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TAME NEAR-RINGS AND N-GROUPS

by S. D. SCOTT

(Received 4th December 1978)

Throughout this paper any near-ring N will be left distributive, zero symmetric and
have an identity. Furthermore, all N-groups will be unitary. All groups considered will be
written additively. This does not imply commutativity.

Suppose V is a group and S a set of endomorphisms of V containing the inner
automorphisms. Let N be the near-ring of maps of V into V generated by S. It is easily
seen that Vis a unitary N-group. Suppose Wis an N-subgroup of V. Since WS^ W, Wisa
normal subgroup and, by (6, 6.6, p. 174), W is a submodule of V i.e. the kernel of an
N-homomorphism on V.

This leads to a definition. Let Vbe an N-group. We call Vtame if every JV-subgroup of
Vis a submodule. A near-ring Nwith a faithful tame N-group will be called tame.

Tame near-rings and N-groups were first investigated by the author in his Ph.D.
dissertation (7, Chs 4, 5 & 6). Many of the results of this paper may be found in (7),
although the proofs given here are often simpler.

The example given above has a much stronger property than tameness. In Section six
2-tame and compatible N-groups are defined and these are looked at in more detail in
subsequent sections.

1. Nilpotency in tame near-rings

If S is a subset of a near-ring N, then R(S) will denote the right ideal of Ngenerated by
S. With the aid of certain propositions and lemmas we investigate nilpotency in tame
near-rings.

Proposition 1.1. Let N be a near-ring and V a tame N-group. If M is a right
N-subgroup of N, then vR(M) = vMfor all v in V.

Proof. Since, for v in V, vM is a submodule of V, (uM: v) is a right ideal of N. Clearly
M^(vM: v), R(M)^(vM: v) and vR(M)^vM. The result now follows.

Lemma 1.2. Let N be a tame near-ring, M a right N-subgroup of N, and S,, i = 1, 2,
non-empty subsets of N. If one of the subsets SiM, S1MS2 orMS2 ofNis{0}, thenthesame
applies on replacing M by R(M).
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Proof. If SxM={0}, then M ^ ( 0 : SO, R(M)^(O: St) and S!i?(M) = {0}. Suppose
that Si MS2 = {0} and V is a faithful tame TV-group. By 1.1 it follows that for all a in Su /3 in
S2 and u in V

vaR(M)P = uaM/3 = {0}.

Thus VSiR(M)S2 = {0} and S,.R(TW)S2 = {0}. Taking S! = {1} the case where MS2 = {0}
follows.

Proposition 1.3. Let TVbe a tame near- ring and Hi,..., Hk, right N-subgroups of N for
i = 1,.. . , k. IfHxH2... Hk = {0}, then

R{Hl)R(HJ...R(Hk) = {0).

Proof. This follows by repeated application of 1.2.

Corollary. / / M is a nilpotent right N-subgroup of a tame near-ring N, then R(M) is
nilpotent

Theorem 1.4. If N is a tame near- ring and A the sum of all nilpotent right ideals of N,
then A is an ideal of N.

Proof. We have A — £ R* where {Rh i e 7} is the set of all nilpotent right ideals of

N. Thus for any a in N

aA= I aRt

and each a/?, is a nilpotent right AT-subgroup of N. By the above corollary each R(aRi) is
nilpotent. Thus for each a in N

and it follows that A is an ideal.
We note that there exist near-rings where the sum of all nilpotent right ideals need no

longer be an ideal (see (1, p. 204)) but, as 1.4 indicates, tame near-rings resemble rings
more closely. Further evidence of this similarity is seen in many of the results that follow.

2. Direct sums

Let TV be a near-ring with an TV-group V. It may happen that TV= A(&B where A and B
are ideals, but this split in TV does not induce a corresponding split in V (e.g. if p and q are
distinct primes, then ZM = ZpOZq and any group of exponent pq is a faithful unitary
Zpq-group). However, for tame TV-groups the situation is simpler.

In order to investigate this situation we need an alternative characterisation of tame.
The following proposition provides this characterisation which will be of importance in
defining 2-tame, and compatible N-groups.

https://doi.org/10.1017/S0013091500003837 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003837


TAME NEAR-RINGS AND N-GROUPS 277

Proposition 2.1. An N- group V is tame if, and only if, for v and w in Vand a in N there
exists /3 in N such that

(v+ w)a—va = w/3.

Proof. If Vis tame, then wNis a submodule of Vcontaining w. Thus (u + w)a — va is
in wN and /3 exists.

