{1}{k} \rho_{A}(x)$ for some $x \in K_{0}(A)$. By continuity of K_{0} we have that $x=\alpha_{m, \infty_{*}}(h)$ for some integer $m \geq l$ and some $h \in K_{0}\left(A_{m}\right)$. Define $w \in U\left(A_{m}\right) / \overline{D U\left(A_{m}\right)}$ by

$$
w=\alpha_{l, m}^{\#}(z)+\lambda_{A_{m}}\left(q_{A_{m}}\left(\frac{1}{k} \rho_{A_{m}}(h)\right)\right) .
$$

Then

$$
\alpha_{m, \infty}^{\#}(w)=\alpha_{l, \infty}^{\#}(z)+\lambda_{A}\left(q_{A}\left(\frac{1}{k} \rho_{A}\left(\alpha_{m, \infty_{*}}(h)\right)\right)\right)=\alpha_{l, \infty}^{\#}(z)+\lambda_{A}\left(q_{A}(f)\right)=y
$$

Since y has order k and $k w=0$ it follows that w has order k as well.
Theorem 10.9 Let A be a unital simple inductive limit of a sequence of finite direct sums of building blocks and let B be an inductive limit of a similar sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps such that $s\left(B_{k}\right) \rightarrow \infty$ and such that the torsion subgroup of $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is totally disconnected. Let $\kappa \in K L(A, B)_{T}$. Let C be a finite direct sum of building blocks and let $\varphi: C \rightarrow A$ be a unital $*$-homomorphism. Then there is a unital $*$-homomorphism $\psi: C \rightarrow B$ such that $[\psi]=\kappa \cdot[\varphi]$ in $\operatorname{KL}(C, B)$.

Moreover, if C_{1} is another finite direct sum of building blocks, if $\varphi_{1}: C_{1} \rightarrow A$ and $\psi_{1}: C_{1} \rightarrow$ B are unital $*$-homomorphisms such that $\left[\psi_{1}\right]=\kappa \cdot\left[\varphi_{1}\right]$ in $\operatorname{KL}(A, B)$, and if $x \in U(C) / \overline{D U(C)}$ and $x_{1} \in U\left(C_{1}\right) / \overline{D U\left(C_{1}\right)}$ are elements of finite order such that $\varphi^{\#}(x)=\varphi_{1}^{\#}\left(x_{1}\right)$, then $\psi^{\#}(x)=\psi_{1}^{\#}\left(x_{1}\right)$.

Proof Let a finite direct sum of building blocks C and a unital *-homomorphism $\varphi: C \rightarrow A$ be given. Let $\varphi_{T}: T(B) \rightarrow T(A)$ be a continuous affine map such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

Let $p_{1}, p_{2}, \ldots, p_{N}$ be the minimal non-zero central projections in C. As in the proof of Proposition 10.2 we see that we may assume that $\varphi\left(p_{i}\right) \neq 0, i=1,2, \ldots, N$. Choose $\delta>0$ such that $\widehat{\varphi}\left(\widehat{p}_{i}\right)>2 \delta$. Choose an integer K by Theorem 8.5 with respect to $F=\varnothing$ and $\epsilon=1$. By Proposition 10.2 there exist a positive integer m and a linear positive order unit preserving map $M:$ Aff $T(C) \rightarrow \operatorname{Aff} T\left(B_{m}\right)$ such that

$$
\left\|\widehat{\beta_{m, \infty}} \circ M\left(\widehat{p}_{i}\right)-\varphi_{T_{*}} \circ \widehat{\varphi}\left(\widehat{p}_{i}\right)\right\|<\delta, \quad i=1,2, \ldots, N
$$

and an element $\omega \in K L\left(C, B_{m}\right)_{e}$ such that

$$
\begin{gathered}
{\left[\beta_{m, \infty}\right] \cdot \omega=\kappa \cdot[\varphi] \quad \text { in } K L(C, B)} \\
M \circ \rho_{C}=\rho_{B_{m}} \circ \omega_{*} \quad \text { on } K_{0}(C)
\end{gathered}
$$

Hence $\widehat{\beta_{m, \infty}} \circ M\left(\widehat{p}_{i}\right)>\delta, i=1,2, \ldots, N$. Choose $k \geq m$ such that $s\left(B_{k}\right) \geq K \delta^{-1}$ and such that $\widehat{\beta_{m, k}} \circ M\left(\widehat{p_{i}}\right)>\delta, i=1,2, \ldots, N$. Then $\rho_{B_{k}}\left(\beta_{m, k_{*}} \circ \omega_{*}\left[p_{i}\right]\right)>\delta$ and hence $s\left(B_{k}\right) \rho_{B_{k}}\left(\beta_{m, k_{*}} \circ \omega_{*}\left[p_{i}\right]\right) \geq K$. Furthermore $\widehat{\beta_{m, k}} \circ M \circ \rho_{C}=\rho_{B_{k}} \circ \beta_{m, k_{*}} \circ \omega_{*}$. It follows from Theorem 8.5 that there exists a unital $*$-homomorphism μ : $C \rightarrow B_{k}$ such that $[\mu]=\left[\beta_{m, k}\right] \cdot \omega$. Set $\psi=\beta_{k, \infty} \circ \mu$. This proves the first part of the theorem.

To prove the second part of the theorem, let us first note that

$$
\pi_{B}\left(\psi^{\#}(x)\right)=\psi_{*}\left(\pi_{C}(x)\right)=\kappa_{*} \circ \varphi_{*}\left(\pi_{C}(x)\right)=\psi_{1 *}\left(\pi_{C_{1}}\left(x_{1}\right)\right)=\pi_{B}\left(\psi_{1}^{\#}\left(x_{1}\right)\right)
$$

Hence if $K_{0}(A)$ is non-cyclic then $\psi^{\#}(x)=\psi_{1}^{\#}\left(x_{1}\right)$ by Lemma 10.7.
We may therefore assume that $K_{0}(A)$ is cyclic. By Lemma 9.2 we see that A is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

where each A_{n} is a finite direct sum of building blocks and each α_{n} is unital. By [18, Corollary 15.1.3] there exist a positive integer n and $*$-homomorphisms $\lambda: C \rightarrow A_{n}$ and $\lambda_{1}: C_{1} \rightarrow A_{n}$ such that φ is homotopic to $\alpha_{n, \infty} \circ \lambda$ and φ_{1} is homotopic to $\alpha_{n, \infty} \circ \lambda_{1}$. Note that λ and λ_{1} are unital. Since

$$
\alpha_{n, \infty}^{\#} \circ \lambda^{\#}(x)=\alpha_{n, \infty}^{\#} \circ \lambda_{1}^{\#}\left(x_{1}\right)
$$

by Proposition 10.5, there exists by Lemma 10.4 a positive integer k such that

$$
\alpha_{n, k}^{\#} \circ \lambda^{\#}(x)=\alpha_{n, k}^{\#} \circ \lambda_{1}^{\#}\left(x_{1}\right) .
$$

By the first part of the theorem there is a unital $*$-homomorphism $\gamma: A_{k} \rightarrow B$ such that $[\gamma]=\kappa \cdot\left[\alpha_{k, \infty}\right]$. Note that

$$
\begin{gathered}
{[\gamma] \cdot\left[\alpha_{n, k}\right] \cdot[\lambda]=\kappa \cdot\left[\alpha_{n, \infty}\right] \cdot[\lambda]=\kappa \cdot[\varphi]=[\psi] \quad \text { in } K L(C, B)} \\
{[\gamma] \cdot\left[\alpha_{n, k}\right] \cdot\left[\lambda_{1}\right]=\kappa \cdot\left[\alpha_{n, \infty}\right] \cdot\left[\lambda_{1}\right]=\kappa \cdot\left[\varphi_{1}\right]=\left[\psi_{1}\right] \quad \text { in } K L\left(C_{1}, B\right)}
\end{gathered}
$$

Hence

$$
\psi^{\#}(x)=\gamma^{\#} \circ \alpha_{n, k}^{\#} \circ \lambda^{\#}(x)=\gamma^{\#} \circ \alpha_{n, k}^{\#} \circ \lambda_{1}^{\#}\left(x_{1}\right)=\psi_{1}^{\#}\left(x_{1}\right)
$$

by Proposition 10.6.
Let A, B and κ be as above. Let y be an element in $U(A) / \overline{D U(A)}$ of finite order. By Lemma 10.8 there is a finite direct sum of building blocks C, an element of finite order x in $U(C) / \overline{D U(C)}$, and a unital $*$-homomorphism $\varphi: C \rightarrow A$ such that $\varphi^{\#}(x)=y$. By the first part of the theorem above there exists a unital $*$-homomorphism $\psi: C \rightarrow$ B such that $[\psi]=\kappa \cdot[\varphi]$. Set $s_{\kappa}(y)=\psi^{\#}(x)$. By the second part $s_{\kappa}(y)$ is independent of the choice of φ, ψ and x. Thus we have a well-defined map

$$
s_{\kappa}: \operatorname{Tor}(U(A) / \overline{D U(A)}) \longrightarrow \operatorname{Tor}(U(B) / \overline{D U(B)})
$$

It follows easily from Lemma 10.8 that s_{κ} is a group homomorphism. Note that if $\mu: A \rightarrow B$ is a unital $*$-homomorphism then $s_{[\mu]}(y)=\mu^{\#}(y)$ for every y in the torsion subgroup of $U(A) / \overline{D U(A)}$. Finally, we note that s_{κ} exists for trivial reasons if $K_{0}(A)$ is non-cyclic (since $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is torsion free in this case, see Lemma 10.7). It is possible (as in [27]) to prove our classification theorem in the case of non-cyclic K_{0}-group without using the map s_{κ}, but we have chosen to construct it in general in order to obtain a unified proof of the classification theorem in the cases K_{0} cyclic and K_{0} non-cyclic.

