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5.1 P L A S M A I N T E R A C T I O N S I N T H E C R A B N E B U L A 

F . D . K A H N 

Astronomy Department, University of Manchester, Manchester, U.K. 

Abstrac t . Alfven waves can be carr ied by the thermal p lasma in the C r a b N e b u l a . Each such wave 
per tu rbs the relativistic p l a sma present , in par t icular it s t rongly affects those part icles which a re in 
resonance wi th it. F o r a wave travell ing parallel to the magne t ic field the resonances a re qui te s imple , 
b u t a wave travelling obliquely can give rise to mul t ip le resonances , and c a n therefore couple toge ther 
particles with qui te different energies. 

It is shown tha t the in terac t ion wi th the relativistic p lasma leads to a n amplif icat ion of the Alfven 
waves when the m e a n velocity of relativistic p lasma relative to the the rmal p lasma exceeds the Alfven 
speed. T h e rise t ime for the instabili ty is qui te shor t , and the waves , once excited, a r e highly effective 
in redis tr ibut ing the direct ions of m o t i o n of the relativistic part icles. T h e relativistic p lasma therefore 
c a n n o t s t ream freely t h r o u g h t h e the rmal p lasma . O n the o the r h a n d the d is turbances will never qui te 
die ou t in the C r a b N e b u l a as long as the C r a b pulsar keeps injecting fresh p lasma , and thus keeps 
p roduc ing new inhomogenei t ies in the relativistic p lasma density. 

1. Introduction 

The Crab Nebula shows unmistakable signs 
(i) of containing relativistic charged particles, 
(ii) of the presence of a magnetic field, 
(iii) of undergoing frequent injections of fresh relativistic particles produced in the 

Crab pulsar. 
The nebula cannot therefore be in a state of equilibrium. Further, even though most 

of the internal energy of the system is due to relativistic particles and to an (electro) 
magnetic field, the overall expansion of the nebula takes place at a speed of around 
1 0 8 c m s e c _ 1 , much less than the speed of light. Since the gravitational potential 
within the nebula is negligibly small, it follows that the inertia of the thermal plasma 
present holds back the relativistic plasma and stops it from getting away much faster. 
It therefore becomes important to study interactions between relativistic and thermal 
plasmas. 

I shall discuss one way in which such an interaction can arise, through a coupling 
via the Alfven waves carried by the thermal plasma. The properties of Alfven waves 
are easily derived. The perfect conductivity condition requires that a plasma always 
responds to low frequency fluctuations in such a way that there is no electric field 
with respect to the rest frame of the plasma, or that 

E + U A H 0 = 0 (1) 
c 

where u is plasma velocity, H O = (0, 0, H0) is the zero-order magnetic field, and E is 
the electric field. 
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Note that E is perpendicular to H 0 . The vector potential A of the Alfven wave may 
be defined by 

IdA 

E = " c a 7 ; & 

expressed in components 

A = (Al9A29 0). (3) 

If the wave has a space-time dependence of the form exp / (klxl+k3x3-cot)9 it 
follows from (1), (2) and (3) that 

ico (Al9 A29 0) + H0 (u29 -ul90) = 0. (4) 

The linearized equation of motion for the plasma is 

du 1 
£o = ~ J a H 0 , (5) 

at c 

where Q0 is the density of the thermal plasma, and where the current density is denoted 
by 

j = - V a (V a A) = ~~ {klAu {k\ + k\)A2, - fctMi} • (6) 
471 47T 

Equation (4) now becomes 

-i(OQ0(ul,u2,u3)=-^{(ki + k2

3)A2, -k2

3Au0}. (7) 

Thus w3 = 0, and the wave motion splits into two modes. One mode is described by 
Mode I : 

icoA1 + u2H0 = 0 (8) 
and 

icoQ0u2 — Ai=0. (9) 

4tc 

The waves of this mode obey the dispersion relation 

H2 

co2 = ~^k2=v2

Ak2

9 (10) 
47T0O 

and the components of the group velocity are 
8oldk1 = 0 , dco/dk3 =±vA. (11) 

