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TAME NEAR-RINGS AND N-GROUPS

by S. D. SCOTT

(Received 4th December 1978)

Throughout this paper any near-ring N will be left distributive, zero symmetric and
have an identity. Furthermore, all N-groups will be unitary. All groups considered will be
written additively. This does not imply commutativity.

Suppose V is a group and S a set of endomorphisms of V containing the inner
automorphisms. Let N be the near-ring of maps of Vinto V generated by S. It is easily
seen that Vis a unitary N-group. Suppose Wisan N-subgroup of V.Since WS< W, Wisa
normal subgroup and, by (6, 6.6, p. 174), W is a submodule of V i.e. the kernel of an
N-homomorphismon V.

This leads to a definition. Let V be an N-group. We call Vtame if every N-subgroup of
Vis a submodule. A near-ring N with a faithful tame N-group will be called tame.

Tame near-rings and N-groups were first investigated by the author in his Ph.D.
dissertation (7, Chs 4, 5 & 6). Many of the results of this paper may be found in (7),
although the proofs given here are often simpler.

The example given above has a much stronger property than tameness. In Section six
2-tame and compatible N-groups are defined and these are looked at in more detail in
subsequent sections.

1. Nilpotency in tame near-rings

If Sis a subset of a near-ring N, then R(S) will denote the right ideal of N generated by
S. With the aid of certain propositions and lemmas we investigate nilpotency in tame
near-rings.

Proposition 1.1. Let N be a near-ring and V a tame N-group. If M is a right
N-subgroup of N, then vR(M)= vM for all vin V.

Proof. Since, for vin V, vMis a submodule of V, (vM: v) is aright ideal of N. Clearly
M=(vM:v), R(IM) =(vM: v) and vR(M) = vM. The result now follows.

Lemma 1.2. Let N be a tame near-ring, M a right N-subgroup of N, and S;, i =1, 2,
non-empty subsets of N. If one of the subsets S\ M, S;MS, or MS, of N is {0}, then the same
applies on replacing M by R(M).
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Proof. If S;M={0}, then M=(0:S,), RIM)=(0: S,) and S;R(M)={0}. Suppose
that $; MS, = {0} and V is a faithful tame N-group. By 1.1 itfollows thatfor all @ in S,, 8 in
S;andvin V

vaR(M)B = vaMpB = {0}.

Thus VS;R(M)S,={0} and S;R(M)S,={0}. Taking S; ={1} the case where MS, ={0}
follows.

Proposition1.3. Let Nbe a tame near-ringand H,, . .., Hy, right N-subgroups of N for
i= 1, veey k. IfH1H2 ven Hk ={0}, then

R(H)R(H,) ... R(Hy)={0}.

Proof. This follows by repeated application of 1.2.

Corollary. If M is a nilpotent right N-subgroup of a tame near-ring N, then R(M) is
nilpotent.

Theorem 1.4. If Nis a tame near-ring and A the sum of all nilpotent right ideals of N,
then A is an ideal of N.

Proof. Wehave A= Y R, where {R, i € I}is the set of all nilpotent right ideals of
iel
N. Thus for any a in N
aA= Z aR,-

iel
and each «aR; is a nilpotent right N-subgroup of N. By the above corollary each R(aR;) is
nilpotent. Thus for each a in N
aA= ) R(aR)=A
iel

and it follows that A is an ideal.

We note that there exist near-rings where the sum of all nilpotent right ideals need no
longer be an ideal (see (1, p. 204)) but, as 1.4 indicates, tame near-rings resemble rings
more closely. Further evidence of this similarity is seen in many of the results that follow.

2. Direct sums

Let N be a near-ring with an N-group V. It may happen that N= A®B where A and B
are ideals, but this split in N does not induce a corresponding splitin V (e.g. if pand g are
distinct primes, then Z,, = Z,PZ, and any group of exponent pq is a faithful unitary
Z,,-group). However, for tame N-groups the situation is simpler.

In order to investigate this situation we need an alternative characterisation of tame.
The following proposition provides this characterisation which will be of importance in
defining 2-tame, and compatible N-groups.
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Proposition 2.1. An N-group Vis tame if, and only if, forvand win Vand a in N there
exists B in N such that
(v+w)a—va=wg.

Proof. If Vistame, then wNis a submodule of V containing w. Thus (v+ w)a — vais
in wN and B exists.

Suppose for given v, w and a, B exists. Let W be an N-subgroup of V. If wisin W
clearly (v+w)a—va is in W. Thus W is a submodule of V (normality follows on taking
a = 1). The proposition is proved.

Theorem 2.2. Let N be a near-ring with a faithful tame N-group V. If N= ADB where
A and B are ideals of N, then V= U®DW with U and W submodules of V such that
(0: W)= A and (0: U)=B.

Proof. We have 1 =¢;+ ¢, where e,isin A and e, isin B. The ¢, i =1, 2, are central
orthogonal idempotents.

Define U to be the subset Ve, of V and W the subset Ve, of V. Now U=
{v € V:ve,=0}, since Ue, ={0} and, if ve, =0 for some v in V, then v = ve, + ve, = ve;.
To show U is a submodule of V it is sufficient to show that it is an N-subgroup. Now

UN= Ve, N= VNe,c U

since e, is central. In particular u(—1) = — uisin Ufor all u in U. We must therefore show
that U is closed under addition. Let v, e, and v,e; be elements of U, By 2.1

(vieg+v2e1)e,—vie16, = V4B

for some B in N. Now v;e,e; =0 and
(1)161 + Dzel)ez = UzeIB.

Hence

(vier+vre1)e3 = (vier + vaey)e;

= pye, Be;.

Since e, is central v, e, Be; = v.e,e.8 =0. Thus (v,e; + v.e.)e; =0and v,e; + vye,is in U It
follows that U is a submodule of V. Similarly W is a submodule of V. If v is in V, then
v=ype;+ve;and V= U+ W, Also, if v,e; = v,e;isin UN Wwhere v, and v, arein V, then
vie;= 16,61 ={0}. Hence V= UBW. Now A=¢,N and W= Ve,. Since e;¢,=0, A=
(0: W). Also B=(O: U)and (0: U)+(0: W)= N.If aisin (0: U)N(0: W), then since the
sum U+ W is direct, Va={0}. Since V is faithful (0: U)N(0: W)={0}. Thus
(0: UYP(0: W)= N and, since A =(0: W) and B=(0: U), it follows that A = (0: W) and
B=(0: U). The theorem is now proved.