Lemma 10.10 Let A be a unital simple infinite dimensional inductive limit of a sequence of finite direct sums of building blocks and let B be an inductive limit of a similar sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps such that $s\left(B_{k}\right) \rightarrow \infty$ and such that the torsion subgroup of $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is totally disconnected. Let $\kappa \in K L(A, B)_{e}$ and let $\varphi_{T}: T(B) \rightarrow$ $T(A)$ be a continuous affine map such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

There exists a group homomorphism $\Phi: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ such that $\Phi(y)=s_{\kappa}(y)$ for y in the torsion subgroup of $U(A) / \overline{D U(A)}$ and such that the diagram

commutes.
Proof It will be convenient to set $G_{1}=\operatorname{Aff} T(A) / \overline{\rho_{A}\left(K_{0}(A)\right)}, G_{2}=K_{1}(A)$, and $H_{1}=\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}, H_{2}=K_{1}(B)$. Note that $U(A) / \overline{D U(A)} \cong G_{1} \oplus G_{2}$ and $U(B) / \overline{D U(B)} \cong H_{1} \oplus H_{2}$ by Proposition 5.2. Hence s_{κ} can be identified with a matrix of the form

$$
\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

where $f_{i j}: \operatorname{Tor}\left(G_{j}\right) \rightarrow \operatorname{Tor}\left(H_{i}\right)$ is a group homomorphism, $i, j=1,2$.
Let $z \in \operatorname{Tor}\left(G_{1}\right)$. If $K_{0}(A)$ is cyclic then $z=q_{A}\left(\frac{1}{m} \rho_{A}(h)\right)$ for some positive integer m and $h \in K_{0}(A)$. Choose a finite direct sum of building blocks C and a unital $*$-homomorphism $\varphi: C \rightarrow A$ such that $\varphi_{*}(g)=h$ for some $g \in K_{0}(C)$. Choose a unital $*$-homomorphism $\psi: C \rightarrow B$ such that $[\psi]=\kappa \cdot[\varphi]$. Since $\varphi_{T *} \circ \rho_{A}=\rho_{B} \circ \kappa_{*}$ we see that

$$
\begin{aligned}
s_{\kappa}\left(\lambda_{A}(z)\right) & =s_{\kappa}\left(\lambda_{A}\left(q_{A}\left(\frac{1}{m} \rho_{A}\left(\varphi_{*}(g)\right)\right)\right)\right) \\
& =s_{\kappa}\left(\varphi^{\#}\left(\lambda_{C}\left(q_{C}\left(\frac{1}{m} \rho_{C}(g)\right)\right)\right)\right)=\psi^{\#}\left(\lambda_{C}\left(q_{C}\left(\frac{1}{m} \rho_{C}(g)\right)\right)\right) \\
& =\lambda_{B}\left(q_{B}\left(\frac{1}{m} \rho_{B}\left(\psi_{*}(g)\right)\right)\right)=\lambda_{B}\left(q_{B}\left(\frac{1}{m} \varphi_{T_{*}}\left(\rho_{A}\left(\varphi_{*}(g)\right)\right)\right)\right) \\
& =\lambda_{B}\left(\widetilde{\varphi_{T}}(z)\right)
\end{aligned}
$$

Hence $f_{11}(z)=\widetilde{\varphi_{T}}(z)$ and $f_{21}(z)=0$. By Lemma 10.7 this conclusion also holds if $K_{0}(A)$ is non-cyclic. Let $w \in \operatorname{Tor}\left(G_{2}\right)$. Choose an element $y \in U(A) / \overline{D U(A)}$ of finite order such that $\pi_{A}(y)=w$. Choose a finite direct sum of building blocks C and a unital $*$-homomorphism $\varphi: C \rightarrow A$ such that $\varphi^{\#}(x)=y$. Choose a unital $*$-homomorphism $\psi: C \rightarrow B$ such that $[\psi]=\kappa \cdot[\varphi]$ in $K L(C, B)$. Since

$$
\pi_{B}\left(s_{\kappa}(y)\right)=\pi_{B}\left(\psi^{\#}(x)\right)=\psi_{*}\left(\pi_{C}(x)\right)=\kappa_{*} \circ \pi_{A}\left(\varphi^{\#}(x)\right)=\kappa_{*} \circ \pi_{A}(y)
$$

we see that $f_{22}(w)=\kappa_{*}(w)$. Finally, since H_{1} is a divisible group there exists by [11, Theorem 21.1] a group homomorphism $\lambda: G_{2} \rightarrow H_{1}$ such that $\lambda(w)=f_{12}(w)$ for every $w \in G_{2}$ of finite order. Set

$$
\Phi=\left(\begin{array}{cc}
\widetilde{\varphi_{T}} & \lambda \\
0 & \kappa_{*}
\end{array}\right)
$$

It is easy to see that the diagram commutes.

11 Main Results

Consider the category of abelian groups, equipped with a complete and translation invariant metric, and contractive group homomorphisms. Inductive limits can be constructed in this category in a way similar to the way that they are constructed in the category of C^{*}-algebras. Indeed, let

$$
G_{1} \xrightarrow{\mu_{1}} G_{2} \xrightarrow{\mu_{2}} G_{3} \xrightarrow{\mu_{3}} \cdots
$$

be an inductive system. Let ρ_{k} denote the metric on G_{k}. Let H be the inductive limit in the category of groups. Define a pseudo-metric d on H by

$$
d\left(\mu_{n, \infty}(x), \mu_{m, \infty}(y)\right)=\lim _{k \rightarrow \infty} \rho_{k}\left(\mu_{n, k}(x), \mu_{m, k}(y)\right)
$$

Form the quotient of H by the subgroup $\{x \in H: d(x, 0)=0\}$ and complete with respect to the induced metric to obtain the inductive limit.

It is an elementary exercise to prove that $U(\cdot) / \overline{D U(\cdot)}$ is a continuous functor from the category of unital C^{*}-algebras and unital $*$-homomorphisms, to the category of abelian groups equipped with a complete translation invariant metric, and contractive group homomorphisms.

Proposition 11.1 Let A be a simple inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks with unital and injective connecting maps. Let B be an inductive limit of a similar sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps such that $s\left(B_{k}\right) \rightarrow \infty$ and such that the torsion subgroup of $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is totally disconnected. Let $\varphi_{T}: T(B) \rightarrow T(A)$ be an affine continuous map, let $\kappa \in K L(A, B)_{e}$ be an element such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

and let $\Phi: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ be a homomorphism such that the diagram

commutes. Assume finally that

$$
s_{\kappa}(y)=\Phi(y), \quad y \in \operatorname{Tor}(U(A) / \overline{D U(A)})
$$

Let n be a positive integer and let $F_{1} \subseteq \operatorname{Aff} T\left(A_{n}\right)$ and $F_{2} \subseteq U\left(A_{n}\right) / \overline{D U\left(A_{n}\right)}$ be finite sets. There exist a positive integer m and a unital $*$-homomorphism $\psi: A_{n} \rightarrow B_{m}$ such that

$$
\begin{gathered}
{\left[\beta_{m, \infty}\right] \cdot[\psi]=\kappa \cdot\left[\alpha_{n, \infty}\right] \quad \text { in } K L\left(A_{n}, B\right),} \\
\left\|\widehat{\beta_{m, \infty}} \circ \widehat{\psi}(f)-\varphi_{T *} \circ \widehat{\alpha_{n, \infty}}(f)\right\|<\epsilon, \quad f \in F_{1}, \\
D_{B}\left(\beta_{m, \infty}^{\#} \circ \psi^{\#}(x), \Phi \circ \alpha_{n, \infty}^{\#}(x)\right)<\epsilon, \quad x \in F_{2} .
\end{gathered}
$$

Proof Let $A_{n}=C_{1} \oplus \cdots \oplus C_{R}$ where each C_{i} is a building block. By Proposition 5.2 and Proposition 3.2 there are for each $x \in U\left(A_{n}\right) / \overline{D U\left(A_{n}\right)}$ an element a_{x} in $\operatorname{Aff} T\left(A_{n}\right) / \overline{\rho_{A_{n}}\left(K_{0}\left(A_{n}\right)\right)}$, integers $k_{x}^{1}, k_{x}^{2}, \ldots, k_{x}^{R}$, and an element y_{x} in the torsion subgroup of $U\left(A_{n}\right) / \overline{D U\left(A_{n}\right)}$ such that

$$
x=\lambda_{A_{n}}\left(a_{x}\right)+\sum_{i=1}^{R} k_{x}^{i} q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)+y_{x} \quad \text { in } U\left(A_{n}\right) / \overline{D U\left(A_{n}\right)}
$$