Energy therefore propagates parallel to the three-axis with speed ± vA. The space-time 
dependence of the wave has the form 

exp i { / c ^ + k3 (x3 - vAt)} . (12) 
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The other mode of the wave is described by 
Mode II : 

icoA2-ulH0=0 (13) 
and 

i(DQoux + a (k\ + k\)H0A2 = 0 , (14) 

with the dispersion relation 

co2 = v2

A(ki + k2

3). (15) 

The group velocity now has components 

dco/dkl = vA sin a , dco/dk3 = vA cos a , 

where the wave-vector k makes an angle a = t a n - 1 k1/k3 with the three-axis. The 
space-time dependence of the waves in this mode is 

exp i {(klXl + k3x3) - (k\ + k\Yl2vAt}. (16) 

The Alfven waves are thus split into two linearly polarized modes, with different 
frequencies. Degeneracy occurs only if kx ( = k2) = 0. In that case it is possible to 
describe the waves in terms of independent, circularly polarized modes. 

2. Response of the Relativistic Plasma to Alfven Waves 

I shall now consider how the relativistic plasma is affected by the Alfven waves, and 
later find a condition under which the resulting interaction leads to an instability. 
For the sake of simplicity the wave-vector k of the Alfven wave is taken to be parallel 
to the three-axis. In that case one can assume that the wave is circularly polarized, 
and has a vector potential given by 

A = A (1, i, 0) exp {ik3 (x3 - vAt)} . (17) 

To illustrate a simple case, let the relativistic plasma present have a momentum 
distribution which is isotropic with respect to a frame of reference IR, where IR moves 
with a velocity (0, 0, vR) relative to the rest-frame I of the thermal plasma. With 
respect to IRi the momentum distribution is 

fR = F0(plR + p2

L), (18) 

where P\\tR,Pj_ are the components of momentum parallel and perpendicular to the 
three-axis as seen from ZR. Relative to the frame of reference I, the distribution 
function becomes 

/ 2 2 2vR£ 
fo = Fo\P\\ + P±-~c2-P\ 

= F0 (p\ + pi) - "2 p„Fo (pjj + Pi) • (19) 

https://doi.org/10.1017/S0074180900007579 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900007579


284 F.D.KAHN 

This result is correct to order vR/c, and therefore good enough, unless the relative 
mean velocity of the two plasmas is very large. In Equation (19), p^ is the three-
component of momentum and £ the energy of a particle, with respect to I. The 
linearized Vlasov equation for the relativistic plasma is 

I define 

df df df df df 
{ - + * 3 / + <P f + P\\ / + P ± / = 0 . (20) dt dx3 ccp op\\ dpL 

cp = t a n " l p 2 / p l (21) 

where pi9p2 are the one and two components of momentum. 
Equation (20) is to be linearized and then solved. For this purpose note that df/dx3 

and df/dcp both vanish in the undisturbed plasma, which is spatially homogeneous, 
and has axial symmetry in momentum space with respect to the three-axis. The 
coefficients of these two terms need only be calculated to zero order, since df/dx3 

and dfjdcp can only appear as first order quantities. The coefficients are x3 = c2p^/S>, 
and <p = —ecH0/S>; the first of these results is obvious from the relation of velocity 
and momentum, and the second describes the Larmor precession of a charged particle 
in the undisturbed magnetic field. 

On the other hand, both p^ and pL stay constant in the undisturbed field, and 
therefore p\\ and pL are first order quantities. It is then enough to insert for df/dp^ 
and df/dp± the zero-order quantities df0/dp^ and df0/dp±. 

The rates of change of p^ and pL can be found in terms of the vector potential A. 
A brief calculation yields that 

ik3eAc 
P\\ = - v Pi*" 

ik3eA ( c2p 
P L = ' \ v A - ")el<p-

(22) 

When these quantities are substituted into the linearized equation, and use is made 
of the assumed space-time dependence (17) of the wave, it turns out that, correct to 
the first order, the change in the plasma distribution function is given by 

w i ) [ M 2 P | | , ceH0\ k3eAc(f <?vA\ df0 df0\ 

I now substitute for f0 from equation (19) and find that 

/ ( i ) = (2*P±IC*) ( E A ' C > > fa-Ofo ( 2 4 ) 

P\\ - <?VAIC2 - eH0jck3 

becomes large for particles that resonate with the wave, that is for particles which 
satisfy 

SvA eH0 

P\\ = 2 + , • (25) c ck-. 
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The resonance depends, essentially, on the/?||, k3 relation. It also depends on the sense 
of polarization of the wave. The present calculation is done in terms of a circularly 
polarized wave: to reverse the sense of polarization we need only change k3 to — k3. 
However, a plane polarized wave can be split into two circularly polarized waves with 
opposite senses of polarization, and it will therefore resonate with particles at two 
different values of p\\. 