3. Finitely generated tame N-groups

Let V be a tame N-group. A submodule U of V is finitely generated if there exists
v,i=1,..., k in V such that

k
U= Z v,'N.

i=1
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A standard result of ring theory (see (2, p. 96)) states that if N is a ring with maximal
condition on right ideals and V a finitely generated N-module (in the ring sense), then a
submodule, of V is finitely generated. We shall show that this holds for tame N-groups.

A tame N-group V will be called Noetherian if the submodules of V satisfy the
maximal condition.

The following proposition is the analogue of the corresponding ring result.

Proposition3.1. A tame N-group V is Noetherian if, and only if, every submodule of V
is finitely generated.

If S is a set of subgroups of a group, then an element of S will be called an S-subgroup.
The next lemma, a lattice theory result, will be used again in Section five.

Lemma 3.2. Let Vbeagroupand V,i=0, ..., k, a properly ascending finite sequence
of normal subgroups of V, such that Vo ={0} and V, = V. Let S be a set of subgroups of V
such that HONWand H+ Warein Sforall Hin Sand Win{V; : i=0,..., k—1}. If the
S-subgroups of V between V; and V., satisfy minimal (maximal) condition fori=0, ...,
k—1, then the elements of S satisfy minimal (maximal) condition.

Proof. We shall prove the result for minimal condition as the proof for maximal
condition is entirely similar.

For k=1 the result is trivial. Assume that the S-subgroups of V between {0} and V.,
satisfy minimal condition, and let

H,zH,=...

be a descending chain of S-subgroups of V. By the assumptions there exists a positive
integer m such that H, N Vi_1= Hyp4n N Vioy and H,+ Vioi = Hyon+ Vi, for n=
0,1,2,.... Since H,, = H,.+», it follows by the “modular law” that H,,= H,,., for
n=0,1,2,.... The proof is now complete.

Proposition 3.3. Let N be a near-ring with maximal condition on right ideals and V a
faithful tame N-group. If there exists v in V such that vN =V, then V is Noetherian.

Proof. The obvious N-homomorphism of N onto vN establishes a one to one
correspondence between the submodules of vN and the right ideals of N containing (0: v).
The proposition follows.

Theorem 3.4. Let N be a near-ring with maximal condition on right ideals and V a
tame N-group. If V is finitely generated, then any submodule of V is finitely generated.

k
Proof. Wehave Visa finite sum Y, o,Nwherev, i=1,... k,arein V. The result will

i=1
follow by 3.1 if we show that V is Noetherian. We proceed by induction. The case k=1
follows from 3.3 Let U= v,N+...+ v, N. The submodule U of V may be assumed to be
Noetherian by 3.1. Now V/U is N-isomorphic to v, N/(v; N)NU and V/U is Noetherian
by 3.3. From the isomorphism theorems it follows that the submodules of V between U

and V satisfy maximal condition. By 3.2 V is Noetherian and the theorem is proved.
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4. Tame near-rings with minimal condition (the radical)

Let Vbe an N-group (assumed unitary). We shall call V minimal if itis of type 2 (see (6,
3.5, p- 77)). This additional terminology is valuable for the case of tame N-groups. Indeed
the only radical that will concern us here is J(N) (see (6, 5.1, p. 136)), which we denote by
J(N).

If Nisanear-ringand V an N-group, then an N-group U/ W will be called a factor of V
if U= W are submodules of V. The factor U/ W will be called minimal if U> W and there
exist no submodules of Vlying properly between Wand U. Thus R,/ R, is a minimal factor
of a near-ring N, if R, > R, are right ideals of N and there exist no right ideals of N lying
properly between R, and R;.

We aim to show that for a tame near-ring N with minimal condition, J(N) is nilpotent.
First we show that a minimal factor of N is a minimal N-group.

Proposition 4.1. If N is a near-ring, V a tame N-group, M a right N-subgroup of N
and v an element of V, then M+(0: v) is a right ideal of N.

Proof. Let & be the natural N-homomorphism of N onto vN. Since vM is a
submodule of vN, the inverse image M+(0: v), of vM under § is a right ideal of N.

Lemma 4.2. Let N be a tame near-ring with minimal condition on right ideals. If
R:/R; is a minimal factor of N, then R,/ R, is a minimal N-group.

Proof. Out of all minimal factors of N, N-isomorphicto R,/R,, choose one R/H such
that R is minimal. We show that R/H is a minimal N-group. If K < R is a right ideal of N,
then K= H, otherwise K+ H=R and R/H is N-isomorphic to the minimal factor
K/KNH. Let M be a right N-subgroup of N such that H< M < R and let V be a faithful
tame N-group. Since the intersection N(0: u) over all u in V is zero, there exists v in V
such that (0: v)N R < R and therefore (0: v)NR = H. By 4.1 M+(0: v) is a right ideal of
N. Thus

RN{M+(0:v)}]=M+(0: v)NR

is a right ideal of N. But (0: )N R = H< M and we see that M is a right ideal of N, This
contradiction completes the proof.

Theorem 4.3. If N is a tame near-ring with minimal condition on right ideals, then
J(N) is nilpotent.

Proof. Suppose J(N) is not nilpotent and H= J(N) is a right ideal of N minimal for
being non-nilpotent. If R(H?) < H, then H? is nilpotent and so is H. Thus R(H?)= H. We
have {0} H = {0} and by Zorn’s Lemma we may find a right ideal K, of N maximal for the
property that K; H={0}. Since N has an identity we may assume that K, # N. By minimal
condition there exists a right ideal K,> K, with K,/K, a minimal factor of N. By 4.2,
K,/K, is a minimal N-group. Since H=J(N), [K,/K,JH={0} and K,H< K,. Thus
K,H*< K;H={0}. Hence H>< (0: K), H= R(H?) =(0: K>) and it follows that K,H="
{0}. This contradiction to the maximality of K establishes the theorem.
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5. Chain conditions on tame near-rings

In this section it is proved that for tame near-rings minimal condition on right ideals
implies minimal and maximal condition on right N-subgroups. This proof will be accom-
plished in a sequence of propositions and lemmas. We need certain preliminaries.

If Visan N-group then a submodule W of V will be called absolutely reducible in V, if
it is a direct sum of submodules of V which are minimal N-groups.

The following result may be proved in the same way as for rings (see (2, p. 87)).

Proposition5.1. If Nisanear-ring, V an N-group and W a submodule of V, then Wis
absolutely reducible in V if, and only if, W is a sum of submodules of V which are minimal
N-groups.