Choose $b_{x} \in \operatorname{Aff} T\left(A_{n}\right)$ such that $q_{A_{n}}\left(b_{x}\right)=a_{x}$. Set $F_{1}^{\prime}=F_{1} \cup\left\{b_{x}: x \in F_{2}\right\}$. Choose $0<\delta<\frac{1}{2}$ such that $\delta<\epsilon$ and such that

$$
\left|e^{2 \pi i \delta}-1\right|+\delta \sum_{i=1}^{R} k_{i}^{x}<\epsilon, \quad x \in F_{2}
$$

Let $p_{1}, p_{2}, \ldots, p_{R}$ denote the minimal non-zero central projections in A_{n}. Since A is simple and the connecting maps are injective, there exists a $\gamma>0$ such that $\widehat{\alpha_{n, \infty}}\left(\widehat{p}_{i}\right)>\gamma, i=1,2, \ldots, R$. By Proposition 10.2 there exist a positive integer
l, a linear positive order unit preserving map $M: \operatorname{Aff} T\left(A_{n}\right) \rightarrow \operatorname{Aff} T\left(B_{l}\right)$, and an element $\omega \in K L\left(A_{n}, B_{l}\right)_{e}$ such that

$$
\begin{gathered}
{\left[\beta_{l, \infty}\right] \cdot \omega=\kappa \cdot\left[\alpha_{n, \infty}\right] \quad \text { in } K L\left(A_{n}, B\right),} \\
\left\|\widehat{\beta_{l, \infty}} \circ M(f)-\varphi_{T_{*}} \circ \widehat{\alpha_{n, \infty}}(f)\right\|<\frac{\delta}{2}, \quad f \in F_{1}^{\prime}, \\
M \circ \rho_{A_{n}}=\rho_{B_{l}} \circ \omega_{*} \quad \text { on } K_{0}\left(A_{n}\right) .
\end{gathered}
$$

Choose an integer K by Theorem 8.5 with respect to $F_{1}^{\prime} \subseteq \operatorname{Aff} T\left(A_{n}\right)$ and $\frac{\delta}{2}$. Choose a positive integer k and unitaries $u_{1}, u_{2}, \ldots, u_{R} \in B_{k}$ such that

$$
D_{B}\left(\beta_{k, \infty}^{\#}\left(q_{B_{k}}^{\prime}\left(u_{i}\right)\right), \Phi \circ \alpha_{n, \infty}^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right)\right)<\delta, \quad i=1,2, \ldots, R
$$

Note that $\kappa_{*} \circ \alpha_{n, \infty_{*}}\left[v_{i}^{A_{n}}\right]=\beta_{k, \infty_{*}}\left[u_{i}\right]$ in $K_{1}(B)$. Hence

$$
\beta_{l, \infty_{*}} \circ \omega_{*}\left[v_{i}^{A_{n}}\right]=\beta_{k, \infty_{*}}\left[u_{i}\right], \quad i=1,2, \ldots, R .
$$

Since $\rho_{B} \circ \kappa_{*}=\varphi_{T_{*}} \circ \rho_{A}$ we see that for $i=1,2, \ldots, R$,

$$
\begin{aligned}
\widehat{\beta_{l, \infty}}\left(\rho_{B_{l}}\left(\omega_{*}\left[p_{i}\right]\right)\right) & =\rho_{B}\left(\beta_{l, \infty_{*}} \circ \omega_{*}\left[p_{i}\right]\right)=\varphi_{T *} \circ \rho_{A} \circ \alpha_{n, \infty_{*}}\left[p_{i}\right] \\
& =\varphi_{T_{*}} \circ \widehat{\alpha_{n, \infty}}\left(\widehat{p_{i}}\right)>\gamma
\end{aligned}
$$

Hence there exists an integer $m \geq k, l$ such that $s\left(B_{m}\right) \geq K \gamma^{-1}$ and such that

$$
\begin{gathered}
\widehat{\beta_{l, m}}\left(\rho_{B_{l}}\left(\omega_{*}\left[p_{i}\right]\right)\right)>\gamma, \quad i=1,2, \ldots, R, \\
\beta_{l, m_{*}} \circ \omega_{*}\left[v_{i}^{A_{n}}\right]=\beta_{k, m_{*}}\left[u_{i}\right] \quad \text { in } K_{1}\left(B_{m}\right), \quad i=1,2, \ldots, R .
\end{gathered}
$$

It follows that $s\left(B_{m}\right) \rho_{B_{m}}\left(\beta_{l, m_{*}} \circ \omega_{*}\left[p_{i}\right]\right) \geq K$ and that

$$
\widehat{\beta_{l, m}} \circ M \circ \rho_{A_{n}}=\widehat{\beta_{l, m}} \circ \rho_{B_{l}} \circ \omega_{*}=\rho_{B_{m}} \circ \beta_{l, m_{*}} \circ \omega_{*} \quad \text { on } K_{0}\left(A_{n}\right) .
$$

Therefore by Theorem 8.5 there exists a unital $*$-homomorphism $\psi: A_{n} \rightarrow B_{m}$ such that

$$
\begin{gathered}
{[\psi]=\left[\beta_{l, m}\right] \cdot \omega \quad \text { in } K L\left(A_{n}, B_{m}\right),} \\
\psi^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right)=q_{B_{m}}^{\prime}\left(\beta_{k, m}\left(u_{i}\right)\right) \quad \text { in } U\left(B_{m}\right) / \overline{D U\left(B_{m}\right)}, \quad i=1,2, \ldots, R, \\
\left\|\widehat{\psi}(f)-\widehat{\beta_{l, m}} \circ M(f)\right\|<\frac{\delta}{2}, \quad f \in F_{1}^{\prime} .
\end{gathered}
$$

It follows that

$$
\begin{gather*}
{\left[\beta_{m, \infty}\right] \cdot[\psi]=\kappa \cdot\left[\alpha_{n, \infty}\right] \quad \text { in } K L\left(A_{n}, B\right),} \tag{30}\\
\left\|\widehat{\beta_{m, \infty}} \circ \widehat{\psi}(f)-\varphi_{T *} \circ \widehat{\alpha_{n, \infty}}(f)\right\|<\delta, \quad f \in F_{1}^{\prime}, \tag{31}\\
D_{B}\left(\beta_{m, \infty}^{\#} \circ \psi^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right), \Phi \circ \alpha_{n, \infty}^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right)\right)<\delta, \quad i=1,2, \ldots, R . \tag{32}
\end{gather*}
$$

Note that for $x \in F_{2}$,

$$
\begin{aligned}
d_{B}^{\prime}\left(\widetilde{\beta_{m, \infty}} \circ \widetilde{\psi}\left(a_{x}\right), \widetilde{\varphi_{T}} \circ \widetilde{\alpha_{n, \infty}}\left(a_{x}\right)\right) & =d_{B}^{\prime}\left(q_{B}\left(\widehat{\beta_{m, \infty}} \circ \widehat{\psi}\left(b_{x}\right)\right), q_{B}\left(\varphi_{T *} \circ \widehat{\alpha_{n, \infty}}\left(b_{x}\right)\right)\right) \\
& \leq\left\|\widehat{\beta_{m, \infty}} \circ \widehat{\psi}\left(b_{x}\right)-\varphi_{T *} \circ \widehat{\alpha_{n, \infty}}\left(b_{x}\right)\right\|<\delta<\frac{1}{2}
\end{aligned}
$$

Hence

$$
d_{B}\left(\widetilde{\beta_{m, \infty}} \circ \widetilde{\psi}\left(a_{x}\right), \widetilde{\varphi_{T}} \circ \widetilde{\alpha_{n, \infty}}\left(a_{x}\right)\right)<\left|e^{2 \pi i \delta}-1\right|, \quad x \in F_{2}
$$

By Proposition 5.2, λ_{B} is an isometry when $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is equipped with the metric d_{B}. It follows that

$$
D_{B}\left(\lambda_{B} \circ \widetilde{\beta_{m, \infty}} \circ \widetilde{\psi}\left(a_{x}\right), \lambda_{B} \circ \widetilde{\varphi_{T}} \circ \widetilde{\alpha_{n, \infty}}\left(a_{x}\right)\right)<\left|e^{2 \pi i \delta}-1\right|, \quad x \in F_{2}
$$

Thus

$$
D_{B}\left(\beta_{m, \infty}^{\#} \circ \psi^{\#} \circ \lambda_{A_{n}}\left(a_{x}\right), \Phi \circ \alpha_{n, \infty}^{\#} \circ \lambda_{A_{n}}\left(a_{x}\right)\right)<\left|e^{2 \pi i \delta}-1\right|, \quad x \in F_{2}
$$

Since s_{κ} and Φ agree on the torsion subgroup of $U(A) / \overline{D U(A)}$, we see by (30) and the definition of s_{k} that

$$
\beta_{m, \infty}^{\#} \circ \psi^{\#}\left(y_{x}\right)=\Phi \circ \alpha_{n, \infty}^{\#}\left(y_{x}\right)
$$

