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Abstract. Let G be a simple, simply connected, compact Lie group, and let M be
an orientable, smooth, connected, closed 4-manifold. In this paper, we calculate the
homotopy type of the suspension of M and the homotopy types of the gauge groups of
principal G-bundles over M when π1(M) is (1) �∗m, (2) �/pr�, or (3) �∗m ∗ (∗n

j=1�/prj

j �),
where p and the pj’s are odd primes.
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1. Introduction. Let G be a topological group, and let M be a topological
space. Given a principal G-bundle P over M, the associated gauge group G(P) is the
topological group of G-equivariant automorphisms of P, which fixes M. Atiyah, Bott
and Gottlieb [1, 4] showed that its classifying space BG(P) is homotopy equivalent to
the connected component MapP(M, BG) of the mapping space Map(M, BG), which
contains the map inducing P. When G is a simple, simply connected, compact Lie
group and M is an orientable, smooth, connected, closed 4-manifold, it can be shown
that the set of isomorphism classes of principal G-bundles over M is in one-to-
one correspondence with the homotopy set [M, BG] ∼= �. If a principal G-bundle
corresponds to an integer t, then we denote its associated gauge group by Gt(M). In
[18], Theriault showed that when M is a simply connected spin 4-manifold, there is a
homotopy equivalence

Gt(M) � Gt(S4) ×
n∏

i=1

�2G, (1)

where n is the rank of H2(M; �). For the non-spin case, this homotopy equivalence
still holds when localized away from 2. As a result, the study of Gt(M) can be reduced
to that of Gt(S4), which has been being investigated over the last 20 years. Kishimoto,
Kono and Tsutaya gave bounds on the numbers of distinct homotopy types of Gt(S4)
for all G using localization at odd primes [9]. Moreover, the homotopy types of Gt(S4)
are classified for many cases. Let (a, b) be the greatest common divisor of a and b.
Then, [3, 8, 10, 11, 19, 21, 22]

� when G = SU(2), there is a homotopy equivalence Gt(S4) � Gs(S4) if and only
if (12, t) = (12, s);

Glasgow Math. J. 61 (2019) 349–371. C© Glasgow Mathematical Journal Trust 2018.

(Received 13 February 2018; revised 11 April 2018; accepted 4 May 2018; first published online
 20 June 2018)

https://doi.org/10.1017/S0017089518000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000241


TSELEUNG SO

� when G = SU(3), there is a homotopy equivalence Gt(S4) � Gs(S4) if and only
if (24, t) = (24, s);

� when G = SU(5), there is a p-homotopy equivalence Gt(S4) � Gs(S4) if and only
if (120, t) = (120, s) for any prime p;

� when G = Sp(2), there is a p-local homotopy equivalence Gt(S4) � Gs(S4) if and only
if (40, t) = (40, s) for any prime p;

� when G = SU(n), there is a p-local homotopy equivalence Gt(S4) � Gs(S4) if and
only if (n(n2 − 1), t) = (n(n2 − 1), s) for any odd prime p such that n ≤ (p − 1)2 + 1;

� when G = Sp(n), there is a p-local homotopy equivalence Gt(S4) � Gs(S4) if and only
if (4n(2n + 1), t) = (4n(2n + 1), s) for any odd prime p such that 2n ≤ (p − 1)2 + 1;

� when G = G2, there is a p-local homotopy equivalence Gt(S4) � Gs(S4) if and only
if (84, t) = (84, s) for any odd prime p.

In addition, a few cases of Gt(��2) are worked out [12, 20]:
� when G = SU(2), there is a homotopy equivalence Gt(��2) � Gs(��2) if and only

if (6, t) = (6, s);

� when G = SU(3), there is a p-local homotopy equivalence Gt(��2) � Gs(��2) if
and only if (12, t) = (12, s) for any prime p.

On the other hand, very little is known about Gt(M) when M is non-simply
connected. The goal of this paper is to study the homotopy types of Gt(M) for
certain non-simply connected 4-manifolds. To achieve this, we need a homotopy
decomposition statement.

THEOREM 1.1. Suppose that G is a simple, simply connected, compact Lie group and
Y is a CW-complex of dimension at most 3. Let φ : Y → M be a map such that �φ has
a left homotopy inverse. Then, we have

Gt(M) � Gt(Cφ) × Map∗(Y, G)

where Cφ is the cofiber of φ.

Using Theorem 1.1, we calculate the homotopy types of Gt(M) when π1(M) is (1)
�∗m, (2) �/pr�, or (3) �∗m ∗ (∗n

j=1�/prj

j �), where p and the pj’s are odd primes.

THEOREM 1.2. Suppose that G is a simple, simply connected, compact Lie group and
M is an orientable, smooth, connected, closed 4-manifold.
� If π1(M) = �∗m or �/pr�, then Gt(M) is homotopy equivalent to a product of Gt(S4)

or Gt(��2) and ‘loop spaces’ on G.
� If π1(M) = �∗m ∗ (∗n

j=1�/prj

j �), then Gt(M) × ∏2d
�2G is homotopy equivalent to a

product of Gt(S4) or Gt(��2) and ‘loop spaces’ on G for some number d.

The term ‘loop spaces’ refers both to iterated based loop spaces �G, �2G and
�3G and modular loop spaces �G{pr} and �2G{pr}, where G{pr} is the homotopy fiber
of the pr-power map on G. Explicit decompositions are stated in Section 3.

Theorem 1.2 shows that the homotopy type of Gt(M) is related to that of Gt(S4)
or Gt(��2) in these three cases. Combining Theorem 1.2 and the known results in
[3, 10, 11, 19, 22], we have the following classification.
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COROLLARY 1.3. If M is an orientable, smooth, connected, closed 4-manifold
with π1(M) = �∗m or �/pr�, then the followings hold:
� when G = SU(2), there is a homotopy equivalence Gt(M) � Gs(M) if and only

if (12, t) = (12, s) for M spin, and (6, t) = (6, s) for M non-spin;

� when G = SU(3), there is a homotopy equivalence Gt(M) � Gs(M) if and only
if (24, t) = (24, s) for M spin; there is a p-local homotopy equivalence Gt(M) � Gs(M)
if and only if (12, t) = (12, s) for any prime p and M non-spin;

� when G = SU(n), there is a p-local homotopy equivalence Gt(M) � Gs(M) if and only
if (n(n2 − 1), t) = (n(n2 − 1), s) for any odd prime p such that n ≤ (p − 1)2 + 1;

� when G = Sp(2), there is a p-local homotopy equivalence Gt(M) � Gs(M) if and only
if (40, t) = (40, s) for any odd prime p;

� when G = G2, there is a p-local homotopy equivalence Gt(M) � Gs(M) if and only
if (84, t) = (84, s) for any odd prime p.

There is an analogous statement to Corollary 1.3.

COROLLARY 1.4. If M is an orientable, smooth, connected, closed 4-manifold with
π1(M) = �∗m ∗ (∗n

j=1�/prj

j �), then the integral and p-local homotopy equivalences in

Corollary 1.3 hold for Gt(M) × ∏2d
�2G for some number d.

The structure of this paper is as follows. In Section 2, we prove the homotopy
decomposition Theorem 1.1 and develop some useful lemmas. In particular,
Theorem 1.1 is used to revise homotopy equivalence (1), which is often referred to
during the calculations in Section 3. In Section 3, we give the homotopy types of �M
and Gt(M) when π1(M) is either �∗m, �/pr� or �∗m ∗ (∗n

j=1�/prj

j �), where p and the pj’s
are odd primes.