If a submodule W of an N-group Vis absolutely reducible in V, then WJ(N) ={0} (see
(6, 2.29, p. 49)). Furthermore, if V has minimal condition on submodules, then W is a
finite direct sum of submodules which are minimal N-groups (see (2, p. 88)).

If N is a non-zero tame near-ring with minimal condition on right ideals, then soc N
will denote the sum of all minimal right ideals of N. By 4.2 and 5.1 soc N is absolutely
reducible in N. The above comment tells us that this direct sum is finite.

The following proposition can be deduced from (6, 5.32, p. 146).

Proposition 5.2. If N is a near-ring with minimal condition on right ideals and T'is an
ideal of N, then JIN/T)=(J(N)+ T)/ T.

Clearly for a tame near-ring N with minimal condition, RJ(N) = {0} for all right ideals
R =soc N. We now establish the converse.

Lemma 5.3. Let N be a tame near-ring with minimal condition on right ideals and R a
right ideal of N such that RJ(N) ={0}. It follows that R =soc N.

Proof. Assume RZ soc N and let H=R be a right ideal of N minimal for the
property that HZ soc N. Set K=(soc N)NH. Clearly K< H and K contains every right
ideal of N properly contained in H. By (6, 5.32, p. 146) and 5.2

N/J(N)= R®.. ORy

where the R;, i=1, ..., k, are minimal right ideals and minimal N/J(N)-groups. Thus the
R; are minimal N-groups. Let p be in H but not in K. Since H is a unitary N/J(N)-group
one of the pR;, i=1, ..., k, say pR;, must be such that pR;Z K. Set pR; = M. Since R; is a
minimal N-group so is M. Hence MM K={0}. Also, since M=H, M+ K=H and
M+ K> K Now K is maximal in H and, by 4.2, M+ K=H.

If K={0}, then H=M and H is a minimal right ideal. Thus we may assume that
K#{0}. Let V be a faithful tame N-group. There exists v in V such that (0: )N K< K.
Now either (0: v)NH= K or (0: ) NH<K If (0: v)NH= K, then (0: v)N K= K, Hence
(0:v)NH<K By 4.1, M+(0: v) is a right ideal of N and thus

HN[M+(0: v)]=M+(0:v)NnH (=K, say)

is a right ideal of N. Since (0: v)N H< K, K; < H and K, = K. Thus M= K and we have a
contradiction that completes the proof.
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Lemma 5.4. Let N be a tame near-ring with minimal condition on right ideals. If Sis a
non-empty subset of N such that SJ(N)={0}, then Sc soc N,

Proof. Let @ be in S. We have aJ(N)={0}. Since NJ(N)< J(N), aNJ(N)={0}. By
1.3, R(aN)J(N)={0} and by 5.3, R(aN) = soc N. Since N has an identity a is in R(aN)
and therefore in soc N. The lemma now follows.

Lemma5.5. If Nisa tame near-ring with minimal condition on right ideals, then soc N
is an ideal of N and Njsoc N is tame.

Proof. Let V be afaithful tame N-group. If it is shown that there exists a submodule
U of Vsuchthat(U: V)= soc N, then it will follow that soc Nis anideal of Nand N/soc N
will have V/U as a faithful tame Nfsoc N-group. We have soc N is a finite direct sum
R®RD.. DRy of minimal right ideals which are minimal N-groups. Set

U=zz UR;

where the sumisoverall iin{1,..., k} and v in V. We have for each i and v that vR; ={0}
or vR, is N-isomorphic to R;. Since Vsoc N# {0}, U# {0} and it follows from 5.1 that U'is
absolutely reducible in V. Obviously soc N=(U: V). Also V(U: V)< U and, by the
absolute reducibility of U

V(U: V)J(N) g UJ(N) ={0}.

Since Vis faithful (U: V)J(N)={0}. By 5.3, (U: V) = soc N and the lemma follows.
Our next lemma is the main step in proving that minimal condition on right ideals
implies, for tame near-rings, maximal and minimal condition on right N-subgroups.

Lemma 5.6. If N is a tame near-ring with minimal condition on right ideals, then there
exists a positive integer k and right ideals

{0}=R0<R1<R2<<Rk=N

such that R;,/R;, i=0, ..., k—1, are minimal factors of N.

Proof. By4.3, J(N)™ ={0} for some positive integer m. We assume m is minimal and
proceed by induction. If m =1, J(M) ={0}and by (6, 5.32, p. 146), N is a finite direct sum

H®.. $H,

of minimal right ideals of N. With k=n, Ry={0} and R,= H,®.. ®H, i=1,..., k, the
lemma follows in this case.
Assume m>1. Now J(N)™ ' J(N)={0} and by 5.4, J(N)™"' < soc N. Also by 5.2
J(Nisoc N)=(J(N)+soc N)/soc N
and, since
(J(N)+soc N)™ < J(N)™ *+soc Ncsoc N,
we conclude that

[J(NIsoc N)]™" = {0}.
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Since, by 5.5, N/soc N is tame it follows from the induction assumption that there exists a
positive integer s and right ideals K,, i =0, ..., s, of Njsoc N such that

{0}=Ko< K;<...<K;= NjsocN

where K;,1/K, i=0,...,s—1, are minimal factors of Nfsoc N. Now there exists right ideals
Ki, i=0,..., s of N containing soc N and such that Kj/soc N= K. Also soc N is a finite
direct sum B,D.. @B, of minimal right ideals of N. Set K= r+s, Ry ={0}, R, = B®...DB;
for i=rand R;= K/, for i <rand i = k. The fact that the factors R;;1/R,, i=0, ..., k—1.
are minimal follows from the isomorphism theorems. The lemma is now proved.

Theorems 5.7. If N is a tame near-ring with minimal condition on right ideals, then N
has minimal and maximal condition on right N-subgroups.

Proof. By 5.6, N has a finite sequence
{0}=Ry<R;<R;<...<Ry =N

of rightideals of Nsuchthat R;,.;/R;, i=0, ..., k—1, are minimal factors of N. Let S be the
set of all right N-subgroups of N. By 4.2, there are no elements of S lying properly between
Ri;yand R;fori=0, ..., k—1.Itfollowsfrom 3.2 that the elements of § satisfy both chain
conditions. The theorem is therefore proved.