Hence for $x \in F_{2}$,

$$
\begin{aligned}
& D_{B}\left(\beta_{m, \infty}^{\#} \circ \psi^{\#}(x), \Phi \circ \alpha_{n, \infty}^{\#}(x)\right) \\
& \quad \leq D_{B}\left(\beta_{m, \infty}^{\#} \circ \psi^{\#}\left(\lambda_{A_{n}}\left(a_{x}\right)\right), \Phi \circ \alpha_{n, \infty}^{\#}\left(\lambda_{A_{n}}\left(a_{x}\right)\right)\right) \\
& \quad \quad+\sum_{i=1}^{R} k_{x}^{i} D_{B}\left(\beta_{m, \infty}^{\#} \circ \psi^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right), \Phi \circ \alpha_{n, \infty}^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right)\right) \\
& \quad<\left|e^{2 \pi i \delta}-1\right|+\sum_{i=1}^{R} k_{x}^{i} \delta<\epsilon .
\end{aligned}
$$

Theorem 11.2 Let A be a unital simple inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks. Let B be an inductive limit of a similar sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps such that $s\left(B_{k}\right) \rightarrow \infty$ and such that the torsion subgroup of $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is totally disconnected. Let $\varphi_{T}: T(B) \rightarrow T(A)$ be an affine continuous map, let $\kappa \in K L(A, B)_{e}$ be an element such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

and let $\Phi: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ be a homomorphism such that the diagram

commutes. Assume finally that

$$
s_{\kappa}(y)=\Phi(y), \quad y \in \operatorname{Tor}(U(A) / \overline{D U(A)}) .
$$

There exists a unital $*$-homomorphism $\psi: A \rightarrow B$ such that $\psi^{*}=\varphi_{T}$ on $T(B)$, such that $\psi^{\#}=\Phi$ on $U(A) / \overline{D U(A)}$, and such that $[\psi]=\kappa$ in $K L(A, B)$.

Proof We may assume that A is infinite dimensional. Hence by Theorem 9.9 we may assume that each α_{n} is unital and injective. Let $A_{n}=A_{1}^{n} \oplus A_{2}^{n} \oplus \cdots \oplus A_{R_{n}}^{n}$ where each A_{i}^{n} is a building block and let P_{n} be the set of minimal non-zero central projections in A_{n}. For each positive integer n, choose a finite set $G_{n} \subseteq A_{n}$ such that G_{n} generates A_{n} as a C^{*}-algebra and such that $\alpha_{n}\left(G_{n}\right) \subseteq G_{n+1}$. Choose by uniqueness, Theorem 7.7, a positive integer l_{n} with respect to $G_{n} \subseteq A_{n}$ and 2^{-n}. Since A is simple and the connecting maps are injective there exists a positive integer p_{n} such that

$$
\widehat{\alpha_{n, \infty}}(\widehat{h})>\frac{8}{p_{n}}, \quad h \in H\left(A_{n}, l_{n}\right)
$$

Next, there exists a positive integer q_{n} such that

$$
\widehat{\alpha_{n, \infty}}(\widehat{h})>\frac{2}{q_{n}}, \quad h \in H\left(A_{n}, p_{n}\right) \cup P_{n} .
$$

Finally choose $\delta_{n}>0$ such that $\delta_{n}<\frac{1}{4 q^{2}}$ and such that

$$
\widehat{\alpha_{n, \infty}}(\widehat{h})>\delta_{n}, \quad h \in H\left(A_{n}, 4 q_{n}\right)
$$

Choose for each n finite sets $F_{n} \subseteq \operatorname{Aff} T\left(A_{n}\right)$ such that $\widetilde{H}\left(A_{n}, 2 q_{n}\right) \subseteq F_{n}$, such that $\widehat{\alpha_{n}}\left(F_{n}\right) \subseteq F_{n+1}$, and such that $\bigcup_{n=1}^{\infty} \widehat{\alpha_{n, \infty}}\left(F_{n}\right)$ is dense in $\operatorname{Aff} T(A)$.

Next, choose finite sets $V_{n} \subseteq U\left(A_{n}\right) / \overline{D U\left(A_{n}\right)}$ such that $q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right) \in V_{n}$ for $i=$ $1,2, \ldots, R_{n}$, such that $\alpha_{n}^{\#}\left(V_{n}\right) \subseteq V_{n+1}$, and such that $\bigcup_{n=1}^{\infty} \alpha_{n, \infty}^{\#}\left(V_{n}\right)$ is dense in $U(A) / \overline{D U(A)}$.

We will construct by induction strictly increasing sequences $\left\{n_{k}\right\}$ and $\left\{m_{k}\right\}$ and unital $*$-homomorphisms $\psi_{k}: A_{n_{k}} \rightarrow B_{m_{k}}$ such that
(ii) $\left\|\widehat{\beta_{m_{k}, \infty}} \circ \widehat{\psi_{k}}(f)-\varphi_{T_{*}} \circ \widehat{\alpha_{n_{k}}, \infty}(f)\right\|<\min \left\{2^{-n_{k}}, \frac{\delta_{n_{k}}}{2}\right\}, f \in F_{n_{k}}$,
(iii) $D_{B}\left(\beta_{m_{k}, \infty}^{\#} \circ \psi_{k}^{\#}(x), \Phi \circ \alpha_{n_{k}, \infty}^{\#}(x)\right)<\min \left\{2^{-n_{k}}, \frac{\delta_{n_{k}}}{2}\right\}, x \in V_{n_{k}}$,
(iv) $\left[\beta_{m_{k}, \infty}\right] \cdot\left[\psi_{k}\right]=\kappa \cdot\left[\alpha_{n_{k}, \infty}\right]$ in $K L\left(A_{n_{k}}, B\right)$.

The integers n_{k}, m_{k}, and the $*$-homomorphism ψ_{k} are constructed in step k. The case $k=1$ follows immediately from Proposition 11.1.

Assume that n_{k}, m_{k}, and ψ_{k} have been constructed such that (i)-(iv) hold. Choose $n_{k+1}>n_{k}$ such that

$$
\begin{aligned}
& \widehat{\alpha_{n_{k}, n_{k+1}}}(\widehat{h})>\frac{8}{p_{n_{k}}}, \quad h \in H\left(A_{n_{k}}, l_{n_{k}}\right), \\
& \widehat{\alpha_{n_{k}, n_{k+1}}}(\widehat{h})>\frac{2}{q_{n_{k}}}, \quad h \in H\left(A_{n_{k}}, p_{n_{k}}\right) \cup P_{n}, \\
& \widehat{\alpha_{n_{k}, n_{k+1}}}(\widehat{h})>\delta_{n_{k}}, \quad h \in H\left(A_{n_{k}}, 4 q_{n_{k}}\right) .
\end{aligned}
$$

Choose by Proposition 11.1 a positive integer l and a unital $*$-homomorphism $\lambda: A_{n_{k+1}} \rightarrow B_{l}$ such that

$$
\begin{gathered}
\left\|\widehat{\beta_{l, \infty}} \circ \widehat{\lambda}(f)-\varphi_{T *} \circ \widehat{\alpha_{n_{k+1}, \infty}}(f)\right\|<\min \left\{2^{-n_{k+1}}, \frac{\delta_{n_{k}}}{2}, \frac{\delta_{n_{k+1}}}{2}\right\}, \quad f \in F_{n_{k+1}} \\
D_{B}\left(\beta_{l, \infty}^{\#} \circ \lambda^{\#}(x), \Phi \circ \alpha_{n_{k+1}, \infty}^{\#}(x)\right)<\min \left\{2^{-n_{k+1}}, \frac{\delta_{n_{k}}}{2}, \frac{\delta_{n_{k+1}}}{2}\right\}, \quad x \in V_{n_{k+1}} \\
{\left[\beta_{l, \infty}\right] \cdot[\lambda]=\kappa \cdot\left[\alpha_{n_{k+1}, \infty}\right] \quad \text { in } K L\left(A_{n_{k+1}}, B\right)}
\end{gathered}
$$

It follows that

$$
\begin{gathered}
\left\|\widehat{\beta_{l, \infty}} \circ \widehat{\lambda} \circ \widehat{\alpha_{n_{k}, n_{k+1}}}(f)-\widehat{\beta_{m_{k}, \infty}} \circ \widehat{\psi_{k}}(f)\right\|<\delta_{n_{k}}, \quad f \in F_{n_{k}}, \\
D_{B}\left(\beta_{l, \infty}^{\#} \circ \lambda^{\#} \circ \alpha_{n_{k}, n_{k+1}}^{\#}(x), \beta_{m_{k}, \infty}^{\#} \circ \psi_{k}^{\#}(x)\right)<\delta_{n_{k}}<\frac{1}{4 q_{n_{k}}}, \quad x \in V_{n_{k}}, \\
{\left[\beta_{m_{k}, \infty}\right] \cdot\left[\psi_{k}\right]=\left[\beta_{l, \infty}\right] \cdot[\lambda] \cdot\left[\alpha_{n_{k}, n_{k+1}}\right] \quad \text { in } K L\left(A_{k}, B\right) .}
\end{gathered}
$$

Hence there exists an integer $m_{k+1} \geq l$ such that

$$
\begin{gathered}
\left\|\widehat{\beta_{l, m_{k+1}}} \circ \widehat{\lambda} \circ \widehat{\alpha_{n_{k}, n_{k+1}}}(f)-\widehat{\beta_{m_{k}, m_{k+1}}} \circ \widehat{\psi_{k}}(f)\right\|<\delta_{n_{k}}, \quad f \in F_{n_{k}}, \\
D_{B}\left(\beta_{l, m_{k+1}}^{\#} \circ \lambda^{\#} \circ \alpha_{n_{k}, n_{k+1}}^{\#}(x), \beta_{m_{k}, m_{k+1}}^{\#} \circ \psi_{k}^{\#}(x)\right)<\frac{1}{4 q_{n_{k}}}, \quad x \in V_{n_{k}}, \\
{\left[\beta_{l, m_{k+1}}\right] \cdot[\lambda] \cdot\left[\alpha_{n_{k}, n_{k+1}}\right]=\left[\beta_{m_{k}, m_{k+1}}\right] \cdot\left[\psi_{k}\right] \quad \text { in } K L\left(A_{k}, B_{m_{k+1}}\right) .}
\end{gathered}
$$

By uniqueness, Theorem 7.7, there exists a unitary $W \in B_{m_{k+1}}$ such that

$$
\left\|\beta_{m_{k}, m_{k+1}} \circ \psi_{k}(x)-W \beta_{l, m_{k+1}} \circ \lambda \circ \alpha_{n_{k}, n_{k+1}}(x) W^{*}\right\|<2^{-n_{k}}, \quad x \in G_{n_{k}}
$$

Set $\psi_{k+1}(x)=W \beta_{l, m_{k+1}} \circ \lambda(x) W^{*}, x \in A_{n_{k+1}}$. It is easily seen that (i)-(iv) are satisfied with $k+1$ in place of k. This completes the induction step.