Suppose for given v, w and a, /3 exists. Let W be an N-subgroup of V. If w is in W
clearly (v + w)a — va is in W. Thus W is a submodule of V (normality follows on taking
a = 1). The proposition is proved.

Theorem 2.2. Let N be a near-ring with a faithful tame N-group V. IfN= A@B where
A and B are ideals of N, then V= U®W with U and W submodules of V such that
(0: W) = Aand(0 : U) = B.

Proof. We have 1 = ex + c2 where et is in A and e2 is in B. The e,, i = 1, 2, are central
orthogonal idempotents.

Define U to be the subset Vd of V and W the subset Ve2 of V. Now U=
{v e V: ve2 = 0}, since Ue2 = {0} and, if ve2 = 0 for some v in V, then v = vex + ve2 = vex.
To show U is a submodule of V it is sufficient to show that it is an N-subgroup. Now

UN= VexN= WV^c U

since ex is central. In particular M(— 1) = — u is in [/for all u in [/. We must therefore show
that U is closed under addition. Let Uiei and v2e\ be elements of U. By 2.1

for some /3 in N. Now vxe\e2 = 0 and

Hence

Since e2 is central v2e^e2 = o2eiC2/3 = 0. Thus (ui^i + u2ci)e2 = 0 and vtet + v2ex is in U. It
follows that U is a submodule of V. Similarly W is a submodule of V. If t; is in V, then
u = vex + ue2 and V= L/+ W. Also, if t^ei = u2e2 is in UH Wwhere u, and u2 are in V, then
UiCi = v2e2ex = {0}. Hence V= t/©W. Now A = e,7V and W= Ve2. Since e2ex = 0, A S
(0: W).AlsoBg(O: U)and(0: L/) + (0: W)= AC If a isin(0: U)n(0: W), then since the
sum U+W is direct, Va = {0}. Since V is faithful (0: (7)0(0: W) = {0}. Thus
(0: U)©(0: W) = N and, since A g (0: W) and B ̂  (0: (7), it follows that A = (0: W) and
B = (0: L0- The theorem is now proved.

3. Finitely generated tame A/-groups

Let V be a tame N-group. A submodule U of V is finitely generated if there exists
Vi, i = 1,..., k, in V such that
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A standard result of ring theory (see (2, p. 96)) states that if N is a ring with maximal
condition on right ideals and V a finitely generated JV-module (in the ring sense), then a
submodule, of V is finitely generated. We shall show that this holds for tame TV-groups.

A tame N-group V will be called Noetherian if the submodules of V satisfy the
maximal condition.

The following proposition is the analogue of the corresponding ring result.

Proposition 3.1. A tame N- group V is Noetherian if, and only if, every submodule of V
is finitely generated.

If S is a set of subgroups of a group, then an element of S will be called an S-subgroup.
The next lemma, a lattice theory result, will be used again in Section five.

Lemma 3.2. Let Vbea group and Vhi = 0,...,k,a properly ascending finite sequence
of normal subgroups of V, such that Vo = {0} and Vk = V. Let Sbe a set of subgroups of V
such that HDWandH+W are in S for all H in S and W in {V, : i = 0,...,k-1}. If the
S-subgroups of V between Vt and Vi+1 satisfy minimal (maximal) condition for i = 0,...,
k — 1, then the elements of S satisfy minimal (maximal) condition.

Proof. We shall prove the result for minimal condition as the proof for maximal
condition is entirely similar.

For k = 1 the result is trivial. Assume that the S-subgroups of Vbetween {0} and Vfc_!
satisfy minimal condition, and let

be a descending chain of S-subgroups of V. By the assumptions there exists a positive
integer m such that Hm D Vfc_i = Hm+n D Vk_, and Hm + Vk_t = Hm+n + Vk_i for n =
0,1,2 , . . . . Since Hm^Hm+n, it follows by the "modular law" that Hm = Hm+n for
n = 0, 1, 2,.... The proof is now complete.

Proposition 3.3. Let Nbea near- ring with maximal condition on right ideals and V a
faithful tame N-group. If there exists v in V such that vN= V, then V is Noetherian.

Proof. The obvious N-homomorphism of N onto vN establishes a one to one
correspondence between the submodules of uTVand the right ideals of TV containing (0: v).
The proposition follows.