6. Compatible and 2-tame N-groups

We return to the example of a tame N-group given in the introduction (viz. a near-ring
generated by a semi-group S of endomorphisms of V where S contains Inn ( V), the inner
automorphisms of V). As indicated there, such an N-group has a much stronger property
than simply being tame.

Suppose p or —pu is in S and v in V. We have (v+ w)u—vu is equal to either
v+ wu—op or wu for all win V. Since Inn (V) c §, it follows that there exists 8 in N
such that

(v+w)p—vp=wg

for all w in V. Now suppose that for an a in N, there exists vy in N such that
(v+w)a—va=wy
for all win V and take A = a + u. Computing we see that

(v+wA—vA=(v+w)a+p)—via+pu)
=(v+w)a+(v+w)u—ovu—va
=(v+ w)a—va+va+ wh—va
= wly+ B«]

where « is the inner automorphism of V induced by va. It follows therefore by induction
that given any « in N there exists y in N such that

(v+wa—va=wy

for all w in V. This is a stronger version of 2.1. We are ready for a definition.
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Let N be a near-ring. An N-group V will be called compatible if, given vin Vand ain
N, there exists 8 in N such that

(v+w)a—va=wB

for all win V.

Example. Let V be an Q-group belonging to some variety?. Let V(x, ¥) be the
polynomials in x over V (see (6, p. 215) or (4, pp. 12-13)). Now V(x, ¥)is a near-ring (not
necessarily zero-symmetric) under substitution (for x) and pointwise addition. If (x)p is in
V(x, V), then the maps of Vinto V of the form u— up (u € V) form a near-ring (this
near-ring, the near-ring of polynomial maps (4), is not necessarily zero-symmetric). We
denote the zero-symmetric part of this near-ring by Po( V). We claim that V'is a compatible
Py( V)-group. Indeed, if « is in Po( V) and v in V, then there exists (x)p in V(x, ¥) where a
is the map u— up (u € V). Clearly (x)q=(v+x)p—uvpisin V(x, ¥) and thus with 8 the
map u— uq (u € V), it follows that

(v+uwa—va=up

for all ¥ in V. This example illustrates the importance of compatible N-groups.
The notion of a 2-tame N-group will now be introduced. Let V be an N-group.
Suppose that for each v in V and « in N there exists B8 in N such that

(v+w)a—va=w

for any two elements w;, i=1, 2, of V. In this case we call V 2-tame.

Clearly being 2-tame is stronger than being tame and likely to be weaker than being
compatible. It is also clear from the definition that one may define an n-tame N-group
where n is any cardinal.

If a near-ring N has a faithful 2-tame (compatible) N-group, then we call N 2-tame
(compatible).

7. N-endomorphisms of 2-tame N-groups

Although the N-endomorphisms of an N-group V need not form a near-ring the
situation is simplified in the case that V is 2-tame by the fact that if 6 is an N-
endomorphism then so is 1— 8.

The following proposition is basic.

Proposition 7.1. If V is a 2-tame N-group and p. an N-endomorphism of V, then
(v+wuwa—va=(vpu+wu)a— vua

forallvand win V and e in N.

Proof. Since V is 2-tame, there exists 8 in N such that
(v+w)a—va=wB; and
(v+wu)a—va = wupf.
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Now
wuB = wBu
=[(v+ w)a—va]u
=(vu+ wp)a—(vpa)

and the proposition follows.
Let V be an N-group and 8 an N-endomorphism of V. By 1 — & we mean the map of V
into V taking v in V to v— vé.

Proposition 7.2. If V is a 2-tame N-group and 8 an N-endomorphism of V, then
u(1—8) commutes with wé for all uand win V.
Proof. In7.1take a=1, u =25 and v= — w It follows that
—u+wd+u=—ub+wd+ ub
for all win V (ie. —u(1—8)+ wd+ u(1-8) = ws). The proposition follows.
Theorem 7.3. If Vis a 2-tame N-group and 8 an N-endomorphism of V, then 1 — 8 is
an N-endomorphism.
Proof. Let v, and v, be in V. We have
(Ul + 02)(1 - 8) =p1tov— 026— 1)18.
Since by 7.2, v,— v,8 commutes with v, 4, it follows that
(1 +0)(1-8)=v,— 018+ 0~ 1,8
=0 (1-8)+ v,(1-9).

Thus 1— 8 is a group homomorphism of Vinto V. Now take p =8and w= —vin7.1. We
see that
(v—vd)a— va=—(véa)

for allp in Vand « in N, Thus
v(1-8)a= —(vad)+ va.
By 7.2, vad commutes with va — vad and

~(vad)+ va = va — vab.
It follows that
v(l—8)a= va—vad
= pa(l—§).

The theorem is now proved.
If Vis an N-group we denote the centre of V by Z( V). Theorem 7.3 has the following
corollary.

Corollary. If Vis a 2-tame N-group and 8 an N-endomorphism of V, then V8 and
V(1 - 8) are submodules of V, V= V(1—-8)+ V8 and VSN V(1—-8)= Z(V).
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Proof. Since 1-§ is an N-endomorphism, V8 and V(1—§) are N-subgroups of V
and thus submodules. Now if v isin V, v = v — v8 + v6 and therefore V(1—8)+ V6= V. By
7.2, V(1—8)N V& is in the centre of V6 and V(1 —§). Therefore V6N V(1-8)= Z(V)
and the corollary follows.

Aninteresting special case of the above corollary is where Z( V) = {0}. In this case if 3 is
non-trivial, then neither V(1—8) nor V8 is {0} and V= V(1 —8)® V6. Thus in this case
every N-endomorphism of V induces a unique split of V and a strong version of the
Krull-Schmitt theorem holds.

We now look at the case where Z(V)#{0}. A non-zero N-group V will be called
indecomposible if V is not the direct sum of two non-zero submodules. If Vis a 2-tame
N-group, the proof of Lemma 14.4 p. 82 of (2) goes through without change. From this the
following theorem is easily deduced.

Theorem 7.4. Let N be a near-ring with a 2-tame N-group V where V has maximal
and minimal condition on submodules. If

V= Ul®...®U, = Wl@---@"vs

where the U, i=1, ...,r,and W, i=1, ..., 5, are indecomposible, then r = s and there exists a
permutation p of 1, ..., r such that U is N-isomorphic to W, i=1, ..., 1.

8. Primitive 2-tame near-rings

We call N a primitive 2-tame near-ring, if it has a 2-tame N-group which is minimal and
faithful.

Let us denote the near-ring of all zero-fixing maps of a group V by My(V).