2. A homotopy decomposition of gauge groups.

2.1. A homotopy decomposition and some useful lemmas. We are going to extend
the homotopy decomposition (1) to a more general situation. Suppose that M is
an orientable four-dimensional CW-complex that is constructed by attaching a 4-
cell onto a three-dimensional CW-complex M3 by an attaching map f : S3 → M3.
Let u : BG → K(�, 4) be a generator of H4(BG) ∼= �. Since it is a 5-equivalence, u∗ :
[M, BG] → [M, K(�, 4)] = � is a bijection. If a principal G-bundle over M corresponds
to some integer t, then we denote its associated gauge group by Gt(M).

In [18], the homotopy decomposition (1) is obtained as a consequence of the
attaching map f of the 4-cell in M having the property that �f is null-homotopic.
Observe that �f is the connecting map of the cofibration sequence

M3 −→ M −→ S4,

where M3 is the 3-skeleton of M. From the point of view of homotopy theory, it can
be replaced by a cofibration sequence

Y
φ−→ M

q−→ Cφ (2)
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for some space Y and some map φ : Y → M, with a connecting map that is null-
homotopic. Here, q is the quotient map and Cφ is the cofiber of φ. The nullity condition
is equivalent to �φ having a left homotopy inverse. If we further restrict the dimension
of Y to be at most 3, then by Cellular Approximation theorem φ is homotopic to ı ◦ ϕ,
where ϕ : Y → M3 is a map on M3 and ı : M3 → M is the inclusion. The existence of
a left homotopy inverse of �φ imposes a strong condition on �M.

LEMMA 2.1. Let Y be a CW-complex of dimension at most 3 and let φ : Y → M
be a map. If φ is homotopic to ı ◦ ϕ for some map ϕ : Y → M3, then the followings are
equivalent:

(1) �φ : �Y → �M has a left homotopy inverse ψ;
(2) �ϕ has a left homotopy inverse ψ ′ and ψ ′ ◦ �f is null-homotopic;
(3) �M is homotopy equivalent to �Y ∨ �Cφ and �φ is homotopic to the inclusion;
(4) �M3 is homotopy equivalent to �Y ∨ �Cϕ , where Cϕ is the cofiber of ϕ, �ϕ is

homotopic to the inclusion and ψ ′ ◦ �f is null-homotopic.

Proof. First, we show that Conditions (1) and (2) are equivalent. If �φ has a
left homotopy inverse ψ , then ψ ′ = ψ ◦ �ı is a left homotopy inverse of �ϕ and

ψ ′ ◦ �f = ψ ◦ �ı ◦ �f is null-homotopic since S4 �f−→ �M3
�ı−→ �M is a cofibration

sequence. Conversely, assume Condition (2). Consider the homotopy commutative
diagram

S4
�f �� �M3

�ı ��

ψ ′

��

�M

ψ���
�

�
�

�

�Y

By hypothesis, ψ ′ ◦ �f is null-homotopic, so ψ ′ has an extension ψ . Then, we have

ψ ◦ �φ � ψ ◦ �(ı ◦ ϕ)

� (ψ ◦ �ı) ◦ �ϕ

� ψ ′ ◦ �ϕ

� 1�Y ,

where 1�Y is the identity map on �Y . Therefore, ψ is a left homotopy inverse of �φ.
Now, we show that Conditions (1) and (3) are equivalent. If �φ has a left homotopy

inverse ψ , then let h be the composition

h : �M
σ−→ �M ∨ �M

ψ∨�q−→ �Y ∨ �Cφ,

where σ is the comultiplication. Observe that h induces an isomorphism H∗(�Y ∨
�Cφ) → H∗(�M). Since these spaces are suspensions and are simply connected, h is a
homotopy equivalence by Whitehead theorem. Therefore, �M is homotopy equivalent
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to �Y ∨ �Cφ . Moreover, since �φ is a co-H-map,

h ◦ �φ � (ψ ∨ �q) ◦ σ ◦ �φ

� (ψ ∨ �q) ◦ (�φ ∨ �φ) ◦ σ

� (ψ ◦ �φ ∨ �q ◦ �φ) ◦ σ

� (1�Y ∨ ∗) ◦ σ

is the inclusion �Y ↪→ �Y ∨ �Cφ . Conversely, assume Condition (3). Let h be a
homotopy equivalence from �M to �Y ∨ �Cφ and let ψ be the composition

ψ : �M
h−→ �Y ∨ �Cφ

p−→ �Y,

where p is the pinch map. By hypothesis, h ◦ �φ is homotopic to the
inclusion �Y → �Y ∨ �Cφ , so we have

ψ ◦ �φ � p ◦ h ◦ �φ � 1�Y

and ψ is a left homotopy inverse of �φ.
The equivalence between (2) and (4) can be shown similarly. �
We can extend the cofibration (2) to the homotopy commutative diagram whose

rows and columns are cofibration sequences

∗ ��

��

Y

ϕ

��

Y ��

φ

��

∗

��
S3

f �� M3
ı ��

q′

��

M
p ��

q

��

S4

S3
f ′

�� Cϕ
�� Cφ

p′
�� S4

(3)

where q′, p and p′ are the quotient maps and f ′ = q′ ◦ f . The bottom row implies that
Cφ is constructed by attaching a 4-cell onto Cϕ via f ′. The generator u of H4(BG)
induces a bijection between [Cφ, BG] and [Cφ, K(�, 4)] ∼= �, so any principal G-bundle
over Cφ corresponds to some integer t. Denote the associated gauge group by Gt(Cφ).
We want to compare Gt(M) and Gt(Cφ) via the pullback q∗.

LEMMA 2.2. Assume the conditions in Lemma 2.1. Then, q∗ : [Cφ, BG] → [M, BG]
is a group isomorphism.

Proof. The naturality of u∗ implies the commutative diagram

[Cφ, BG]
q∗

��

u∗

��

[M, BG]

u∗

��
H4(Cφ)

q∗
�� H4(M).

Since the group structures on [M, BG] and [Cφ, BG] are induced by bijections

u∗ : [M, BG] → H4(M) ∼= � and u∗ : [Cφ, BG] → H4(Cφ) ∼= �,
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it suffices to show that q∗ : H4(Cφ) → H4(M) is an isomorphism.
The cofibration (2) induces an exact sequence

H4(�M)
(�φ)∗−→ H4(�Y )

ε∗−→ H4(Cφ)
q∗

−→ H4(M)
φ∗

−→ H4(Y ),

where ε∗ is induced by the connecting map ε : Cφ → �Y . Since �φ has a left homotopy
inverse, ε is null-homotopic and ε∗ is trivial. Also, the dimension of Y is at most 3, so
H4(Y ) is trivial. By exactness q∗ : H4(Cφ) → H4(M) is an isomorphism. �

LEMMA 2.3. For any integer t, let Map∗
t (M, BG) and Map∗

t (Cφ, BG) be the connected
components of Map∗(M, BG) and Map∗(Cφ, BG) containing t ∈ [M, BG] ∼= [Cφ, BG],
respectively. Then,

Map∗(�Y, BG)
ε∗−→ Map∗

t (Cφ, BG)
q∗

−→ Map∗
t (M, BG)

is a homotopy fibration sequence.

Proof. First, q∗ : Map∗
t (Cφ, BG) → Map∗

t (M, BG) is well defined by Lemma 2.2.
Second, the cofibration (2) induces a homotopy fibration sequence

Map∗(�Y, BG)
ε∗−→ Map∗(M, BG)

q∗
−→ Map∗(Cφ, BG).