By Elliott's approximate intertwining argument, see e.g. [25, Lemma 1], there exists a $*$-homomorphism $\psi: A \rightarrow B$ such that

$$
\psi\left(\alpha_{n, \infty}(x)\right)=\lim _{k \rightarrow \infty} \beta_{m_{k}, \infty} \circ \psi_{k} \circ \alpha_{n, n_{k}}(x), \quad x \in A_{n}
$$

Clearly, ψ is unital. Let $f \in F_{n}, \omega \in T(B)$. The sequence $\omega \circ \beta_{m_{k}, \infty} \circ \psi_{k} \circ \alpha_{n, n_{k}}$ converges to $\omega \circ \psi \circ \alpha_{n, \infty}$ in $T\left(A_{n}\right)$ as $k \rightarrow \infty$. Hence it follows that

$$
\widehat{\beta_{m_{k}, \infty}} \circ \widehat{\psi_{k}} \circ \widehat{\alpha_{n, n_{k}}}(f)(\omega) \rightarrow \widehat{\psi} \circ \widehat{\alpha_{n, \infty}}(f)(\omega) \quad \text { as } k \rightarrow \infty
$$

On the other hand, from (ii) it follows that

$$
\widehat{\beta_{m_{k}, \infty}} \circ \widehat{\psi_{k}} \circ \widehat{\alpha_{n, n_{k}}}(f)(\omega) \rightarrow \varphi_{T_{*}} \circ \widehat{\alpha_{n, \infty}}(f)(\omega) \quad \text { as } k \rightarrow \infty
$$

Hence $\widehat{\psi}=\varphi_{T_{*}}$ on $\operatorname{Aff} T(A)$ and thus $\psi^{*}=\varphi_{T}$ on $T(B)$. If $y, z \in U(A) / \overline{D U(A)}$ then $D_{B}(\Phi(y), \Phi(y)) \leq D_{A}(y, z)$. This is clear in the case that $\pi_{A}(y) \neq \pi_{A}(z)$ since then $D_{A}(y, z)=2$, and otherwise it follows since λ_{A} and λ_{B} are isometries and $\varphi_{T_{*}}$ is contractive (with respect to d_{A} and d_{B}). Thus Φ is continuous and by arguments similar to those applied above we see that $\psi^{\#}=\Phi$.

Let finally n be a positive integer. Since A_{n} is semiprojective there exists by [18, Theorem 15.1.1] a positive integer $l \geq n$ such that $\psi \circ \alpha_{n, \infty}$ is homotopic to $\beta_{m_{l}, \infty} \circ$ $\psi_{l} \circ \alpha_{n, n_{l}}$. Hence

$$
[\psi] \cdot\left[\alpha_{n, \infty}\right]=\left[\beta_{m_{l}, \infty}\right] \cdot\left[\psi_{l}\right] \cdot\left[\alpha_{n, n_{l}}\right]=\kappa \cdot\left[\alpha_{n_{l}, \infty}\right] \cdot\left[\alpha_{n, n_{l}}\right]=\kappa \cdot\left[\alpha_{n, \infty}\right]
$$

in $K L\left(A_{n}, B\right)$. It follows from [22, Lemma 5.8] that $[\psi]=\kappa$ in $K L(A, B)$.

The following corollary generalizes a theorem of Thomsen [27, Theorem A].
Corollary 11.3 Let A be a unital simple inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks such that $K_{0}(A)$ is non-cyclic. Let B be an inductive limit of a similar sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps such that $s\left(B_{k}\right) \rightarrow \infty$. Let $\varphi_{T}: T(B) \rightarrow T(A)$ be an affine continuous map, let $\kappa \in K L(A, B)_{e}$ be an element such that

$$
r_{B}(\omega)\left(\kappa_{*}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B),
$$

and let $\Phi: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ be a homomorphism such that the diagram

commutes. There exists a unital $*$-homomorphism $\psi: A \rightarrow B$ such that $\psi^{*}=\varphi_{T}$ on $T(B)$, such that $\psi^{\#}=\Phi$ on $U(A) / \overline{D U(A)}$, and such that $[\psi]=\kappa$ in $K L(A, B)$.

Proof By Lemma 10.7 we have that $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is torsion free such that s_{κ} is defined. It follows by Proposition 5.2 that $s_{\kappa}(y)=\Phi(y)$ for y in the torsion subgroup of $U(A) / \overline{D U(A)}$. Apply Theorem 11.2.

Corollary 11.4 Let A be a unital inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks. Let B be an inductive limit of a similar sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

with unital connecting maps such that $s\left(B_{k}\right) \rightarrow \infty$ and such that the torsion subgroup of $\operatorname{Aff} T(B) / \overline{\rho_{B}\left(K_{0}(B)\right)}$ is totally disconnected. Let $\varphi_{T}: T(B) \rightarrow T(A)$ be an affine continuous map, let $\varphi_{0}: K_{0}(A) \rightarrow K_{0}(B)$ be an order unit preserving group homomorphism such that

$$
r_{B}(\omega)\left(\varphi_{0}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

and let $\varphi_{1}: K_{1}(A) \rightarrow K_{1}(B)$ be a group homomorphism. There exists a unital $*-$ homomorphism $\psi: A \rightarrow B$ such that $\psi^{*}=\varphi_{T}$ on $T(B)$, such that $\psi_{*}=\varphi_{0}$ on $K_{0}(A)$, and such that $\psi_{*}=\varphi_{1}$ on $K_{1}(A)$.

Proof Choose an element $\kappa \in K L(A, B)$ such that $\kappa_{*}=\varphi_{0}$ on $K_{0}(A)$ and such that $\kappa_{*}=\varphi_{1}$ on $K_{1}(A)$. By Lemma 10.10 there exists a group homomorphism $\Phi: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ such that s_{κ} and Φ agree on the torsion subgroup of $U(A) / \overline{D U(A)}$ and such that the diagram

commutes. The conclusion follows from Theorem 11.2.

Theorem 11.5 Let A and B be unital inductive limits of sequences of finite direct sums of building blocks, with A simple. Let $\varphi, \psi: A \rightarrow B$ be unital $*$-homomorphisms such that $\varphi^{*}=\psi^{*}$ on $T(B), \varphi^{\#}=\psi^{\#}$ on $U(A) / \overline{D U(A)}$, and $[\varphi]=[\psi]$ in $K L(A, B)$. Then φ and ψ are approximately unitarily equivalent.

Proof We may assume that A is infinite dimensional, and hence by Theorem 9.9 we see that A is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks with unital and injective connecting maps. By Lemma 9.2 we have that B is the inductive limit of a sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

of finite direct sums of building blocks with unital connecting maps. Let $A_{n}=A_{1}^{n} \oplus$ $A_{2}^{n} \oplus \cdots \oplus A_{R_{n}}^{n}$ where each A_{i}^{n} is a building block. Let P_{n} be the set of minimal non-zero central projections in A_{n}.