It is the purpose of this section to look more closely at primitive 2-tame near-rings.
Indeed in the case where N has minimal condition these near-rings are either of the form
My( V) (where V is a finite group) or a complete matrix ring over a division ring.

Lemma 8.1. Let N be a near-ring, V a minimal N-group which is 2-tame, AutyV the
group of all N-automorphisms of V and 0 the zero N-endomorphism of V. If AutyV#{1}
then AutyVU{0} is a division ring under composition and pointwise addition.

Proof. Since V is minimal, any non-trivial N-endomorphism of Vis in AutyV. Let
8#1 be in AutyV. By 7.3, 1—-6 and 1—67" are in AutyV. But 8§(1—8"")=8—1. Thus
8—1is in AutyV. Hence (1—8)(8—1)""is in AutyV. Now

v(1-8)(8-1)""=—-v(6-1)(6-1)"
=-v
for all v in V, and the map —1: v— — v is in AutyV. It follows that V is abelian.

We shall show that AutyVU{0} is an abelian group under addition. Clearly O is an
additive identity of AutyVU{0} and, if p is in AutyVU{0}, then —pu=(—1)y, is an
additive inverse of p. Suppose 8, and §, are in Auty VU{0}. If either 8, or 8, is zero then it
is certainly true that 8, — 8, is in Auty VU{0}. If 8, =(—1)6, = — 8,, then 8, + 6, =0, and if
81 #(—1)8, then 1—-87'(—1)8, is in AutyV by 7.3. In this case

8:(1-87(—1)8)=8,—(—1)8,=8,+85,
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isin Auty V. Hence, under addition, AutyVU{0} is a group. This group is abelian since Vis
abelian. The left distributive law clearly holds and since the elements of Aut,VU{0} are
distributive in My(V) the right distributive law holds. Also a non-zero element of
AutyVU{0} has a multiplicative inverse and the lemma is proved.

Lemma 8.2. If Nisa near-field with a minimal 2-tame N-group V, then N is a division
ring.

Proof. By (6, 8.3, p. 237) N has no proper right N-subgroups (0: V)={0}, and N is
faithful on V. Clearly if V has only one non-zero element, then N is the field of order two.
Now if u and v are two non-zero elements of V, then (0: u) =0=(0: v) and there exists an
N-isomorphism p of uN(= V) onto uN(= V) such that up = v. Now, by 8.1, 1+ p is an
N-endomorphism of V. If a is in N, then

(u+v)a=(u+up)a
= ya(l+uw)
= ua + upa
= ua+va
and the elements of N distributive over V.Now V# {0} and, since Vis a unitary N-group,
(0: V) ={0}. The elements of N are distributive in My( V) and the lemma follows.

Before we state our main result on primitive 2-tame near-rings we need a proposition.

A submodule U of an N-group V will be called abelian if addition in U" is
commutative and elements of N distribute over U (i.e. if N/(0: U)(= A)isaringand U is
an A-module in the ring sense).

Proposition8.3. Ifan N-group Vis a direct sum V@D V; of two minimal N- groups and
if V) is non-abelian, then V, and V, are the only proper submodules of V.
Proof. If Wisapropersubmoduleof Vand W# V, i=1, 2, then by (6,2.23, p. 48)

(Vi+ W)N(V,+ W)/ W
is abelian. But
V] + W= V2+ W=V

and, since V/W is N-isomorphic to
Vl/ Vlﬂ W= Vl/{O},

V, is abelian. This contradiction establishes the proposition.

If N is a near-ring and V a faithful minimal N-group we may regard N as a
subnear-ring of My( V). We say N is dense in My( V), if it is dense with respect to the finite
topology (see (6, 4.26, p. 111)).

Theorem 8.4. Let N be a near-ring with a faithful minimal N-group V. The N-group V
is 2-tame if, and only if, N is either dense in My(V) or N is a ring.

Proof. Suppose N is aring. Since for v#0in V, vN=V,itis evident that Vis aring
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module. Thus if v and w are in V and « is in N, then (v + w)a — va = wa. Clearly Vis
2-tame.

Suppose N is dense in My( V). It follows that if w, and w, are any two distinct elements
of V, then there exists gin Vsuch that w,8 = v, and w,8 = v, for any two elements v, and
v, of V.Let vbein Vand « in N and take

vi=(+w)a—ve, i=1,2.

The fact that V is 2-tame follows from the existence of .

Now suppose that V is 2-tame and that N is not a ring. The result will follow from (6,
4.54,p. 129) if we can show that an N-automorphism u of Vmustin fact be the identity.

Let v be a non-zero element of V. If for all non-zero elements u of V, (0: v)=(0: u),
then (0: v) = N(0: u) where u ranges over all elements of V. In this case (0: v) =0, since
(0: V)={0}. Therefore vN(= V) is N-isomorphic to N and N has no proper right
N-subgroups. By (6, 8.3, p. 237) N is a near-field and by 8.2, N is a division ring.

Thus we may assume that there exists a non-zero element u in V such that
(0: u)#(0:v). If @isin (0: v), then va = vue =0 and, by 7.1 it follows that (v + wu)a =
(v +wu)a for all win V. Thus

(v+w)a=(vp+w)a (1)
for all w,in Vand a in (0: v). Now take w,; such that v + w; = u and set x = v + w;. Since
v#0, (0:v) is, by (6, p. 103), a maximal right ideal of N. Also (0: u)#(0: v). Thus
(0: u)+(0: v)=Nand 1=e;+ e, where ¢; is in (0: 1) and e, is in (0: v). Now

U= ue,+ ue, = ue, = xe, (2)
by (1). Since xe;#0, x#0. We shall show that (0: u)N(0:v)=0:x). If v is in
(0: u)N(0: v) then, since V is 2-tame, there exists A in N such that

(v+w)y—vy=wA
and
(v+wip Dy—vy=wp A

Now v+ w,=u and, since v is in (0: u)N(0: v), it follows that w;A =0. Therefore
W[[.L—]A = Wll\[.b_l =0. Thus

(v+twip)y—vy=0
and, since vy =0, we see that (v+ w; ™)y =0. It now follows that
0=(v+wip yn
=(op+wi)y
= x7y.

Hence yisin (0: x) and (0: )N (0: v)=(0: x).
Now x#0 and (0: x) is a maximal right ideal of N. By (2) xe;# 0 and (0: x) # (0: v).
Thus (0: x)+(0: v)= N and with R=(0: u)N(0: v), it follows that

N/R=(0:x)/R+(0: v)/R=(0: u)/ RB(0: v)/R.