Since ε∗ is null-homotopic, Map∗(�Y, BG) is mapped into Map∗
0(M, BG) and hence is

the homotopy fiber of q∗ : Map∗
0(M, BG) → Map∗

0(Cφ, BG). To show that it is true for
any t ∈ �, let αt : Map∗

0(M, BG) → Map∗
t (M, BG) be a map sending a pointed map

g : M → BG to the composition

αt(g) : M
c−→ M ∨ S4 g∨t−→ BG ∨ BG

�−→ BG,

where c is the coaction map of M and � is the folding map, and let βt :
Map∗

0(Cφ, BG) → Map∗
t (Cφ, BG) be a map defined similarly. Since αt and βt are

homotopy equivalences, it suffices to prove the commutate diagram

Map∗
0(Cφ, BG)

q∗
��

αt

��

Map∗
0(M, BG)

βt

��
Map∗

t (Cφ, BG)
q∗

�� Map∗
t (M, BG).

Consider the homotopy commutative diagram

M
c ��

p

���
��

��
��

�

q

��

M ∨ S4

q∨1

��

p∨1

������������

S4 σ �� S4 ∨ S4

Cφ
c′

��
p′

����������
Cφ ∨ S4

p′∨1

�����������
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where c′ is the coaction map, and p and p′ are the quotient maps, and σ is the
comultiplication of S4. The left and the right triangles are due to the bottom-right
square in diagram (3), and the top and the bottom quadrangles are due to the property
of coaction maps. Extend it to get the cofibration diagram

M
c ��

q

��

M ∨ S4
q∗g∨t ��

q∨1
��

BG ∨ BG
� �� BG

Cφ
c′

�� Cφ ∨ S4 g∨t �� BG ∨ BG
� �� BG

The upper row around the diagram is βt(q∗g), while the lower row around the diagram
is q∗αt(g). Therefore, q∗ commutes with αt and βt and the asserted statement follows.
�

THEOREM 2.4. Let Y be a CW-complex of dimension at most 3 and let φ : Y → M
be a map. If φ satisfies one of the four conditions in Lemma 2.1, then there are homotopy
equivalences

�M � �Cφ ∨ �Y and Gt(M) � Gt(Cφ) × Map∗(Y, G).

Proof. Let Mapt(M, BG) and Mapt(Cφ, BG) be the connected components
of Map(M, BG) and Map(Cφ, BG) containing t ∈ [M, BG] ∼= [Cφ, BG]. There are
evaluation fibrations

Map∗
t (M, BG) → Mapt(M, BG) → BG and Map∗

t (Cφ, BG) → Mapt(Cφ, BG) → BG.

By Lemma 2.2, q∗ : [Cφ, BG] → [M, BG] is an isomorphism, so there is a homotopy
commutative diagram whose rows are fibration sequences

G �� Map∗
t (Cφ, BG) ��

q∗

��

Mapt(Cφ, BG) ��

q∗

��

BG

G �� Map∗
t (M, BG) �� Mapt(M, BG) �� BG

(4)

As in [18], from the left square in (4) we obtain a homotopy fibration diagram

∗ ��

��

�Map∗
t (M, BG)

��

�Map∗
t (M, BG)

��
Gt(Cφ)

q∗
�� Gt(M) h ��

��

Map∗(�Y, BG)

ε∗

��
Gt(Cφ) ��

��

G ��

��

Map∗
t (Cφ, BG)

��
∗ �� Map∗

t (M, BG) Map∗
t (M, BG)

(5)
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The right column is due to Lemma 2.3. The nullity of ε∗ implies that h has a
right homotopy inverse. The group multiplication in Gt(M) then gives a homotopy
equivalence


 : Gt(Cφ) × Map∗(�Y, BG) −→ Gt(M) × Gt(M) −→ Gt(M),

so Gt(M) is homotopy equivalent to Gt(Cφ) × Map∗(Y, G). �
When calculating Gt(M), we will use Theorem 2.4 several times and apply it to M

and Cφ in some cases. So, here, we establish some facts about Cφ .

LEMMA 2.5. Let q′ : M → Cφ be the quotient map and let f ′ be the composition

S3 f−→ M3
q′

−→ Cϕ.

Then, �f ′ is null-homotopic if and only if �f is null-homotopic.

Proof. The necessity is obvious. Assume that �f ′ is null-homotopic. Since the
composition

h : �M3
σ−→ �M3 ∨ �M3

ψ∨�q′
−→ �Y ∨ �Cϕ

is a homotopy equivalence, it suffices to show that h ◦ �f is null-homotopic. Consider
the homotopy commutative diagram

S4 σ ��

�f

��

S4 ∨ S4

�f ∨�f

��
�M3

σ �� �M3 ∨ �M3
ψ∨�q′

�� �Y ∨ �Cϕ

where the two σ ’s are the comultiplications of S4 and �M3. The lower direction around
the diagram is h ◦ �f , and the upper direction around the diagram is

(ψ ◦ �f ∨ �q′ ◦ �f ) ◦ σ � (ψ ◦ �f ∨ �f ′) ◦ σ.

By hypothesis �f ′ is null-homotopic, and by Lemma 2.1(4) ψ ◦ �f is null-homotopic.
Therefore, h ◦ �f is null-homotopic and hence so is �f . �

LEMMA 2.6. Let H2
free(X) be the free part of H2(X) for any space X. If H2(Y ) is

torsion, then q∗ : H2
free(Cφ) → H2

free(M) is an isomorphism. Moreover, if for any α′ ∈
H2

free(M) there exists β ′ ∈ H2
free(M) such that α′ ∪ β ′ ∈ H4(M) is a generator, then for

any α ∈ H2
free(Cφ) there exists β ∈ H2

free(Cφ) such that α ∪ β ∈ H4(Cφ) is a generator.

Proof. Cofibration (2) induces the long exact sequence of cohomology groups

· · · −→ Hk(Cφ)
(�q)∗−→ Hk(M)

(�φ)∗−→ Hk(Y ) −→ · · ·
Since �φ has a left homotopy inverse, the sequence splits for k ≥ 1, and we have

Hk(M) ∼= Hk(Y ) ⊕ Hk(Cφ).

By hypothesis H2(Y ) is torsion, so H2
free(Cφ) is isomorphic to H2

free(M).
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For any α ∈ H2
free(Cφ), q∗(α) is in H2

free(M). By hypothesis there exists β ′ ∈ H2
free(M)

such that q∗(α) ∪ β ′ ∈ H4(M) is a generator. Since q∗ : H2
free(Cφ) → H2

free(M) is an
isomorphism, there exists β ∈ H2

free(Cφ) such that q∗(β) = β ′. Therefore, we have
q∗(α) ∪ β ′ = q∗(α ∪ β). Observe that q∗ : H4(Cφ) → H4(M) is an isomorphism since
Y has dimension at most 3. It follows that α ∪ β is a generator of H4(Cφ). �

The second part of Lemma 2.6 says that the cup product on H2
free(Cφ) is unimodular

if the cup product on H2
free(M) is unimodular, which follows from Poincaré Duality

when M is an orientable compact manifold. Furthermore, if Cφ has a subcomplex Y ′

satisfying Theorem 2.4, then the cup product on H2
free(Cφ/Y ′) is still unimodular.

Next, we consider two variations of Theorem 2.4 when M has a special structure.

LEMMA 2.7. Suppose that M3 is homotopy equivalent to Z ∨ Z′. Let Y and Y ′ be
CW-complexes of dimension at most 3, and let ϕ : Y → Z and ϕ′ : Y ′ → Z′ be maps. If
�ϕ and �ϕ′ have left homotopy inverses ψ and ψ ′, respectively, and the compositions

S4 �f−→ �M3
pinch−→ �Z

ψ−→ �Y and S4 �f−→ �M3
pinch−→ �Z′ ψ ′

−→ �Y ′

are null-homotopic, then we have

�M � �M′ ∨ �Y ∨ �Y ′ and Gt(M) � Gt(M′) × Map∗(�Y, BG) × Map∗(�Y ′, BG),

where M′ is the cofiber of the map Y ∨ Y ′ ϕ∨ϕ′
−→ Z ∨ Z′ ↪→ M.