The resonance condition (25) has a simple interpretation. The components of p ± 

for a particle in its zero order trajectory are 

(ceH0 \ . (ceH0 

where £ is a phase factor. The one and two components of the vector potential are 

(Au A2) = A {cos ( /c 3 x 3 — cor), s i n ( / c 3 x 3 — cot)} 

= A W f c 3 C> - co) t, sinful - «,) t\ (27) 

(Pi, Pi) = Pi \cos[—~ t + e), - sin t + s)}, (26) 
)}• 

at the position of the particle in its zero order orbit. Resonance occurs when the scalar 
product p ± . A has a phase factor which is independent of time, that is when 

e & 

With co set equal to k3vA, conditions (25) and (28) are found to be equivalent. 

3. Alfven Waves which Propagate Obliquely 

The interaction of the relativistic plasma with an Alfven wave becomes somewhat 
more complex when the wave-vector k is not parallel to the magnetic field. As was 
mentioned before, the Alfven wave now has two independent plane polarized modes, 
I and II. Each of these modes can be analysed into two circularly polarized waves, 
with opposite senses of polarization, but the component waves are now no longer 
independent, and must always be considered together. 

Another important modification occurs in the resonance condition. The components 
of p ± are, once again 

(Pi , Pi) = Pi { c o s ( ^ ° ' + s i n ( ^ ° 1 + e)}> (29> 

for the zero order particle trajectory; the components of the vector potential become 

(Au A2) = A {cos ( / c ^ + k3x3 — cot), sin ( f c ^ + k3x3 — cot)}. (30) 

The same substitution as before can be made for x 3 , and for the other position variable 
it is found that 

x 1=J, 1d, =
 C ; j P l d , = ^ s i n ( ^ r + s ) . (31) 
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In the complex notation the phase dependence of the vector potential at the position 
of the particle can now be expressed by 

{kicpL . (ceH0 \ (k3c2p\\ \ ) 
it sin —— t + s 4- - m - co)t>; 
\eH0 V ' ) \ ) J 

= v4 t + L 4 2 = A exp /< 

(32) 
the corresponding relation for p ± is 

& = Pi + «>2 = P i e x p { - * + e \ l . (33) 

The presence of the sine term in the exponent in (32) somewhat changes the phase 
relation. On using the series expansion 

e i z s i n e = £ Jr(z)eire (34) 
— oo 

relation (32) may be re-written in the form 

J / = ^ £ H ^ r J e x p "{-7-'+vexp 1 {-ir - v* 
= t si, exp i r ( ^ t + «) « p i ( ^ - » ) f. (35) 

The particle can now have a resonance with any one of the infinite number of com
ponents into which the expression for has been analysed. The condition for reso
nance with the rth component is clearly 

ceH0 ceH0 c2pl{ 

= r h /c3 — 1 1 — o 
g g g 

or 
go eH0 

P » " ? ^ " ( r " 1 ) ^ ( 3 6 ) 

A given wave can now resonate with a much larger number of particles. The im
portance of the rth resonance is indicated by the value of the coupling coefficient 
Jr(kicpJeH0). If &!=(), then all these coefficients are zero, except that for r = 0 . In 
that case condition (36) is identical with condition (25) (when co/k is set equal to vA). 

However, interesting new effects can arise when there are high resonances, for 
which r > 1. The coupling coefficient Jr(kicp±/eH0) for such a resonance is appreci
able only when 

r « k^pJeHo, (37) 

that is when the argument of the Bessel function is approximately equal to its order. 
I shall now compare relation (37) with relation (36), but shall first simplify the latter 

https://doi.org/10.1017/S0074180900007579 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900007579


PLASMA INTERACTIONS IN THE CRAB NEBULA 287 

by noting that the term S'colc2k3 is small compared with the momentum of the 
particle, since the phase velocity of the Alfven wave will certainly be small compared 
with the speed of light. Relation (36) is therefore, to a good enough approximation, 

x eH0 eHQ 

" * - i r - l ) ^ * - r d c , - ( 3 8 ) 