Now (0: u)/R is N-isomorphic to N/(0: v) which is N-isomorphic to vN(= V). Similarly
(0: v)/R is N-isomorphic to V. Since (0: x)/R is a proper submodule of N/R, it follows by
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8.3 that (0:x)/R is equal to either (0: u)/R or (0:v)/R. But since (0:x)#(0: v),
(0:uw)/R=(0:x)/R and (0: u)=(0: x). Thus x = xe,. By (2) u=x. Thus v+ w; = v+ w,
and v=ou. This is true for any v in V and p is therefore the identity. The proof is
complete.

In Section 5 we saw that for tame near-rings minimal condition on right ideals implies
maximal condition on right ideals. However, if 2-tame near-rings depart far enough from
rings, minimal condition implies finiteness.

We shall call a near-ring Nring- free if no non-zero homomorphicimage of Nisaring.

With the aid of 8.4 it is possible to deduce the following theorem.

Theorem 8.5. If N is a 2-tame ring-free near-ring with minimal condition on right
ideals then N is finite.

This is proved by considering right ideals
{O}=R0<R1<...<Rk=N

as in lemma 5.6 and, out of all minimal factors of N, N-isomorphic to R;;,/R; (i in
{0, ..., k—1}) choosing one R/H with R minimal. Then, as in the proof of 4.2, one finds an
element v of a faithful 2-tame N-group V such that vR > vH. The proof is completed by
observing that the 2-tame N-group vR/vH is N-isomorphic to R;,s/R; from which it
follows, by 8.4 and (6, 4.61, p. 132), that R;.1/R; is finite.

9. Centralisers of abelian submodules

In this section we prove certain specialised results to be used in proving the final
theorem in the next section.

Let V be a group and H; and H, subsets of V. By [ H,, H,] we shall mean the subset of
V consisting of all — h; — hy + hy+ hy where h; isin H, i=1, 2.

Let U be a submodule of a tame N-group V, then C,(U) will denote the set of all
elements v in V such that [vN, U] ={0}.

Proposition9.1. If Uis a submodule of a tame N-group V, then C\(U) is a submodule.

Proof. Since the set of all v in V such that [v, U]={0} forms a subgroup H of V,
Cy(U) is simply the sum of all submodules of V contained in H.
From now on we shall be dealing with the following situation.

(a) Nis a near-ring with minimal condition on right ideals;
(b) Vis a faithful compatible N-group;
(c) U is an abelian minimal N-subgroup of V; and

@ (U: V)Z(0: V).

Proposition 9.2. There exists -y in (U: V) such that uwy = u for all uin U.

Proof. Since U is minimal and abelian and N has minimal condition N/(0: U) is a
simple ring. Thus (0: U) is a maximal ideal of N and by (d), (0: U)+(U: V)= N. Let
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1= y,+ vy, where 1, is in (0: U) and vy, is in (U: V). If we take y= 1y, the proposition
follows.

Lemma9.3. Letv, i € I, be asystem of coset representatives of V/U in V. Foreachk in
I there exists & in N such that
() &=1mod (U: V);
(i) (ve+u)é& = (v )& forall uin U; and
(ii)) u& =0 foralluin U.

Proof. Let y be as in 9.2. There exists a, in N such that
(moe+0)y—(— o)y = v

for all v in V. Since vy is in (U: V), it follows that for all v in V, va, is in U and a is in
(U: V). Set p, =1—a,. Clearly p,=1mod (U: V). Now

(o +wpe=v+u— (v + uay
=+ u—[(— o+ o+ u)y—(-0v)7y]
= tu+(—ov)y—uy
forall uin U. Since (— v )yisin U, Uis abelian and uy = u for all uin U, it follows that
(e +wp = v +(— o)y
for all u in U. Taking u =0 we see that v, +(—v,)y = vxpr and
(v + W) pic = VP

for all u in U. Suppose, without loss of generality, that 0 is in I and v, represents the coset
U. Take & = pepo. NOW upg = vgpo for all u in U and since 0p, = 0, it follows that up,=0
for all u in U. Thus ué, = up,po="0 for all u in U since up; is in U. We have shown (iii)
holds. Also, since py =po=1mod (U: V), & =1mod (U: V) and (i) holds. Finally
(v + u) & = viprpo
= vy

for all u in U and (ii) holds. The lemma is proved.

Lemma 9.4. Letv, i € Ibea system of coset representatives of V/U in V. Let S be the
subset of I consisting of all s in I such that v,=0 mod Cy(U). If S is a proper subset of I and k
is in I— S, then there exists Ay in (U: V) such that

(i) (v + uy) A # veAx for some uy in U; and
(ii) uN. =0 foralluin U.

Proof. Let & be asin 9.3. Set oy, = — & + 1. Clearly a is in (U: V) and

(ntwa,=—vé&+tuotu
= o+ U 1)
for all u in U. Since v, is not in C(U), there exists i in N such that
[oim, UT#0. )
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Take A, =[n, ax]. Clearly A, is in (U: V). If uis in U, then
uh = — um— uay + un + uay
=0
since U is abelian. Thus (ii) holds. If u is in U then, since U is a submodule of V,
(v +u)n=u'+(v)m
where u' is in U. Thus

(e + WA= —(v)n—u — (v + wWay+ u' + v+ (v + way
={uvem, (v + W ai], (3)

since (v, + u)a, isin U and U is abelian. From (1) and the fact that v,y is in U, (v, + u) ay
takes all values of U as u ranges over U. From (2) and (3)

(v + N #O (4)
for some u in U. If in (3) we take u, = — (v )ay, then from (1), (v, + up)a, =0 and
(vr + u) A =[v5em, 0]
=0. (5)

Now (i) follows as a consequence of (4) and (5). The lemma is proved.