Proof. Let 
 be the composition


 : Y ∨ Y ′ ϕ∨ϕ′
−→ Z ∨ Z′ � M3.

The map ψ ∨ ψ ′ : �Z ∨ �Z′ → �Y ∨ �Y ′ is a left homotopy inverse of �
. We
show that (ψ ∨ ψ ′) ◦ �f is null-homotopic, implying that 
 satisfies the hypothesis of
Theorem 2.4.

Notice that the composition

h : �M3
σ−→ �M3 ∨ �M3

p1∨p2−→ �Z ∨ �Z′

is a homotopy equivalence, where p1 : �M3 → �Z and p2 : �M3 → �Z′ are the pinch
maps. Since �f is a co-H-map, we have

(ψ ∨ ψ ′) ◦ h ◦ �f � (ψ ∨ ψ ′) ◦ (p1 ∨ p2) ◦ σ ◦ �f

� (ψ ∨ ψ ′) ◦ (p1 ∨ p2) ◦ (�f ∨ �f ) ◦ σ

� (ψ ◦ p1 ◦ �f ∨ ψ ′ ◦ p2 ◦ �f ) ◦ σ,

which is null-homotopic by assumption. Therefore, (ψ ∨ ψ ′) ◦ �f is null-homotopic
and Theorem 2.4 implies the asserted statement. �

LEMMA 2.8. Suppose M ∼= X#X ′, where X and X ′ are orientable, smooth, connected,
closed 4-manifolds. Let Y and Y ′ be CW-complexes of dimensions at most 3 and let
ϕ : Y → X3 and ϕ′ : Y ′ → X ′

3 be maps satisfying the hypothesis of Theorem 2.4. Then,
we have
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�M � �M′ ∨ �Y ∨ �Y ′ and Gt(M) � Gt(M′) × Map∗(�Y, BG) × Map∗(�Y ′, BG),

where M′ is the cofiber of the inclusion Y ∨ Y ′ ϕ∨ϕ′
−→ X3 ∨ X ′

3 ↪→ M.

Proof. Let f : S3 → X3 and f ′ : S3 → X ′
3 be the attaching maps of the 4-cells in

X and X ′, respectively. By Lemma 2.1, �ϕ and �ϕ′ have left homotopy inverses ψ

and ψ ′ and ψ ◦ �f and ψ ′ ◦ �f ′ are null-homotopic. We show that ϕ and ϕ′ satisfy the
hypothesis in Lemma 2.7.

The 3-skeleton of M is X3 ∨ X ′
3 and the attaching map of the 4-cell is

f# : S3 σ−→ S3 ∨ S3 f ∨f ′
−→ X3 ∨ X ′

3.

Let p1 : �X3 ∨ �X ′
3 → �X3 and p2 : �X3 ∨ �X ′

3 → �X ′
3 be the pinch maps. Consider

the homotopy commutative diagram

S4
�f# �� �X3 ∨ �X ′

3

p1

��
S4

�f �� �X3
ψ �� �Y

Since ψ ◦ �f is null-homotopic, the composition ψ ◦ p1 ◦ �f# is null-homotopic.
Similarly ψ ′ ◦ p2 ◦ �f# is null-homotopic. Then, Lemma 2.7 implies the
statement. �

2.2. Gauge groups over simply connected 4-manifolds. Now, we revise homotopy
equivalence (1) using Theorem 2.4. When M is simply connected, its 3-skeleton M3

is homotopy equivalent to
∨n

i=1 S2. If �f is null-homotopic, then we can apply
Theorem 2.4 by taking Y to be the whole of M3 and ϕ : Y → M3 to be the identity
map and get the homotopy equivalence (1). In the following, we assume the homotopy
class of �f is not trivial.

To distinguish the 2-spheres, denote the ith copy of S2 in M3 by S2
i . Let η : S3 → S2

be the Hopf map and let ηi be the composition

ηi : S3 η−→ S2
i ↪→

n∨
i=1

S2
i .

We also denote the suspensions �η and �ηi by η̄ and η̄i for short.

LEMMA 2.9. If M3 is homotopy equivalent to
∨n

i=1 S2
i , then �f is homotopic

to
∑n

i=1 aiη̄i, where ai ∈ �/2�.

Proof. The Hilton–Milnor theorem implies

π3(
n∨

i=n

S2
i ) ∼=

n⊕
i=1

π3(S2
i ) ⊕

⊕
i �=j

π3(�S1
i ∧ S1

j ),

where π3(S2
i ) is generated by ηi and π3(�S1

i ∧ S1
j ) is generated by Whitehead products

of the identity maps on S2
i and S2

j . As an element in π3(
∨n

i=1 S2
i ), f is homotopic
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to
∑n

i=1 ãiηi + w, where ãi is an integer and w is a sum of Whitehead products
in

⊕
i �=j π3(S2

i ∧ S1
j ). After suspension �f is homotopic to

∑n
i=1 aiη̄i, where ai ≡ ãi

(mod 2), since suspensions of Whitehead products are null-homotopic and η̄i has
order 2. �

If the homotopy class of �f is not trivial, then at least one of the ai’s is not zero.
Relabelling the spheres if necessary, we may assume that �f is homotopic to

∑m
i=1 η̄i

for some integer m such that 1 ≤ m ≤ n. Then, we can simplify this expression with
the following lemma.

LEMMA 2.10. If M3 is homotopy equivalent to
∨n

i=1 S2
i and �f is homotopic

to
∑m

i=1 η̄i, then there is a map f̃ : S3 → M3 such that its cofiber Cf̃ is homotopy
equivalent to M and � f̃ is homotopic to η̄1. Moreover, p1 ◦ f̃ is homotopic to p1 ◦ f ,
where p1 :

∨n
i=1 S2

i → S2
1 is the pinch map.

Proof. For each 1 < j ≤ m, define a map ξj : M3 → M3 as follows. On S2
1 ∨ S2

j , ξj

is the composition

S2
1 ∨ S2

j
σ∨1−→ S2

1 ∨ S2
1 ∨ S2

j
1∨�−→ S2

1 ∨ S2
j ,

where σ is a comultiplication of S2
1 and � is the folding map of S2

1 and S2
j . On the

remaining spheres, ξj is the identity. Consider the homotopy cofibration diagram

S3
f �� M3

��

ξj

��

M

ξ̃j

��
S3

ξj◦f �� M3
�� Cξj◦f

where ξ̃j is an induced map and Cξj◦f is the cofiber of ξj ◦ f . Since ξj is a homology
isomorphism, so is ξ̃j by the 5-lemma. Therefore, ξ̃j is a homotopy equivalence and M
is homotopy equivalent to Cξj◦f .

By Lemma 2.9, �(ξj ◦ f ) is homotopic to
∑n

i=1 aiη̄i, where ai ∈ �/2�. For 1 ≤ i ≤
n, let pi :

∨n
i=1 S3

i → S3
i be the pinch map. Then, ai is pi ◦ �(ξj ◦ f ). By the definition

of ξj, ai = 1 for i �= j and 1 ≤ i ≤ m, and ai = 0 otherwise, that is

�(ξj ◦ f ) � η̄1 + · · · + η̄j−1 + η̄j+1 + · · · + η̄m.

Let f̃ be ξm ◦ . . . ◦ ξ2 ◦ f and let Cf̃ be its cofiber. Then, � f̃ is homotopic to η̄1 and Cf̃
is homotopy equivalent to M.