Let $F \subseteq A$ be a finite set and let $\epsilon>0$. It suffices to see that there exists a unitary $U \in B$ such that

$$
\left\|\varphi(x)-U \psi(x) U^{*}\right\|<\epsilon, \quad x \in F
$$

We may assume that $F \subseteq \alpha_{n, \infty}(G)$ for a positive integer n and a finite set $G \subseteq A_{n}$.
Choose by uniqueness, Theorem 7.7, a positive integer l with respect to G and $\frac{\epsilon}{3}$. Since A is simple and the connecting maps are injective there exists an integer $p \geq l$ such that

$$
\widehat{\alpha_{n, \infty}}(\widehat{h})>\frac{9}{p}, \quad h \in H\left(A_{n}, l\right) .
$$

Next choose $q \geq p$ such that

$$
\widehat{\alpha_{n, \infty}}(\widehat{h})>\frac{3}{q}, \quad h \in H\left(A_{n}, p\right) \cup P_{n} .
$$

Finally, choose $\delta>0$ such that $3 \delta<\epsilon, 2 \delta<\frac{1}{4 q^{2}}$, and such that

$$
\widehat{\alpha_{n, \infty}}(\widehat{h})>3 \delta, \quad h \in H\left(A_{n}, 4 q\right)
$$

Since A_{n} by Theorem 2.4 is semiprojective there exist by [18, Corollary 15.1.3] a positive integer r and $*$-homomorphisms $\varphi_{1}, \psi_{1}: A_{n} \rightarrow B_{r}$ such that $\beta_{r, \infty} \circ \varphi_{1}$ is homotopic to $\varphi \circ \alpha_{n, \infty}$ and $\beta_{r, \infty} \circ \psi_{1}$ is homotopic to $\psi \circ \alpha_{n, \infty}$, and such that if

$$
x \in G \cup H\left(A_{n}, l\right) \cup H\left(A_{n}, p\right) \cup H\left(A_{n}, 4 q\right) \cup \tilde{H}\left(A_{n}, 2 q\right) \cup P_{n} \cup\left\{v_{1}^{A_{n}}, v_{2}^{A_{n}}, \ldots, v_{R_{n}}^{A_{n}}\right\}
$$

then

$$
\begin{aligned}
& \left\|\beta_{r, \infty} \circ \varphi_{1}(x)-\varphi \circ \alpha_{n, \infty}(x)\right\|<\delta \\
& \left\|\beta_{r, \infty} \circ \psi_{1}(x)-\psi \circ \alpha_{n, \infty}(x)\right\|<\delta
\end{aligned}
$$

By increasing r we may assume that φ_{1} and ψ_{1} are unital. Note that

$$
\begin{gathered}
D_{B}\left(\beta_{r, \infty}^{\#} \circ \varphi_{1}^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right), \beta_{r, \infty}^{\#} \circ \psi_{1}^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right)\right)<2 \delta<\frac{1}{4 q^{2}}, \quad i=1,2, \ldots, R_{n}, \\
\left\|\widehat{\beta_{r, \infty}} \circ \widehat{\varphi_{1}}(\widehat{h})-\widehat{\beta_{r, \infty}} \circ \widehat{\psi_{1}}(\widehat{h})\right\|<2 \delta, \quad h \in \widetilde{H}\left(A_{n}, 2 q\right),
\end{gathered}
$$

and

$$
\begin{gather*}
\widehat{\beta_{r, \infty}} \circ \widehat{\psi_{1}}(\widehat{h})>2 \delta, \quad h \in H\left(A_{n}, 4 q\right), \tag{33}\\
\widehat{\beta_{r, \infty}} \circ \widehat{\psi_{1}}(\widehat{h})>\frac{8}{p}, \quad h \in H\left(A_{n}, l\right), \tag{34}\\
\widehat{\beta_{r, \infty}} \circ \widehat{\psi_{1}}(\widehat{h})>\frac{2}{q}, \quad h \in H\left(A_{n}, p\right) \cup P_{n}, \tag{35}\\
{\left[\beta_{r, \infty}\right] \cdot\left[\psi_{1}\right]=\left[\beta_{r, \infty}\right] \cdot\left[\varphi_{1}\right] \quad \text { in } K L\left(A_{n}, B\right) .} \tag{36}
\end{gather*}
$$

Choose an integer $m \geq r$ such that

$$
\begin{gather*}
\left\|\widehat{\beta_{r, m}} \circ \widehat{\varphi_{1}}(\widehat{h})-\widehat{\beta_{r, m}} \circ \widehat{\psi_{1}}(\widehat{h})\right\|<2 \delta, \quad h \in \widetilde{H}\left(A_{n}, 2 q\right), \tag{37}\\
\widehat{\beta_{r, m}} \circ \widehat{\psi_{1}}(\widehat{h})>2 \delta, \quad h \in H\left(A_{n}, 4 q\right), \tag{38}\\
\widehat{\beta_{r, m}} \circ \widehat{\psi_{1}}(\widehat{h})>\frac{8}{p}, \quad h \in H\left(A_{n}, l\right), \tag{39}\\
\widehat{\beta_{r, m}} \circ \widehat{\psi_{1}}(\widehat{h})>\frac{2}{q}, \quad h \in H\left(A_{n}, p\right) \cup P_{n}, \tag{40}\\
D_{B_{m}}\left(\beta_{r, m}^{\#} \circ \varphi_{1}^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right), \beta_{r, m}^{\#} \circ \psi_{1}^{\#}\left(q_{A_{n}}^{\prime}\left(v_{i}^{A_{n}}\right)\right)\right)<\frac{1}{4 q^{2}}, \quad i=1, \ldots, R_{n}, \tag{41}\\
{\left[\beta_{r, m}\right] \cdot\left[\psi_{1}\right]=\left[\beta_{r, m}\right] \cdot\left[\varphi_{1}\right] \quad \text { in } K L\left(A_{n}, B_{m}\right) .} \tag{42}
\end{gather*}
$$

By Theorem 7.7 there exists a unitary $W \in B_{m}$ such that

$$
\begin{equation*}
\left\|\beta_{r, m} \circ \varphi_{1}(x)-W \beta_{r, m} \circ \psi_{1}(x) W^{*}\right\|<\frac{\epsilon}{3}, \quad x \in G \tag{43}
\end{equation*}
$$

If we put $U=\beta_{m, \infty}(W)$ we have that

$$
\begin{aligned}
\left\|\varphi \circ \alpha_{n, \infty}(x)-U \psi \circ \alpha_{n, \infty}(x) U^{*}\right\| \leq & \left\|\varphi \circ \alpha_{n, \infty}(x)-\beta_{r, \infty} \circ \varphi_{1}(x)\right\| \\
& +\left\|\beta_{r, \infty} \circ \varphi_{1}(x)-U \beta_{r, \infty} \circ \psi_{1}(x) U^{*}\right\| \\
& +\left\|\beta_{r, \infty} \circ \psi_{1}(x)-\psi \circ \alpha_{n, \infty}(x)\right\| \\
<\delta & +\frac{\epsilon}{3}+\delta<\epsilon, \quad x \in G
\end{aligned}
$$

In view of Theorem 7.5 one might think that equality in $K L$ in the above theorem could be replaced by equality in K_{0}. This is however impossible in general, see [6, pp. 375-376] or [27, Theorem 8.4]. But in some cases, e.g. when $K_{0}(B)$ is cyclic, the $K L$-condition can be relaxed:

Theorem 11.6 Assume furthermore that ρ_{B} is injective and $\rho_{B}\left(K_{0}(B)\right)$ is a discrete subgroup of $\operatorname{Aff} T(B)$. If $\varphi_{*}=\psi_{*}$ on $K_{0}(A), \varphi^{*}=\psi^{*}$ on $T(B)$ and $\varphi^{\#}=\psi^{*}$ on $U(A) / \overline{D U(A)}$, then φ and ψ are approximately unitarily equivalent.

Proof As above, but with the following changes. Instead of (36) we get by Proposition 10.5 that

$$
\begin{aligned}
\beta_{r, \infty}^{\#} \circ \psi_{1}^{\#}(x) & =\beta_{r, \infty}^{\#} \circ \varphi_{1}^{\#}(x), \quad x \in U^{A_{n}} \\
\beta_{r, \infty} \circ \psi_{1_{*}} & =\beta_{r, \infty} \circ \varphi_{1_{*}} \quad \text { on } K_{0}\left(A_{n}\right)
\end{aligned}
$$

By Lemma 10.4 we may now replace (42) by

$$
\begin{aligned}
\beta_{r, m}^{\#} \circ \psi_{1}^{\#}(x) & =\beta_{r, m}^{\#} \circ \varphi_{1}^{\#}(x), \quad x \in U^{A_{n}} \\
\beta_{r, m} \circ \psi_{1 *} & =\beta_{r, m} \circ \varphi_{1_{*}} \quad \text { on } K_{0}\left(A_{n}\right)
\end{aligned}
$$

Finally, (43) follows again by Theorem 7.7.
Theorem 11.7 Let A and B be simple unital infinite dimensional inductive limits of sequences of finite direct sum of building blocks. Let $\varphi_{0}: K_{0}(A) \rightarrow K_{0}(B)$ be an isomorphism of groups with order units, let $\varphi_{1}: K_{1}(A) \rightarrow K_{1}(B)$ be an isomorphism of groups, and let $\varphi_{T}: T(B) \rightarrow T(A)$ be an affine homeomorphism such that

$$
r_{B}(\omega)\left(\varphi_{0}(x)\right)=r_{A}\left(\varphi_{T}(\omega)\right)(x), \quad x \in K_{0}(A), \omega \in T(B)
$$

There exists $a *$-isomorphism $\varphi: A \rightarrow B$ such that $\varphi_{*}=\varphi_{0}$ on $K_{0}(A)$, such that $\varphi_{*}=\varphi_{1}$ on $K_{1}(A)$, and such that $\varphi_{T}=\varphi^{*}$ on $T(B)$.