Lemma 9.5. Letv;, i € I be a system of coset representatives of V/U in V. Let S be the
subset of I consisting of all s in I such that v,=0mod Cy(U).
If S is a proper subset of I and k is in I— S, then there exists vy, in (U: V) such that

(1) (v + )y = vy for all uin U; and
(ii) uyy#0 for some u, in U.
Proof. Let v; be the representative of the coset — v, + U of U. Let A; be as in 9.4.
Take vy, to be an element of N such that
(vi+ V)i — VA = vy
for all v in V. Since A; isin (U: V) so is vy,. Now
(vi+ )\ # vk
for some u; in U and thus u; y# 0. Hence (i) holds. Also
(e + wWy = (U4 v+ U — vk
for all u in U. Since v; + vy is inU, (v; + v + u)\; =0 and
(v + W)y = — vk
for all u in U. On taking u =0 we see that v,y = — v;A;. Thus
(o + u) v = v

for all u in U. Thus (i) follows and the lemma is proved.
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Lemma 9.6. Let v, i € I, be a system of coset representatives of VU in V. Let S be the
subset of I consisting of all s in‘I such that v, =0 mod Cy(U). If Sis a proper subset of I and k
is in I— S, then there exists 8, in N such that

(i) (v + u)6 = 1,6 for all u in U; and
(iii) uby=u foralluin U.

Proof. Let vy, be as in 9.5 and ¥, be the image of v, in NJ(0: U). By (ii) of 9.5,
U, Vi # 0 for some u; in U. Since U'is abelian, N/(0: U) is a ring which is primitive on Uand
has minimal condition. Thus N/(0: U) is simple and there exists &, i=1,..., r, and E,-,
j=1,..., s in N/(O; U) such that

L aiB=1 1)

(where 1 is the identity of N/(0: U)). By assumption (d), (0: U)+(U: V)= N and there
exists o; and B; in (U: V) such that ua; = ue; and uﬁ,—= upB;fori=1,...,randj=1,...,s.
Let & be as in 9.3. Set

pij = (& + @) PB;

fori=1,...,rand j=1, .., s Clearly each p; is in (U: V) which has an abelian additive
group. The sum }, p;; is therefore well defined. Take
i j
O =&+ Z Pij-
i j
Clearly 8,=1mod (U: V). Now for u in U
(v + W) py = [vicéic + (v + Wa; ] v B;
and v& = v+ u' (1 € U), since & =1mod (U: V). Thus
(v + u)py; = [V + W' + (v + W ai I
and, since u'+ (v, + u)a; is in U, it follows from (i) of 9.5 that
(v + U)pi; = VYB; = Ukpij
as can be seen on taking u=0. Thus for all uin U
(o + u)i = viéi + Z Ukpij
Ly

= vk6k.
Hence (ii) follows. Now for u in U
up;; = (uéi + uo;) i
= ua; vpB;
and by (1), ¥ up;=u. Thus for uin U
ij
uﬁk = u§k + Z up;;
ij
=u

and (iii) follows. The lemma is proved.
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Lemma 9.7. Let v, i € I, be a system of coset representatives of VIU in V. Let S be the
subset of I consisting of all s in I such that v,=0mod C\(U). If S is a proper subset of I, then
there exists p in N such that

(i) p=1mod(U: V);
(i) (vn+wWp=wpforallkinI—-Sand uin U, and
(iit) up=uforall uin U.

Proof. Let S, be the set of all 8, as in 9.6. Let S, be the set of all finite products of
elements of S;. Take p in S; such that pN is minimal (this is possible by 5.7). Clearly
p=1mod (U: V) and up = u for all uin U. Suppose for iin I—S

(vi 4+ ur)p# vip (1)

for some u; in U. Consider p8; where §; is as in 9.6. Now for u in U
(vi+uwp=v,+u
where u' is in U, because p=1mod (U: V). Thus
(v; + u) pd; = v;6; = v;pé;
for all u in U. Hence
(vi+ u) pb:;B = v,p6;8

for all 8 in N and

(vi+ wyn=rvin

for all 5 in p&;N. Now p§; is in S, and p&;N = pN. Since p is in pN we see from (1) that
p&:N < pN. This contradiction to the minimality of pN establishes that p satisfies (ii). The
lemma is now proved.

Lemma 9.8. Letv, i € I, be a system of coset representatives of V/U in V. Fork in I
there exists my in N such that
(i) (v + w) m # v for some uy in U, and

(ii) (v;+ wym. = vim for all u in U and v;# v, mod Cy(U).

Proof. Let v; represent the coset — v+ U. Let p be as in 9.7. Take m to be an
element of N such that

(—o+v)p—(—v)p=vm
for all v in V. Now taking v = v, + u where u is in U we see
(e +u)ym=up—(vj)p
= u—(v)p.

Clearly (vx+ u)m. # vym. for some u in U and (i) follows. Now if i in I is such that
v; + u# v, mod Cy(U) where u is in U, then, since

(vi+uw)m=(—vetvitu)p—(—v)p
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and
—vtvitu=vo+u

for some u' in U and v,# 0 mod Cy(U), it follows that

(vitu)m=vp—(—v)p
= Ui
and the lemma follows.
We are now in a position to state the main result of this section in the form of a theorem.

Theorem 9.9. If conditions (a), (b), (¢) and (d) are satisfied, then the index of Cy(U)
in Vis finite.

Proof. We may assume that Cy,(U) < V.Let v, i € I, be asystem of coset representa-
tives of V/U in V. We rename some of the indices in I with the ordinals 1,2, ... in such a
way that the v,, b an ordinal, are coset representatives of Cy(U) in V.

Let r be a positive integer and let M, be the set of all a in N such that

(v;+ wa=va
for all uin U and all i € I, where
v;# vy mod Cy(U)
forany jin{l,..., r}. Clearly the M, r=1,2, ... are right N-subgroups of N and
M=M=M;=....

Let a5, 3, ... be asin 9.8. We have » isin M, but not in M;; o3 is in M; but notin M, etc.
Thus, if the set of indexing ordinals is infinite, we have a contradiction to 5.7. It follows that
the number of cosets of Cy(U) in V is finite and the theorem holds.

10. Minimal condition and the near-ring generated by inner automorphisms

In this section we prove that if the near-ring generated by the inner automorphisms of a
group has minimal condition, then it is finite.
We state a lemma for tame N-groups where N has minimal condition.

Lemma 10.1. Let N be a near-ring with minimal condition on right ideals and V a
faithful tame N-group. If U is a minimal N-subgroup of Vand (U: V) #{0}, then(U: V) is
a finite direct sum of right ideals N-isomorphic to U.

Proof. Since V(U: V)c U, it follows that V(U: V)J(N)={0}, (U: V)J(N)={0}
and, by 5.3, (U: V)=soc N. Now soc N is absolutely reducible in N. Thus (U: V) is a
direct sum of minimal right ideals (cf. (2, 15.2, p. 86)). By minimal condition this direct sum

is finite. Thus
(U: V) = R1® . @Rk

where R, i=1, ..., k, are minimal right ideals of N. For any R;, iin{l, ..., k}, there exists v
in V such that vR;# {0}. But since R, =(U: V), uR; = U. Clearly (0: v)NR; ={0} and it
follows that R; is N-isomorphic to U. The proof is complete.
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If Visa group, then I( V) will denote the near-ring generated by the inner automorph-
isms of V. In Section 6 we saw that V is a compatible I( V)-group. Clearly the I(V)-
subgroups of V are precisely the normal subgroups.