Last, observe that p1 ◦ ξj is homotopic to p1. It follows that p1 ◦ ξj ◦ f is homotopic
to p1 ◦ f and so is p1 ◦ f̃ . �

LEMMA 2.11. Let M be a 4-dimensional simply connected CW-complex. If �f is
non-trivial, then there are homotopy equivalences

�M � ���2 ∨ (
n−1∨
i=1

S3) and Gt(M) � Gt(Caη) ×
n−1∏
i=1

�2G,

where a is an odd integer and n is the rank of H2(M) and Caη is the cofiber of aη.
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Proof. By Lemma 2.9, �f is homotopic to
∑m

i=1 η̄i for some m such that 1 ≤ m ≤ n.
By Lemma 2.10, there exists a map f̃ such that � f̃ is homotopic to η̄1 and its cofiber M̃
is homotopy equivalent to M. Replacing f by f̃ and M by M̃, we can assume �f � η̄i.
Use Theorem 2.4 by taking Y to be

∨n
i=2 S2

i and φ :
∨n

i=2 S2
i → M to be the inclusion

and get

�M � �Cφ ∨
(

n−1∨
i=1

S3

)
and Gt(M) � Gt(Cφ) ×

n−1∏
i=1

�2G,

where Cφ is the cofiber of φ. We need to show that Cφ is homotopy equivalent to Caη

for some odd integer a and �Cφ is homotopy equivalent to ���2.
Consider the cofibration diagram

∗ ��

��

S3

f
��

S3

p1◦f
��∨n

i=2 S2
i

ı �� ∨n
i=1 S2

i

��

p1 �� S2
1

��∨n
i=2 S2

i
φ �� M �� Cφ

where ı :
∨n

i=2 S2
i → ∨n

i=1 S2
i is the inclusion, p1 :

∨n
i=2 S3

i → S2
1 is the pinch map.

Since p1 ◦ f is in π3(S2) ∼= �, it is homotopic to aη for some integer a. The right
column implies that Cφ is homotopy equivalent to the cofiber Caη of aη. Moreover, �f
is homotopic to η̄1, so �(p1 ◦ f ) is homotopic to �η and a is an odd number. It follows
that �Cφ is homotopy equivalent to the cofiber of �η, which is ���2. �

We can modify the result of Lemma 2.11 a bit better.

LEMMA 2.12. Let a be an odd number. Then, we have

Gt(Caη) × �2G � Gt(��2) × �2G.

Proof. Let g be the composition

g : S3 σ−→ S3 ∨ S3 η∨aη−→ S2 ∨ S2

and let Cg be its cofiber. To distinguish the 2-spheres in the range, denote the ith
copy by S2

i . Now, we calculate Gt(Cg). By Lemma 2.10, we can assume that �g is
homotopic to η̄1 and p1 ◦ g is homotopic to η. Use Theorem 2.4 by taking Y to be
S2

2 and ϕ : S2
2 → S2

1 ∨ S2
2 to be the inclusion and obtain Gt(Cg) � Gt(Cg/S2

2) × �2G.

360

https://doi.org/10.1017/S0017089518000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000241


HOMOTOPY TYPES OF GAUGE GROUPS OVER 4-MANIFOLDS

Consider the homotopy cofibration diagram

∗

��

�� S2
2

j
��

S2
2

ϕ

��
S3

g �� S2
1 ∨ S2

2
��

p1

��

Cg

��
S3

η �� S2
1

�� ��2,

where j is the inclusion and p1 is the pinch map. The right column implies that Cg/S2
2

is homotopy equivalent to ��2, so we have

Gt(Cg) � Gt(��2) × �2G.

Similarly, let g′ be composition

g′ : S3 σ−→ S3 ∨ S3 aη∨η−→ S2
1 ∨ S2

2

and let Cg′ be its cofiber. By Lemma 2.10, �g′ is η̄1 and p1 ◦ g′ is homotopic to aη

and p1 ◦ g′ is homotopic to aη. Use Theorem 2.4 by taking Y to be S2
2 and ϕ : S2

2 →
S2

1 ∨ S2
2 and obtain Gt(M) � Gt(Cg′/S2

2) × �2G. Since Cg′/S2
2 is homotopy equivalent

to Caη, we have

Gt(Cg′) � Gt(Caη) × �2G.

Observe that g = T ◦ g′, where T : S2
1 ∨ S2

2 → S2
2 ∨ S2

1 is the swapping map. Since
T is a homotopy equivalence, Cg′ and Cg are homotopy equivalent. Combining the
two homotopy equivalences gives the asserted lemma. �

PROPOSITION 2.13. Suppose that M is a 4-dimensional simply connected Poincaré-
complex. Let the rank of H2(M) be n. If �f is null-homotopic, then there are homotopy
equivalences

�M � S5 ∨ (
n∨

i=1

S3) and Gt(M) � Gt(S4) ×
n∏

i=1

�2G.

If �f is non-trivial, then there are homotopy equivalences

�M � ���2 ∨ (
n−1∨
i=1

S3) and Gt(M) � Gt(��2) ×
n−1∏
i=1

�2G.

Proof. If �f is null-homotopic, then use Theorem 2.4 by taking Y to be M3 and
ϕ : Y → M3 to be the identity map and get the first two homotopy equivalences.

If �f is non-trivial, by Lemma 2.11 there are homotopy equivalences

�M � ���2 ∨ (
n−1∨
i=1

S3) and Gt(M) � Gt(Caη) ×
n−1∏
i=1

�2G,
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where a is an odd integer. It suffices to show that we can replace Gt(Caη) by Gt(��2).
When n = 1, the Poincaré complex condition implies that f has Hopf invariant

equal to 1 or −1. Therefore, M is homotopy equivalent to ��2 and the statement holds.
When n ≥ 2, there is at least one copy of �2G on the right-hand side. By Lemma 2.12,
we can replace Gt(Caη) by Gt(��2) to obtain the proposition. �

It would be interesting to know if Lemma 2.12 can be improved to Gt(Caη) �
Gt(��2). Observe that Proposition 2.13 is an improvement on the homotopy
equivalence (1) for the non-spin case in [18], which gives a decomposition only after
localization away from 2.

3. Gauge groups over non-simply connected 4-manifolds. From now on we assume
that M is an orientable, smooth, connected, closed 4 manifold. By Morse theory, M
admits a CW-structure with one 4-cell [14, Theorem 3.35]. In this section, we calculate
the homotopy types of �M and Gt(M) when π1(M) is (1) a free group �∗m, (2) a cyclic
group �/pr�, or (3) a free product of types (�∗m) ∗ (∗n

j=1�/prj

j �), where p and the pj’s
are odd primes. Our strategy is to apply Theorem 2.4 and its variations to decompose
Gt(M) into a product of a gauge group of a simply connected space, whose homotopy
type is worked out in Proposition 2.13, and some complementary factors that do not
depend on t.

3.1. The case when π1(M) = �∗m. When π1(M) is a free group, M3 is homotopy
equivalent to a wedge sum of spheres [7]

M3 � (
m∨

i=1

S3) ∨ (
n∨

j=1

S2) ∨ (
m∨

k=1

S1).

Using Theorem 2.4, we can calculate the homotopy types of �M and Gt(M).

THEOREM 3.1. Suppose π1(M) ∼= �∗m. Let the rank of H2(M) be n. If �f is null-
homotopic, then there are homotopy equivalences

�M � S5 ∨ (
m∨

i=1

S4) ∨ (
n∨

j=1

S3) ∨ (
m∨

k=1

S2)

Gt(M) � Gt(S4) ×
m∏

i=1

�3G ×
n∏

j=1

�2G ×
m∏

k=1

�G.