Proof By Theorem 9.9 we may assume that A is the inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks with unital and injective connecting maps. Similarly we may assume that B is the inductive limit of a sequence

$$
B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} \cdots
$$

of finite direct sums of building blocks with unital and injective connecting maps. By Lemma 9.6 we have that $s\left(A_{n}\right) \rightarrow \infty$ and $s\left(B_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

By [23, Theorem 7.3] there exists an invertible element $\kappa \in K L(A, B)$ such that $\kappa_{*}=\varphi_{0}$ on $K_{0}(A)$ and $\kappa_{*}=\varphi_{1}$ on $K_{1}(A)$. By Lemma 10.10 there exists a group isomorphism $\Phi: U(A) / \overline{D U(A)} \rightarrow U(B) / \overline{D U(B)}$ such that the diagram

commutes and such that $s_{\kappa}(y)=\Phi(y)$ for y in the torsion subgroup of $U(A) / \overline{D U(A)}$.
By Theorem 11.2 there exists a unital $*$-homomorphism $\lambda: A \rightarrow B$ such that $\lambda^{*}=\varphi_{T}$ on $T(B)$, such that $\lambda^{\#}=\Phi$ on $U(A) / \overline{D U(A)}$, and such that $[\lambda]=\kappa$ in $K L(A, B)$. Note that $\kappa^{-1} \in K L(B, A)_{T}$. It is easy to see that s_{κ} is a bijection with inverse $s_{\kappa^{-1}}$. Hence $s_{\kappa^{-1}}=\Phi^{-1}$ on $\operatorname{Tor}(U(B) / \overline{D U(B)})$. Thus there exists a unital $*$-homomorphism $\psi: B \rightarrow A$ such that $\psi^{*}=\varphi_{T}^{-1}$ on $T(A)$, such that $\psi^{\#}=\Phi^{-1}$ on $U(B) / \overline{D U(B)}$, and such that $[\psi]=\kappa^{-1}$ in $K L(B, A)$. By Theorem 11.5 the $*-$ homomorphisms $\psi \circ \lambda$ and id_{A} are approximately unitarily equivalent. Similarly $\lambda \circ \psi$ and id_{B} are approximately unitarily equivalent. Hence by [21, Proposition A] λ is approximately unitarily equivalent to an isomorphism $\varphi: A \rightarrow B$.

12 Range of the Invariant

The purpose of this section is to determine the range of the Elliott invariant, i.e., to answer the question which quadruples $\left(K_{0}(A), K_{1}(A), T(A), r_{A}\right)$ occur as the Elliott invariant for simple unital infinite dimensional C^{*}-algebras that are inductive limits of sequences of finite direct sums of building blocks. Villadsen [28] has answered this question in the case where A is an inductive limit of a sequence of finite direct sums of circle algebras. Using this result Thomsen has been able to determine the range of the Elliott invariant for those C^{*}-algebras that are inductive limits of finite direct sums of building blocks of the form $A(n, d, d, \ldots, d)$, see below.

We start out by examining the restrictions on $\left(K_{0}(A), K_{1}(A), T(A), r_{A}\right)$. Let A be a simple unital infinite dimensional inductive limit of a sequence

$$
A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} \cdots
$$

of finite direct sums of building blocks. We may by Theorem 9.9 assume that each α_{n} is unital and injective. By Corollary 3.6 each $K_{0}\left(A_{k}\right)$ is isomorphic (as an ordered group with order unit) to the K_{0}-group of a finite dimensional C^{*}-algebra. Thus $K_{0}(A)$ must be a countable dimension group. This group has to be simple as A is simple.

If $K_{0}(A) \cong \mathbb{Z}$ then by passing to a subsequence, if necessary, we may assume that A is the inductive limit of a sequence of building blocks, rather than finite direct sums of such algebras. By Lemma 3.9 it follows that $K_{1}(A)$ is an inductive limit of groups of the form $\mathbb{Z} \oplus H$, where H is any finite abelian group.

If $K_{0}(A)$ is not cyclic our only immediate conclusion is that $K_{1}(A)$ is a countable abelian group.
$T(A)$ must be a metrizable Choquet simplex. If B is a building block then obviously $r_{B}: T(B) \rightarrow S K_{0}(B)$ maps extreme points to extreme points. By [28, Corollary 1.6] and [28, Corollary 1.7] the same must be the case for r_{A}. Finally, r_{A} is surjective by either [3, Theorem 3.3] and [12], or [13, Corollary 9.18] (or, more elementary, because each $r_{A_{k}}: T\left(A_{k}\right) \rightarrow S K_{0}\left(A_{k}\right)$ is surjective). It follows from Theorem 12.1 and Corollary 12.5 that these are the only restrictions.

As mentioned above, Thomsen has calculated the range of the invariant for a subclass of the class we are considering. By [27, Theorem 9.2] we have the following:

Theorem 12.1 Let G be a countable simple dimension group with order unit, H a countable abelian group, Δ a compact metrizable Choquet simplex, and $\lambda: \Delta \rightarrow S G$ an affine continuous extreme point preserving surjection. There exists a simple unital infinite dimensional inductive limit of a sequence of finite direct sums of building blocks A together with an isomorphism $\varphi_{0}: K_{0}(A) \rightarrow G$ of ordered groups with order unit, an isomorphism $\varphi_{1}: K_{1}(A) \rightarrow H$, and an affine homeomorphism $\varphi_{T}: \Delta \rightarrow T(A)$ such that

$$
r_{A}\left(\varphi_{T}(\omega)\right)(x)=\lambda(\omega)\left(\varphi_{0}(x)\right), \quad \omega \in \Delta, x \in K_{0}(A)
$$

if and only if G is non-cyclic.
A can be realized as an inductive limit of a sequence of finite direct sums of circle algebras and interval building blocks of the form $I(n, d, d)$.

A different proof of this theorem could be based on Theorem 8.3 and [28, Theorem 4.2]. Combining the above theorem with Theorem 11.7 we get the following:

Theorem 12.2 Let A be a simple unital inductive limit of a sequence of finite direct sums of building blocks such that $K_{0}(A)$ is non-cyclic. Then A is the inductive limit of a sequence of finite direct sums of circle algebras and interval building blocks of the form $I(n, d, d)$.

We are left with the case of cyclic K_{0}-group. Note that the equation

$$
r_{A}\left(\varphi_{T}(\omega)\right)(x)=\lambda(\omega)\left(\varphi_{0}(x)\right), \quad \omega \in \Delta, x \in K_{0}(A)
$$

is trivial when A is a unital C^{*}-algebra with $K_{0}(A) \cong \mathbb{Z}$.
Lemma 12.3 Let A be a simple unital inductive limit of a sequence of finite direct sums of building blocks. Then $\left(K_{0}(A), K_{0}(A)^{+},[1]\right) \cong\left(\mathbb{Z}, \mathbb{Z}^{+}, 1\right)$ if and only if A is unital projectionless.

Proof This follows easily from Theorem 9.9 and Lemma 3.8.
Theorem 12.4 Let Δ be a metrizable Choquet simplex, and let H be the inductive limit of a sequence

$$
\mathbb{Z} \oplus H_{1} \xrightarrow{h_{1}} \mathbb{Z} \oplus H_{2} \xrightarrow{h_{2}} \mathbb{Z} \oplus H_{3} \xrightarrow{h_{3}} \cdots
$$

where each H_{k} is a finite abelian group. There exists an infinite dimensional simple unital projectionless C^{*}-algebra A that is an inductive limit of a sequence of building blocks, with $K_{1}(A) \cong H$ and such that $T(A)$ is affinely homeomorphic to Δ.

Proof By [26, Lemma 3.8] Aff Δ is isomorphic to an inductive limit in the category of order unit spaces of a sequence

$$
C_{\mathbb{R}}[0,1] \longrightarrow C_{\mathbb{R}}[0,1] \longrightarrow C_{\mathbb{R}}[0,1] \longrightarrow \cdots
$$

It is easy to see that this implies that $\operatorname{Aff} \Delta$ is isomorphic to an inductive limit of a sequence of the form

$$
C_{\mathbb{R}}(\mathbb{T}) \xrightarrow{\Theta_{1}} C_{\mathbb{R}}(\mathbb{T}) \xrightarrow{\Theta_{2}} C_{\mathbb{R}}(\mathbb{T}) \xrightarrow{\Theta_{3}} \cdots
$$

Choose a dense sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ in $C_{\mathbb{R}}(\mathbb{T})$ and a dense sequence $\left\{z_{k}\right\}_{k=1}^{\infty}$ in \mathbb{T}.
For every positive integer k we will construct a unital projectionless building block A_{k} such that $K_{1}\left(A_{k}\right) \cong \mathbb{Z} \oplus H_{k}$, and a unital and injective $*$-homomorphism $\alpha_{k}: A_{k} \rightarrow$ A_{k+1} such that the (constant) functions $z \mapsto z_{1}, z \mapsto z_{2}, \ldots, z \mapsto z_{k}$ are eigenvalue functions for α_{k}, such that $\alpha_{k *}=h_{k}$ on $K_{1}\left(A_{k}\right)$ (under the identification $K_{1}\left(A_{k}\right) \cong$ $\left.\mathbb{Z} \oplus H_{k}\right)$ and such that

$$
\left\|\widehat{\alpha_{k}}(f)-\Theta_{k}(f)\right\|<2^{-k}, \quad f \in F_{k}
$$

under the identification $\operatorname{Aff} T\left(A_{k}\right) \cong C_{\mathbb{R}}(\mathbb{T})$, where

$$
F_{k}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \bigcup_{j=1}^{k-1} \Theta_{j, k}\left(\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\right) \bigcup_{j=1}^{k-1} \widehat{\alpha_{j, k}}\left(\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\right)
$$

First choose by Lemma 3.9 a unital projectionless building block A_{1} such that $K_{1}\left(A_{1}\right) \cong \mathbb{Z} \oplus H_{1}$.