Proposition 10.2  If V is a group and U a normal subgroup of V, then

I(VIO)y=I(V)(U: V).

Let N be a near-ring with a faithful compatible N-group V and a minimal N-subgroup
U. In Section 9 we were considering the situation where (U: V) Z(0: U). These considera-
tions are now required.

Lemma 10.3. Let V be a group with a minimal normal subgroup U. If I(V) has
minimal condition on right ideals and (U: V)Z(0: U), then U is finite.

Proof. Suppose U" is non-abelian. We have U is a minimal compatible I( V)/(0: U)-
group. In particular U is 2-tame. Also for u in U, uN'= U where N' = I( V)/(0: U). Thus
[N'T" is non-abelian and a non-ring. Since N has minimal condition, it follows by 8.4 that
N = My(U) and U is finite (see (6, 7.19, p. 198)).

If U* is abelian, then the inner automorphisms of V distribute over U and
I(V)/(0: U)(= N')isaringand U an N'-module in the ring sense. The conditions (a) to (d)
of Section 9 are satisfied. Thus the index | V: Cy(U) | of Cy(U) in Vis finite by 9.9. Now
all v in V' such that [v, U]= {0} form a normal subgroup C of V containing Cy(U). Thus
Cy(U)=C and, since C is an I(V)-submodule, C= Cy(U), and | V: C| is finite. Let
v1, ..., Un. be a system of coset representativesof V/Cin V. Let y; be a non-zero element of
U. Clearly U is the normal subgroup of V generated by u;, and thus U is generated by all
elements of the form

vitot+u—ov-v;
i=1,..., n with vin C Thus U is generated by the elements of the form
vitu—v; i=1,...,n

of V. Hence Uisa finitely generated abelian group and is a finite direct sum A;®...B A, of
cyclic groups. Also being a minimal normal subgroup of V, it is characteristically simple
and therefore it is a finite elementary abelian p-group. The lemma is proved.

Theorem 10.4. Let V be a group. If I( V') has minimal condition on right ideals, then it
is finite.

Proof. By 5.6 there exists a positive integer k( V) and right ideals

R0={0}<R1<<Rk(V)=I(V)

of I( V) such thatfori=0, ..., k(V)—1, R,,,/R; isaminimal factor of I( V). We proceed by
induction on k(V). If k(V) =0, then I(V) = {0}, the identity map of V onto Vis zero and,
V ={0}. It may therefore be assumed that k(V)> 0 and that I( V) #{0}.

Out of all ideals of the form ( W: V) where W is a submodule of V, choose one (H: V)
such that (H: V) is minimal for being non-zero. We also assume that H is minimal since, if
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H, i € L aresuchthat (H;: V)=(H: V)and W= N H, then (W: V)=(H: V). Take R

iel
to be a minimal right ideal of I( V) contained in (H: V). By 4.2, R is a minimal I( V)-group.
Set
K= Y uvR
veV

For each v in V, vR={0} or vR is I( V)-isomorphic to R. Thus K is, by 5.1, absolutely
reducible in V. Also vR=H, R=(H: V), and we see that K= H. But R=(K: V) #{0}.
From the minimality of H, H= K. From the absolute reducibility of K, H= KK, where
K, is a minimal I( V)-subgroup of V. Set Y= V/K; and X = K/K,. It follows that X is a
minimal submodule of Y and by 10.2

IWMI(X: V)=IYIX)=I(VIK)=I(V)/(K: V). (D
Now Y = V/K, and thus

I(Y)=I(V)/(K,: V)
by 10.2. Since, by the minimality of K, (K;: V)={0} it follows that

I(Y)=I(V). ()

But (K: V) >{0} and k(V)> k(V/K) so that by (1) we may assume I(Y)/(X: Y) s finite.
From (2) it will then follow that I( V) is finite if it is shown that (X : Y) is finite. By 10.1 this
will follow if it is shown that X is finite. It follows from 10.3 that we may assume
(X:Y)=(0: X). Now I(Y)/(0: X)(= N) has X as a minimal N-group. Also

[INI(X: VVI0: X)/(X: Y)]=N

and N is finite. Since for x#0 in X, xN= X it follows that X is finite. The theorem is
proved.

11. Comments

Although it has been assumed throughout that the tame N-groups considered are
unitary this assumption is not always required. Indeed the results of Section 1 do not need
the existence of an identity and the results of Sections 3 and 4 hold if N has an identity
although the N-groups considered may not be unitary.

One defect in the theory developed is that homomorphic images of tame (2-tame,
compatible) near-rings need no longer be tame (2-tame, compatible). This defect can, to a
certain extent, be overcome by generalising the notion of tame.

It seems hopeful that a worthwhile theory of tame near-rings with maximal condition
on right ideals can be developed and that results resembling those due to Goldie (see (3,
Ch. 3)) for rings, also hold.

In the considerations of Section 9 we dealt with the situation where V was a faithful
compatible N-group with a minimal submodule U such that (U: V) Z(0: U). In a more
detailed study of the structure of a compatible near-ring N with minimal condition this
situation is of special importance. In this case the near-ring N has a wreath product
structure,

The final theorem (10.4) has as a consequence that if the near-ring generated by the
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inner automorphisms of a group V has a minimal condition onright ideals, then Vis centre
by finite. If maximal condition on right ideals is assumed it is still possible to obtain
information about V. A question that would seem to be of importance in this direction is
whether 9.9 holds with the weaker assumption of maximal condition.

As was noted in Section 6 the near-ring of zero-symmetric polynomial maps over an
€)-group forms a compatible near-ring. Dr G. Baird and the author have considered this
situation. It turns out that finite simple Q-groups are, apart from certain interesting
exceptions, polynomially complete (cf. 8.4; for a definition of polynomial completeness
see (6,7.74,p. 219) or (4) or (5)). The exceptions have been bound to be (2-groups bearing
an interesting similarity to Lie-algebras. We hope to publish these results shortly.

The author wishes to thank Dr G. Baird for the interest he has taken in the writing of
this paper and also the referee for his comments.
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