If �f is non-trivial, then there are homotopy equivalences

�M � ���2 ∨ (
m∨

i=1

S4) ∨ (
n−1∨
j=1

S3) ∨ (
m∨

k=1

S2)

Gt(M) � Gt(��2) ×
m∏

i=1

�3G ×
n−1∏
j=1

�2G ×
m∏

k=1

�G.

362

https://doi.org/10.1017/S0017089518000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000241


HOMOTOPY TYPES OF GAUGE GROUPS OVER 4-MANIFOLDS

Proof. Denote the ith copy of S3 in M3 by S3
i and the kth copy of S1 by S1

k. We
show that the inclusions ϕ3

i : S3
i → M3 and ϕ1

k : S1
k → M3 satisfy the hypothesis of

Lemma 2.7 for all i’s and k’s.
Let p3

i : M3 → S3
i and p1

k : M3 → S1
k be the pinch maps. Then, �p3

i and �p1
k are

left homotopy inverses of �ϕ3
i and �ϕ1

k. Moreover, �p3
i ◦ �f � �(p3

i ◦ f ) is null-
homotopic since f induces a trivial homomorphism f ∗ : H3(M3) → H3(S3), and
�p1

k ◦ �f � �(p1
k ◦ f ) is null-homotopic since p1

k ◦ f is null-homotopic by π3(S1) = 0.
Apply Lemma 2.7 and get

�M � �M′ ∨ (
m∨

i=1

S4) ∨ (
m∨

k=1

S2) and Gt(M) � Gt(M′) ×
m∏

i=1

�3G ×
m∏

k=1

�G,

where M′ is the cofiber of the inclusion (
∨m

i=1 S1) ∨ (
∨m

k=1 S3) ↪→ M. Observe that the
3-skeleton of M′ is homotopy equivalent to

∨n
i=1 S2. Since H2(S1

i ) and H2(S3
k) are zero,

Lemma 2.6 implies that M′ satisfies Poincaré Duality. Let f ′ be the attaching map of
the 4-cell in M′

3. By Proposition 2.13, if �f ′ is null-homotopic, then we have

�M′ � S5 ∨ (
n∨

i=1

S3) and Gt(M′) � Gt(S4) ×
n∏

i=1

�2G.

If �f ′ is non-trivial, then we have

�M′ � ���2 ∨ (
n−1∨
i=1

S3) and Gt(M′) � Gt(��2) ×
n−1∏
i=1

�2G.

By Lemma 2.5, �f ′ is null-homotopic if and only if �f is null-homotopic. Combining
these homotopy equivalences gives the theorem. �

3.2. The case when π1(M) = �/pr�. Recall that an n-dimensional Moore

space Pn(k) is the cofiber of the degree-k map Sn−1 k−→ Sn−1 for n ≥ 2. With integral
coefficients, H̃i(Pn(k)) is �/k� for i = n − 1 and is zero otherwise. With mod-k
coefficients, H̃i(Pn(k); �/k�) is �/k� for i = n − 1 and n and is zero otherwise. Let u be
a generator of H̃n−1(Pn(k)). By the Universal Coefficient theorem, H̃n−1(Pn(k); �/k�) is
generated by the mod-k reduction ū of u, and H̃n(Pn(k); �/k�) is generated by v̄ = βū,
where β is the Bockstein homomorphism.

For any space X , the mod-k homotopy group πn(X ; �/k�) is defined to
be [Pn(k), X ]. When n ≥ 3, πn(X ; �/k�) has a group structure induced by the
comultiplication of Pn(k) and when n ≥ 4, πn(X ; �/k�) is abelian. There are two
associated homomorphisms: the mod-k Hurewicz homomorphism

h̄ : πn(X ; �/k�) → Hn(X ; �/k�),

which is defined to be h̄(f ) = f∗(v̄) for f ∈ πn(X ; �/k�), and the homotopy Bockstein
homomorphism

β̄π : πn(X ; �/k�) → πn−1(X),

which is defined to be β̄π (f ) = ı∗ ◦ f and ı : Sn−1 → Pn(k) is the inclusion. They
are compatible with the standard Hurewicz homomorphism h, and Bockstein
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homomorphisms β in the commutative diagram [15]

· · · �� πn+1(X ; �/k�)
βπ ��

h̄
��

πn(X) k ��

h
��

πn(X) ��

h
��

πn(X ; �/k�) ��

h̄
��

· · ·

· · · �� Hn+1(X ; �/k�)
β �� Hn(X) k �� Hn(X) �� Hn(X ; �/k�) �� · · ·

(6)
For any map g : P3(k) → P3(k), let Cg be its cofiber, and let a and b be generators

of H2(Cg; �/k�) and H4(Cg; �/k�). Then, the mod-k Hopf invariant H̄(g) ∈ �/k� is
defined by the formula a ∪ a ≡ H̄(g)b (mod k).

LEMMA 3.2. [16, Corollary 11.12] Let p be an odd prime and let g : P3(pr) → P3(pr)
be a map in the kernel of h̄. Then, g is null-homotopic if and only if its mod-pr Hopf
invariant H̄(g) is zero.

Back to the calculation of Gt(M). When π1(M) = �/pr�, Poincaré Duality and
the Universal Coefficient theorem imply the homology groups of M are as follows:

Hi(M; �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� i = 0, 4

�/pr� i = 1

�⊕n ⊕ �/pr� i = 2

0 else.

Now, we calculate the homotopy type of �M to find a possible subcomplex Y satisfying
the hypothesis of Theorem 2.4.

LEMMA 3.3. Let p be an odd prime. Then, π4(P4(pr)) and π4(P3(pr)) are trivial.

Proof. After localizing away from p, any Pn(pr) is contractible so π4(P4(pr))
and π4(P3(pr)) are p-torsion. Localize at p and consider the long exact sequence of
homotopy groups for the pair (P4(pr), S3):

· · · −→ π4(S3) −→ π4(P4(pr))
j∗−→ π4(P4(pr), S3) −→ · · ·

The pair (P4(pr), S3) is 3-connected, so π4(P4(pr), S3) is � by Hurewicz Theorem.
Since π4(S3) is trivial at odd primes, j∗ is an injection. But π4(P4(pr)) is torsion, so this
injection only makes sense if π4(P4(pr)) is trivial.

Now, we calculate π4(P3(pr)). Let F3{pr} be the homotopy fiber of the pinch map
P3(pr) −→ S3. Then, π4(P3(pr)) equals π4(F3{pr}) since π4(�S3) and π4(S3) are trivial
at odd primes. By [15, Proposition 11.7.1], there is a p-local homotopy equivalence

�F3{pr} � S1 × ��(
∨
α

Pnα (pr)) ×
∏

j

S2pj−1{pr+1},

where nα is either 3 or greater than 4, and Sn{pr+1} is the homotopy fiber of the degree
map pr+1 : Sn −→ Sn. Since π4(F3{pr}) is π3(�F3{pr}), we need to calculate the third
homotopy group of each factor on the right-hand side. The first factor π3(S1) and the
last factor is trivial since S2pj−1{pr+1} is 3-connected for j ≥ 1. For the remaining factor
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of �F3{pr}, consider the string of isomorphisms

π3(��(
∨
α

Pnα (pr))) ∼= π3(
∏
α

��Pnα (pr))

∼= π3(��P3(pr))
∼= π4(P4(pr))
∼= 0.

The first isomorphism is obtained from the Hilton–Milnor theorem using dimension
and connectivity considerations. The second isomorphism holds since only one nα

equals 3, while the rest are strictly larger than 4. The third isomorphism holds by
adjunction, and the fourth isomorphism holds as we have already seen that π4(P4(pr)) =
0. Therefore, π4(F3{pr}) is trivial and so is π4(P3(pr)). �

LEMMA 3.4. If π1(M) ∼= �/pr�, then there is a homotopy equivalence

�M3 � P4(pr) ∨ (
n∨

i=1

S3) ∨ P3(pr).