Assume that A_{k} has been constructed. We will construct A_{k+1} and α_{k}. Choose K by Theorem 8.3 with respect to $F_{k} \subseteq \operatorname{Aff} T\left(A_{k}\right), \epsilon=2^{-k}$ and the integer $k+1$. By Lemma 3.9 there exists a unital projectionless building block A_{k+1} such that $s\left(A_{k+1}\right) \geq$ K and $K_{1}\left(A_{k+1}\right) \cong \mathbb{Z} \oplus H_{k+1}$. By Theorem 8.3 there exists a unital $*$-homomorphism $\alpha_{k}: A_{k} \rightarrow A_{k+1}$ such that the identity function on \mathbb{T} and each of the functions $z \mapsto$ $z_{1}, z \mapsto z_{2}, \ldots, z \mapsto z_{k}$ are among the eigenvalue functions for α_{k} and such that

$$
\begin{gathered}
\left\|\widehat{\alpha_{k}}(f)-\Theta_{k}(f)\right\|<2^{-k}, \quad f \in F_{k} \\
\alpha_{k *}=h_{k} \quad \text { on } K_{1}\left(A_{k}\right)
\end{gathered}
$$

This completes the construction.
Set $A=\underline{\longrightarrow}\left(A_{k}, \alpha_{k}\right) . A$ is infinite dimensional since the connecting maps are injective, and it is unital projectionless since the connecting maps are unital. By [26, Lemma 3.4] Aff $T(A) \cong \underset{\longrightarrow}{\lim }\left(C_{\mathbb{R}}[0,1], \Theta_{k}\right) \cong \operatorname{Aff} \Delta$, and hence $T(A)$ and Δ are affinely homeomorphic. Clearly $K_{1}(A) \cong H$.

Let $I \subseteq A$ be a closed two-sided ideal in $A, I \neq\{0\}$. By (the proof of) [5, Lemma 3.1],

$$
I=\overline{\bigcup_{n=1}^{\infty} \alpha_{n, \infty}\left(\alpha_{n, \infty}^{-1}(I)\right)}
$$

Choose a positive integer n such that $\alpha_{n, \infty}{ }^{-1}(I) \neq\{0\}$. Choose $f \in \alpha_{n, \infty}{ }^{-1}(I)$ such that $f \neq 0$. Choose $k>n$ such that $f\left(z_{k}\right) \neq 0$. Then $\alpha_{n, l}(f)(z) \neq 0$ for every $z \in \mathbb{T}$ and $l>k$. Hence by Lemma 2.2 we see that $\alpha_{l, \infty}{ }^{-1}(I)=A_{l}$ for every $l>k$. It follows that $I=A$. Thus A is simple.

In the above theorem, let $H=0$ and Δ be a one-point set. Then we obtain by Lemma 12.3 and Theorem 11.7 the C^{*}-algebra Z constructed by Jiang and Su [16].

Corollary 12.5 Let d be a positive integer, let Δ be a metrizable Choquet simplex and let H be a countable abelian group. There exists an infinite dimensional simple unital inductive limit of a sequence of finite direct sums of building blocks A such that $\left(K_{0}(A), K_{0}(A)^{+},[1]\right) \cong\left(\mathbb{Z}, \mathbb{Z}^{+}, d\right), T(A) \cong \Delta$ and $K_{1}(A) \cong H$ if and only if H is the inductive limit of a sequence

$$
\mathbb{Z} \oplus H_{1} \longrightarrow \mathbb{Z} \oplus H_{2} \longrightarrow \mathbb{Z} \oplus H_{3} \longrightarrow \cdots
$$

where each H_{k} is a finite abelian group.
The C^{*}-algebra A is isomorphic to $M_{d}(B)$ where B is a simple unital projectionless C^{*}-algebra that is an inductive limit of a sequence of building blocks.

Proof Combine Theorem 12.4, Lemma 12.3 and Theorem 11.7.

Theorem 12.1 and Corollary 12.5 together determine the range of the Elliott invariant for the class of C^{*}-algebras for which our classification theorem applies. Let us conclude this paper by comparing our classification theorem with the classification theorems of Thomsen [27] and Jiang and Su [16].

It follows from [27, Theorem 9.2] that a C^{*}-algebra in our class is contained in Thomsen's class if and only if K_{0} is non-cyclic. By calculating the range of the invariant for the C^{*}-algebras contained in Jiang's and Su's class, one can show that a C^{*}-algebra in our class with K_{0} non-cyclic is contained in Jiang's and Su's class if and only if K_{1} is a torsion group. A C^{*}-algebra in our class with cyclic K_{0}-group is contained in Jiang's and Su's class if and only if the K_{1}-group is an inductive limit of a sequence of finite cyclic groups, see [16, Theorem 4.5]. Thus our classification theorem can be applied to C^{*}-algebras that cannot be realized as inductive limits of finite direct sums of the building blocks considered in [27], or in [16], namely those that have cyclic K_{0}-group and a K_{1}-group that is not an inductive limit of a sequence of finite cyclic groups.

References

[1] B. Blackadar, Traces on simple AF C^{*}-algebras. J. Funct. Anal. 38(1980), 156-168.
[2] \quad _-theory for operator algebras. Cambridge University Press, 1998.
[3] B. Blackadar and M. Rørdam, Extending states on preordered semigroups and the existence of quasitraces on C^{*}-algebras. J. Algebra 152(1992), 240-247.
[4] B. Bollobás, Combinatorics. Cambridge University Press, 1986.
[5] O. Bratteli, Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171(1972), 195-234.
[6] M. Dadarlat and T. A. Loring, A universal multicoefficient theorem for the Kasparov groups. Duke Math. J. 84(1996), 355-377.
[7] S. Eilers, T. A. Loring and G. K. Pedersen, Stability of anticommutation relations: An application of noncommutative CW complexes. J. Reine Angew. Math. 499(1998), 101-143.
[8] G. A. Elliott, A classification of certain simple C*-algebras. In: Quantum and non-commutative analysis (eds. H. Araki et al.), Kluwer, Dordrecht, 1993, 373-385.
[9] \longrightarrow, On the classification of C^{*}-algebras of real rank zero. J. Reine Angew. Math. 443(1993), 179-219.
[10] \longrightarrow A classification of certain simple C^{*}-algebras, II. J. Ramanujan Math. Soc. 12(1997), 97-134.
[11] L. Fuchs, Infinite abelian groups I. Academic Press, 1970.
[12] U. Haagerup, Quasitraces on exact C*-algebras are traces. Manuscript, 1991.
[13] U. Haagerup and S. Thorbjørnsen, Random matrices and K-theory for exact C^{*}-algebras. Doc. Math. 4(1998), 341-450.
[14] D. Handelman, K_{0} of von Neumann and $A F C^{*}$-algebras. Quart. J. Math. Oxford Ser. 29(1978), 427-441.
[15] X. Jiang and H. Su, A classification of splitting interval algebras. J. Funct. Anal. 151(1997), 50-76.
[16] \longrightarrow On a simple unital projectionless C^{*}-algebra. Amer. J. Math. 121(1999), 359-413.
[17] L. Li, Simple inductive limit C*-algebras: Spectra and approximations by interval algebras. J. Reine Angew. Math. 507(1999), 57-79.
[18] T. A. Loring, Lifting solutions to perturbing problems in C^{*}-algebras. Fields Institute Monographs, 1997.
[19] G. J. Murphy, C^{*}-algebras and operator theory. Academic Press, 1990.
[20] K. E. Nielsen and K. Thomsen, Limits of circle algebras. Exposition. Math. 14(1996), 17-56.
[21] M. Rørdam, A short proof of Elliott's theorem: $\mathcal{O}_{2} \otimes \mathcal{O}_{2} \cong \mathcal{O}_{2}$. C. R. Math. Rep. Acad. Sci. Canada 16(1994), 31-36.
[22] \longrightarrow, Classification of certain infinite simple C^{*}-algebras. J. Funct. Anal. 131(1995), 415-458.
[23] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J. 55(1987), 431-474.
[24] K. Thomsen, Nonstable K-Theory for Operator Algebras. K-Theory 4 (1991), 245-267.
[25] K. Thomsen, On isomorphisms of inductive limit C^{*}-algebras. Proc. Amer. Math. Soc. 113(1991), 947-953.
[26] _Inductive limits of interval algebras: The tracial state space. Amer. J. Math. 116(1994), 605-620.
[27] \longrightarrow Limits of certain subhomogeneous C^{*}-algebras. Mém. Soc. Math. Fr. 71(1997).
[28] J. Villadsen, The range of the Elliott invariant. J. Reine Angew. Math. 462(1995), 31-55.

The Fields Institute
222 College Street
Toronto, Ontario
M5T 3 J1
email: jmygind@hotmail.com

[^0]: Received by the editors March 21, 2000; revised June 22, 2001.
 AMS subject classification: Primary: 46L80; secondary: 19K14, 46L05.
 (C)Canadian Mathematical Society 2001.