Two results now follow: first the wave-number k of the Alfven wave is related to the 
momentum of the resonating particle by 

reH0 

k= ° . (39) 
cp 

In a high resonance a particle of given energy resonates with a wave having a much 
larger wave-number (and much smaller wavelength) than that of the wave with which 
the particle is in zero resonance. However, the resonant wave-number varies inversely 
as the momentum (or the energy) of the relativistic particle. It therefore is possible 
for a given wave to resonate at the same time with a particle of low energy, in a low 
resonance, and a particle of high energy, in a high resonance. By this means the high 
energy particles can be coupled to the low energy particles in the relativistic plasma, 
or, more generally, the whole range of energies can be coupled together. 

It also follows from equations (37) and (38) that 

P±IP\\ =F - k3/k{ = - cot a . (40) 

High resonance therefore always occurs with particles which are travelling nearly at 
right angles to the wave-vector k, or almost in planes of constant phase of the Alfven 
wave. 

4. The Growth Rate for Unstable Waves 

The full treatment of the properties of oblique waves will clearly be rather complex. 
To illustrate the argument I therefore return, now, to Alfven waves for which kx = 0 , 
that is to waves whose wave-vector is parallel to the magnetic field. The disturbance 
caused by the wave sets up a current in the relativistic plasma given by 

oo oo 2% 

j = JvJ J I ^-(p±cos<p, pL^cp,p{)fwpLdpLdp^ dep. (41) 
0 - o o 0 

In this formula NR is the number of particles per c m 3 in the relativistic plasma, and 
the form of f(1) is given by relation (24) in terms of the perturbing wave and the zero 
order particle distribution. The zero order distribution is assumed to be normalized 
to unity, and the phase factor expi{k3(x3 —vAt)} is assumed to be understood. The 
integration past the singularity of f ( 1 \ at p\\ = (£'vA/c2)+ (eH0/ck3), is carried out in 
the usual manner by deforming the contour in such a way that the calculation gives 
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2n2 NRe2 

] = - i (sgn fc3) — A (vR - vA) (1, i, 0) 

after some manipulation, p* is the resonant value ofp^. For comparison the electric 
field of the Alfven wave is 

E = ^ i 4 ( U , 0 ) , (43) 
c 

and E j is negative when 

\k3\vA(vR-vA)>0. (44) 

In that case the plasma response is such that work is done by the plasma on the wave. 
In other words the wave draws energy from the plasma, and grows. The condition 
for instability can be written 

I 'JII > \vA\, (45) 

and this means that instability will occur whenever the diffusion speed of the 
relativistic plasma, with respect to the thermal plasma, exceeds the Alfven speed vA. 
The growth rate a of the instability is given by 

1 rate at which work is done on the wave/cm 3 

a = . 1 (46) 
2 energy density of the wave 

I make the estimate that a typical value of 

P±Fo(P*2 + P2±)dp± o 
is of order 

1 

27rpJ " 2 7 ^ ' 

where $ is a typical energy in the plasma. Further, from relation (25) 

p,l - l\c - eH0lck3 , 

and now substituting into equation (46) I find that, by order of magnitude, 

4n2NRevA (vR - vA) nNReH0 

(j ^ ~ , ( 4 1 ) 

cH0 CQ0 

if vR is of the order of vA ( = HQIATIQQ). 

the value obtained when the frequency a> tends to the real axis from the upper half 
of the complex-co plane. The result is that 
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Typical values for the Crab Nebula can be substituted into (47) by setting, for 
example, 

NR = number density of relativistic particles = 1 0 " 6 c m ~ 3 , 
H0 = 1 0 " 4 G 
Q0 = thermal plasma density = 1 0 ~ 2 1 g /cm 3 , 

with the result that 

( j « 5 x 1 0 " 9 s e c " 1 = 0 . 1 7 y r _ 1 . 

The growth rate can therefore be quite large. It is even larger for larger assumed values 
of the relative diffusion speed vR. 