Proof. Since �M3 is simply connected, it has a minimal cell structure. By [6,
Proposition 4H.3] �M3 is homotopy equivalent to the cofiber of a map

g : P3(pr) ∨ (
n∨

i=1

S2) → P3(pr)

such that g induces a trivial homomorphism g∗ : H2(P3(pr) ∨ (
∨n

i=1 S2)) → H2(P3(pr)).
We claim that g is null-homotopic. To distinguish the 2-spheres in the wedge sum,
denote the ith copy by S2

i . Since

[P3(pr) ∨ (
n∨

i=1

S2
i ), P3(pr)] ∼= [P3(pr), P3(pr)] ⊕

(
n⊕

i=1

[S2
i , P3(pr)]

)
,

we write g = g′ ⊕ (
⊕n

i=1 g′′
i ), where g′ ∈ [P3(pr), P3(pr)] and g′′

i ∈ [S2
i , P3(pr)].

Consider the commutative diagram

π2(S2
i )

g′′
i ��

h
��

π2(P3(pr))

h
��

H2(S2
i )

(g′′
i )∗ �� H2(P3(pr)).

Both Hurewicz homomorphisms h are isomorphisms by Hurewicz theorem. Since g∗
is trivial, so is (g′′

i )∗. The diagram implies that g′′
i is null-homotopic. Therefore, �M3

is homotopy equivalent to Cg′ ∨ (
∨n

i=1 S3), where Cg′ is the cofiber of g′. It suffices to
show that g′ is null-homotopic.
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Consider the commutative diagram

π3(P3(pr); �/pr�)
h̄ ��

βπ

��

H3(P3(pr); �/pr�)

β

��
π2(P3(pr))

h �� H2(P3(pr))

from (6). The induced homomorphism g′
∗ is trivial, and we have

h ◦ βπ (g′) = β ◦ h̄(g′) = β ◦ ((g′)∗v) = 0.

Observe that β : H3(P3(pr); �/pr�) → H2(P3(pr)) is an isomorphism in this case, so g′

is in the kernel of h̄. Since Cg′ retracts off the suspension �M3, it is a co-H-space
and H∗(Cg′ ; �/pr�) has trivial cup products. Therefore, the mod-pr Hopf invariant
H̄(g′) is zero and g′ is null-homotopic by Lemma 3.2. �

Lemma 3.4 says that �M3 contains P3(pr) ∨ P4(pr) as its wedge summands. This,
however, does not necessarily imply that M3 contains P2(pr) ∨ P3(pr) since M is not
simply connected.

LEMMA 3.5. If π1(M) ∼= �/pr�, then there exists a map ε : P2(pr) → M3 satisfying
the hypothesis of Theorem 2.4 and its cofiber Cε is simply connected.

Proof. By the Cellular Approximation theorem, π1(M3) equals π1(M) ∼= �/pr�.
Let j : S1 → M3 represent a generator of π1(M3). It has order pr, so there exists an
extension ε : P2(pr) → M3.

S1
pr

�� S1 ��

j

��

P2(pr)

ε
		�

�
�

�

M3

Since π1(M3) is abelian, H1(M3) is π1(M3) ∼= �/pr� by Hurewicz theorem and the
induced map ε∗ : H1(P2(pr)) → H1(M3) is an isomorphism. Therefore, the cofiber Cε

of ε has H1(Cε) = 0, implying that Cε is simply connected.
Now, we show that �ε has a left homotopy inverse. Let ψ be the composition

ψ : �M3 � P4(pr) ∨ (
n∨

i=1

S3
i ) ∨ P3(pr)

pinch−→ P3(pr).

Observe that

ψ∗ : H2(�M3; �/pr�) → H2(P3(pr); �/pr�) and (�ε)∗ : H2(P3(pr); �/pr�)

→ H2(�M3; �/pr�)

are isomorphism, so (ψ ◦ �ε)∗ : H2(P3(pr); �/pr�) → H2(P3(pr); �/pr�) is
an isomorphism. Then, Bockstein homomorphism implies that (ψ ◦ �ε)∗ :
H3(P3(pr); �/pr�) → H3(P3(pr); �/pr�) is an isomorphism. Therefore, ψ ◦ �ε is
a homotopy equivalence and ψ is a left homotopy inverse of �ε.
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Moreover, the composition ψ ◦ �f is null-homotopic since π4(P3(pr)) is trivial by
Lemma 3.3. Therefore, ε satisfies the hypothesis of Theorem 2.4. �

Denote the pointed mapping space Map∗(Pn(pr), G) by �nG{pr}. This notation is
justified since Map∗(Pn(pr), G) is the homotopy fiber of the power map pr : �nG →
�nG. Now, we calculate the homotopy type of Gt(M).

THEOREM 3.6. Suppose π1(M) ∼= �/pr�, where p is an odd prime. Let the rank of
H2(M) be n. If �f is null-homotopic, then there are homotopy equivalences

�M � S5 ∨ P4(pr) ∨ (
n∨

i=1

S3) ∨ P3(pr)

Gt(M) � Gt(S4) × �3G{pr} ×
n∏

i=1

�2G × �2G{pr}.

If �f is non-trivial, then there are homotopy equivalences

�M � ���2 ∨ P4(pr) ∨ (
n−1∨
i=1

S3) ∨ P3(pr)

Gt(M) � Gt(��2) × �3G{pr} ×
n−1∏
i=1

�2G × �2G{pr}.

Proof. We decompose Gt(M) in the following steps.
Step 1: By Lemma 3.5, there exists a map ε : P2(pr) → M3 satisfying the hypothesis

of Theorem 2.4. Apply the theorem and get

�M � �(M′) ∨ P3(pr) and Gt(M) � Gt(M′) × �2G{pr},

where M′ is the cofiber of P2(pr)
ε−→ M3 ↪→ M.

Step 2: By Lemma 3.5 M′ is simply connected, so its 3-skeleton M′
3 is

(
∨n

i=1)S2 ∨ P3(pr). We show that the inclusion ϕ : P3(pr) ↪→ M′
3 satisfies the condition

of Theorem 2.4. The pinch map �M′
3 → P4(pr) is a left homotopy inverse of �ϕ. Let

f ′ be the attaching map of the 4-cell in M′. Then, the composition

S4 �f ′
−→ �M′

3
pinch−→ P4(pr)

is null-homotopic since π4(P4(pr)) is trivial by Lemma 3.3. Apply Theorem 2.4 and get

�M′ � �M′′ ∨ P4(pr) and Gt(M′) � Gt(M′′) × �3G{pr},

where M′′ is M′/P3(pr).
Step 3: By Lemma 3.4, the 3-skeleton of M′′ is homotopy equivalent to

∨n
i=1 S2.

Since H2(P2(pr)) and H2(P3(pr)) are torsion, Lemma 2.6 implies that M′′ satisfies
Poincaré Duality. Let f ′′ be the attaching map of the 4-cell in M′′. By Proposition 2.13,
if �f ′′ is null-homotopic, then

�M′′ � S5 ∨ (
n∨

i=1

S3) and Gt(M′′) � Gt(S4) ×
n∏

i=1

�2G
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If �f ′′ is non-trivial, then

�M′′ � ���2 ∨ (
n−1∨
i=1

S3) and Gt(M′′) � Gt(��2) ×
n−1∏
i=1

�2G

Step 4: Combining all the homotopy equivalences from Steps 1 to 3 gives the
theorem. �

3.3. The case when π1 = (�∗m) ∗ (∗n
j=1�/prj

j �). Suppose that π1(M) is (�∗m) ∗
(∗n

j=1�/prj

j �), where pj is an odd prime. The Stable Decomposition theorem [13,
Theorem 1.3] implies that for some number d there is a diffeomorphism

M#d (S2 × S2) ∼= N#(#n
j=1Lj), (7)

where N and Lj’s are orientable, smooth, connected, closed 4-manifolds with π1(N) =
�∗m and π1(Lj) = �/prj

j �. We will calculate the suspensions and gauge groups for both
sides of isomorphism (7).