Theorem 3.4. Let N be a near-ring with maximal condition on right ideals and V a
tame N-group. If V is finitely generated, then any submodule of V is finitely generated.

k

Proof. We have Vis a finite sum £ VjN where vh i = l,... k, are in V. The result will
/=i

follow by 3.1 if we show that V is Noetherian. We proceed by induction. The case k = 1
follows from 3.3 Let [7= v2N+... + vkN. The submodule Uof Vmay be assumed to be
Noetherian by 3.1. Now VIU is N-isomorphic to u17V/(u17V)n U and VIU is Noetherian
by 3.3. From the isomorphism theorems it follows that the submodules of V between U
and Vsatisfy maximal condition. By 3.2 Vis Noetherian and the theorem is proved.
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4. Tame near-rings with minimal condition (the radical)

Let Vbe an N-group (assumed unitary). We shall call Vminimal if it is of type 2 (see (6,
3.5, p. 77)). This additional terminology is valuable for the case of tame N-groups. Indeed
the only radical that will concern us here is J2(N) (see (6, 5.1, p. 136)), which we denote by
J(N).

If Nis a near-ring and Van N-group, then an N-group U/ Wwill be called a factor of V
if U^ Waresubmodulesof V. The factor U/ Wwill be called minimal if U> Wand there
exist no submodules of V lying properly between Wand U. Thus RJR2 is a minimal factor
of a near-ring N, if Rx > R2 are right ideals of Nand there exist no right ideals of N lying
properly between R2 and Ri.

We aim to show that for a tame near-ring Nwith minimal condition, J(N) is nilpotent.
First we show that a minimal factor of N is a minimal N-group.

Proposition 4.1. / / N is a near-ring, V a tame N-group, M a right N-subgroup of N
and v an element of V, then M+ (0: v) is a right ideal of N.

Proof. Let S be the natural N-homomorphism of N onto vN. Since vM is a
submodule of vN, the inverse image M+(0: v), of vM under 8 is a right ideal of N.

Lemma 4.2. Let N be a tame near-ring with minimal condition on right ideals. If
RJR2 is a minimal factor of N, then RJR2 is a minimal N-group.

Proof. Out of all minimal factors of N, N-isomorphic to RJR2, choose one R/Hsuch
that R is minimal. We show that R/H is a minimal N-group. If K< R is a right ideal of N,
then K^H, otherwise K+H=R and R/H is N-isomorphic to the minimal factor
K/KHH. Let Mbe a right N-subgroup of Nsuch that H<M<R and let Vbe a faithful
tame N-group. Since the intersection D(0: M) over all u in Vis zero, there exists v in V
such that (0: v)nR < R and therefore (0: v)HR g H. By 4.1 M+(0: v) is a right ideal of
N. Thus

Rn[M+(0: v)] = M+(0: v)r\R

is a right ideal of N. But (0: v)DR g H< M and we see that M is a right ideal of N. This
contradiction completes the proof.

Theorem 4.3. If N is a tame near-ring with minimal condition on right ideals, then
I(N) is nilpotent

Proof. Suppose J(N) is not nilpotent and H^kJ(N) is a right ideal of N minimal for
being non-nilpotent. If R(H2) < H, then H2 is nilpotent and so is H. Thus R(H2) = H. We
have {0}H={0} and by Zorn's Lemma we may find a right ideal Ki o/N maximal for the
property that KiH={0}. Since Nhas an identity we may assume that KX^ N. By minimal
condition there exists a right ideal K2>Kx with K^Kx a minimal factor of N. By 4.2,
KJKt is a minimal N-group. Since H^J(N), [JK2/X,]H = {0} and K2H<=Ki. Thus
K2H

2g KXH={0}. Hence H2g (0: K2), H= R(H2) =g(0: K2) and it follows that K2H=
{0}. This contradiction to the maximality of Kx establishes the theorem.
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5. Chain conditions on tame near-rings

In this section it is proved that for tame near-rings minimal condition on right ideals
implies minimal and maximal condition on right N-subgroups. This proof will be accom-
plished in a sequence of propositions and lemmas. We need certain preliminaries.

If Vis an N-group then a submodule Woi Vwill be called absolutely reducible in V, if
it is a direct sum of submodules of V which are minimal N-groups.

The following result may be proved in the same way as for rings (see (2, p. 87)).

Proposition 5.1. If Nis a near-ring, Van N-group and Wa submodule of V, then Wis
absolutely reducible in V if, and only if, Wis a sum of submodules of V which are minimal
N-groups.

If a submodule Wof an N-group Vis absolutely reducible in V, then WJ(N) = {0} (see
(6, 2.29, p. 49)). Furthermore, if Vhas minimal condition on submodules, then Wis a
finite direct sum of submodules which are minimal N-groups (see (2, p. 88)).