5. The Redistribution of Particle Momenta by the Wave 

It remains to estimate how rapidly the particle momenta are redistributed by the 
ensemble of Alfv6n waves which result from the instability. The major effect leading 
to the redistribution is the acceleration of the charged particles by the disturbance 
magnetic field H(1\ There is also an acceleration due to the disturbance electric field 
E(1). But this field is of order (vA/c) times H{1\ and therefore small enough to be 
neglected here. 

Consider now a typical particle whose energy is $ and momentum p — S\c. It 
resonates with the Alfven wave whose wavenumber is k3~eH0/#=k*, say. A wave 
with a nearby wave-number, k* + 5k, will change its phase relative to the resonant 
wave at a rate such that the change in phase as observed at the moving particle is 

Sep = (v\\ — vA) T dk 

^v^TSk (48) 

after time T. During the time interval T the waves which lie within a range 

Sk « l/^ii T 
around k* will therefore contribute coherently to the magnetic field deflecting the 
particle. If the Fourier decomposition of the magnetic field is given by 

H = j Jf(k)eiHx3-VAt)dk (49) 

then the effective magnetic field Heff which acts on the particle during the interval T is 

H e f f = j 3tf (k) eik(X3 ~VAt) dk. (50) 

In a random field there are no correlations between contributions from different 
wavenumbers. Hence the expectation value of the effective magnetic field is 

<#eff> = o 
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and the mean square effective field is 

<i/ e

2

f f> = | ^ 2 ( / c* ) | (5 /c . (51) 

The mean square deflection of a particle is therefore given by 

The characteristic time during which the particle momenta are redistributed is given 
by the setting (SO2} equal to unity, and becomes 

Tredist. 2 2 i ^2 ~ njl i ^?2 
* 2 i > 

c2e2~W2(k*)\ ~ ce2\^2(k*)\ 
with « c . 

The mean free path for a relativistic particle is therefore of the order of 

l-cT"dist*e2\jr2(k*)\- ( 5 4 ) 

If the spectrum of the Alfven waves were known it would now be possible to calculate 
mean free paths for particles of various energies. However, it does not seem worth 
doing this in detail until the various possible interactions between the waves and the 
particles have been fully studied. I shall only make an order of magnitude estimate. 
It follows from the relation 

k* « eH0l# 

that the width of the Alfven wave spectrum Ak is related to the typical particle energy $ 
by 

Ak * eHo/S' (55) 

If is the mean square field due to the Alfven waves, then 

<?2 Ak <re#0 _<?H0 

e2\sr2{k*)\Ak~7M~^Ri 
I „ „ = l ^ H (56) 

If further the rms wave field 4Hl is, say, ft times the undisturbed field H0, then 

/ - llfieH0 ~ 2 x 1 0 1 0 j T 1 cm (57) 

in the Crab Nebula. Quite moderate amplitudes of the Alfven waves can thus result 
in very short mean free paths for the particles in the relativistic plasma. 
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6. Conclusions 

It is very likely that Alfven waves are readily excited and play an important role in 
the physics of the Crab Nebula. They lead to the following effects: 

(i) The relativistic plasma can only diffuse slowly with respect to the thermal 
plasma. The pressure in the relativistic plasma therefore acts on the thermal plasma, 
and governs its motion. 

(ii) The Alfv6n waves redistribute the directions of motion of the particles in the 
relativistic plasma. The mean free path for a relativistic particle is quite short, and 
the wave particle interaction is therefore quite effective in making momentum distri
butions more isotropic. 

(iii) However, since the mean free path for a plasma particle is finite, there can 
never be complete isotropy while there are inhomogeneities in the plasma density. 
In particular some diffusion of the relativistic plasma will occur, relative to the 
thermal plasma. As long as the Crab pulsar keeps injecting new plasma, inhomo
geneities will continue to be produced and Alfven waves will be generated. 

(iv) Equation (54) suggests that particles with a large energy $ will have a longer 
mean free path than particles with small energy. If so, the degree of anisotropy should 
be larger among the high energy particles than among the low energy particles of the 
relativistic plasma. This suggests that the particles with a large vajue of £ in the 
plasma could still be unstable in places where the particles with low $ are stable. 
As a result energy might possibly be transferred via an Alfven wave, with which the 
high -<f particles have a high resonance and the low -< f particles a low resonance. In 
this way additional energy could be supplied to the electrons, and this may extend 
the time during which they can emit synchrotron radiation. 
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