LEMMA 3.7. There are homotopy equivalences

�(M#d (S2 × S2)) � (�M) ∨ (
2d∨

s=1

S3) and Gt(M#d (S2 × S2)) � Gt(M) ×
2d∏

s=1

�2G.

Proof. By induction it suffices to show the lemma for the d = 1 case. We use
Lemma 2.8 to prove it. For M, the inclusion ϕ : {m0} ↪→ M of the basepoint m0

obviously satisfies the hypothesis of Theorem 2.4. For S2 × S2, take the inclusion ϕ′ :
S2 ∨ S2 ↪→ S2 × S2 to be the inclusion of the 3-skeleton. Since �(S2 × S2) is homotopy
equivalent to S5 ∨ S3 ∨ S3, ϕ′ satisfies the hypothesis as well. Apply Lemma 2.8 to get

�(M#(S2 × S2)) � (�Cj) ∨ (
2∨

s=1

S3) and Gt(M#(S2 × S2)) � Gt(Cj) ×
2∏

s=1

�2G,

where Cj is the cofiber of the inclusion j : {m0} ∨ (S2 ∨ S2) ↪→ M#(S2 × S2). Consider
the cofibration diagram

∗ ��

��

S3

f
��

S3

fM

��
S2 ∨ S2 �� M3 ∨ S2 ∨ S2 ��

��

M3

��
S2 ∨ S2

j �� M#(S2 × S2) �� M

where fM is the attaching map of the 4-cell in M. The bottom row implies that Cj is
homotopy equivalent to M and the asserted homotopy equivalences follow. �

THEOREM 3.8. Let π1(M) ∼= (�∗m) ∗ (∗n
j=1�/prj

j �), where pj is an odd prime and let
l be the rank of H2(M). Then, there exists a number d such that �(M#d (S2 × S2)) is
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homotopy equivalent to either

S5 ∨ (
m∨

i=1

S4) ∨ (
n∨

j=1

P4(prj

j )) ∨ (
l+2d∨
k=1

S3) ∨ (
n∨

j′=1

P3(p
rj′
j′ )) ∨ (

m∨
i′=1

S2) or

���2 ∨ (
m∨

i=1

S4) ∨ (
n∨

j=1

P4(prj

j )) ∨ (
l+2d−1∨

k=1

S3) ∨ (
n∨

j′=1

P3(p
rj′
j′ )) ∨ (

m∨
i′=1

S2).

In the first case, we have

Gt(M) ×
2d∏

s=1

�2G � Gt(S4) ×
m∏

i=1

�3G ×
n∏

j=1

�3G{prj

j } ×
l+2d∏
k=1

�2G ×
n∏

j′=1

�2G{prj′
j′ }

×
m∏

i′=1

�G.

In the second case, we have

Gt(M) ×
2d∏

s=1

�2G � Gt(��2) ×
m∏

i=1

�3G ×
n∏

j=1

�3G{prj

j } ×
l+2d−1∏

k=1

�2G ×
n∏

j′=1

�2G{prj′
j′ }

×
m∏

i′=1

�G.

Proof. Denote N#(#n
j=1Lj) by X . Using the stable decomposition (7) and

Lemma 3.7, we only need to calculate �X andGt(X). Let N3 and (Lj)3 be the 3-skeletons
of N and Lj. Then, the 3-skeleton X3 of X is the wedge sum N3 ∨ (

∨n
j=1(Lj)3).

Step 1: The 3-skeleton N3 is homotopy equivalent to (
∨m

i=1 S3) ∨ (
∨l′

j′=1 S2) ∨
(
∨m

k=1 S1). Denote the ith copy of S3 in N3 by S3
i and the kth copy of S1 by S1

k. In
the proofs of Theorem 3.1, we show that inclusions ϕ3

i : S3
i → N3 and ϕ1

k : S1
k → N3

satisfy the hypothesis of Theorem 2.4. For each j, by Lemma 3.5 there exists a map
εj : P2(prj

j ) → (Lj)3 satisfying the hypothesis as well. Apply Lemma 2.8 and get

�X � �X ′ ∨
(

m∨
i=1

S4

)
∨

(
m∨

k=1

S2

)
∨

⎛
⎝ n∨

j=1

P3(prj

j )

⎞
⎠

Gt(X) � Gt(X ′) ×
m∏

i=1

�3G ×
m∏

k=1

�G ×
n∏

j=1

�G{prj

j },

where X ′ is the cofiber of the inclusion
(∨m

i=1 S3
) ∨ (∨m

k=1 S1
) ∨

(∨n
j=1 P2(prj

j )
)

↪→ X .

Step 2: Since X ′ is simply connected, its 3-skeleton X ′
3 has a minimal cell structure

X3 �
⎛
⎝ l′′∨

j′=1

S2

⎞
⎠ ∨

⎛
⎝ n∨

j=1

P3(prj

j )

⎞
⎠ .
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We show that inclusions ϕj : P3(prj

j ) → X ′
3 satisfy the hypothesis of Theorem 2.4. For

each j, the pinch maps �X ′
3 → P4(prj

j ) is a left homotopy inverse of �ϕj. Let f ′ be the
attaching map of the 4-cell in X ′. Then, the composition

S4 �f ′
−→ �X ′

3
pinch−→ P4(prj

j )

is null-homotopic since π4(P3(prj

j )) is trivial by Lemma 3.3. Apply Lemma 2.7 and get

�X ′ � �X ′′ ∨
⎛
⎝ n∨

j=1

P3(prj

j )

⎞
⎠ and Gt(X ′) � Gt(X ′′) ×

n∏
j=1

�2G{prj

j },

where X ′′ is X ′/(
∨n

j=1 P3(prj

j )).

Step 3: The 3-skeleton of X ′′ is homotopy equivalent to
∨l′′

j′=1 S2. Since the

subcomplexes S1
i , S3

k, P2(prj

j ) and P3(prj

j ) in Steps 1 and 2 have either zero or torsion
second cohomology groups, Lemma 2.6 implies that X ′′ satisfies Poincaré Duality. By
Proposition 2.13, we have

�X ′′ � S5 ∨
⎛
⎝ l′′∨

j′=1

S3

⎞
⎠ and Gt(X ′′) � Gt(S4) ×

l′′∏
j′=1

�2G

or

�X ′′ � ���2 ∨
⎛
⎝l′′−1∨

j′=1

S3

⎞
⎠ and Gt(X ′′) � Gt(��2) ×

l′′−1∏
j′=1

�2G.

Step 4: Combining all homotopy equivalences from Steps 1 to 3, the stable
decomposition (7) and Lemma 3.7 together imply the theorem. Furthermore,
H2(M#d (S2 × S2)) has rank l = 2d, so l′′ = l + 2d. �

Remark. The proofs of Theorems 3.1 and 3.6 are also valid for any orientable 4-
dimensional CW-complex with one 4-cell, while Theorem 3.8 requires the smoothness
of M for the stable diffeomorphism splitting in [13]. One can ask under what condition
the stabilizing factor #d (S2 × S2) can be cancelled, so that the factors

∏2d
s=1 �2G can

be removed from the equation. If this can be achieved, Theorems 3.1 and 3.6 will be
corollaries of Theorem 3.8 when M is smooth.
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