If N is a non-zero tame near-ring with minimal condition on right ideals, then soc N
will denote the sum of all minimal right ideals of N. By 4.2 and 5.1 soc N is absolutely
reducible in N. The above comment tells us that this direct sum is finite.

The following proposition can be deduced from (6, 5.32, p. 146).

Proposition 5.2. IfNis a near-ring with minimal condition on right ideals and Tis an
ideal of N, then /(N/ T) = (J(N) + T)l T.

Clearly for a tame near-ring N with minimal condition, RJ(N) = {0} for all right ideals
i? S=soc N. We now establish the converse.

Lemma 5.3. Let N be a tame near- ring with minimal condition on right ideals andRa
right ideal of N such that RJ(N) = {0}. It follows that R g soc N.

Proof. Assume R£ soc N and let H^R be a right ideal of N minimal for the
property that H£ soc N. Set K = (soc N)nH. Clearly K<H and K contains every right
ideal of N properly contained in H. By (6, 5.32, p. 146) and 5.2

where the Rh i=l,..., k, are minimal right ideals and minimal N/J(N)-groups. Thus the
JR, are minimal N-groups. Let p be in Hbut not in K. Since His a unitary N//(N)-group
one of the pR,, i = 1,..., k, say pRh must be such that pRj£ K. Set pRt = M Since R, is a
minimal N-group so is M. Hence M(~)K={0}. Also, since M^H, M+K^H and
M+ K> K. Now K is maximal in H and, by 4.2, M+K=H.

If K={0}, then H=M and H is a minimal right ideal. Thus we may assume that
K/{0}. Let Vbe a faithful tame N-group. There exists v in Vsuch that (0: v)C\K<K.
Now either (0: v)HH^K or (0: u ) n H < K If (0: t i )nH§ K, then (0: v)DK= K. Hence
(0: v)r\H<K By 4.1, M+(0: v) is a right ideal of Nand thus

Hn[M+(0:t>)] = M+(0 :u)nH ( = K,say)

is a right ideal of N. Since (0: v) D H< K, Kx < H and Kx g K. Thus M ^ K and we have a
contradiction that completes the proof.
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Lemma 5.4. Let Nbe a tame near-ring with minimal condition on right ideals. IfS is a
non-empty subset of Nsuch that SJ(N) = {0}, then S <= soc JV.

Proof. Let a be in S. We have aJ(N) = {0}. Since JV/(JV) g /(JV), aNJ(N) = {0}. By
1.3, R(aN)J(N) = {0} and by 5.3, R(aN) g soc JV. Since JV has an identity a is in R(aN)
and therefore in soc JV. The lemma now follows.

Lemma 5.5. IfNis a tame near- ring with minimal condition on right ideals, then soc JV
is an ideal of JV and N/soc JV is tame.

Proof. Let Vbe a faithful tame JV-group. If it is shown that there exists a submodule
[/of Vsuch that (U: V) = soc JV, then it will follow that soc JVis an ideal of JVand Nlsoc JV
will have VIU as a faithful tame JV/soc TV-group. We have soc JV is a finite direct sum
Ri@R2®.. .®Rk of minimal right ideals which are minimal JV-groups. Set

where the sum is over all i in {1,. . . , fc} and v in V. We have for each i and t; that uR, ={0}
or vRi is N-isomorphic to Rh Since V soc N^ {0}, U^ {0} and it follows from 5.1 that U is
absolutely reducible in V. Obviously socN^(U: V). Also V(U: V)c U and, by the
absolute reducibility of U

V(U: V)J(N)c t//(N) = {0}.

Since Vis faithful (U: V)J(N) = {0}. By 5.3, (U: V)g soc Nand the lemma follows.
Our next lemma is the main step in proving that minimal condition on right ideals

implies, for tame near-rings, maximal and minimal condition on right N-subgroups.

Lemma 5.6. IfNis a tame near-ring with minimal condition on right ideals, then there
exists a positive integer k and right ideals

{0} = Ro< Ri< R2<.. .< Rk = N

such that Ri+i/Rh i = 0,..., k — 1, are minimal factors of N.

Proof. By 4.3, J(N)m = {0} for some positive integer m. We assume m is minimal and
proceed by induction. If m = 1, J(M) = {0} and by (6,5.32, p. 146), Nis a finite direct sum

Hi®.. .®Mn

of minimal right ideals of TV. With k = n, RQ = {0} and i?, = H,©.. .®Hh i = 1,..., k, the
lemma follows in this case.

Assume m > 1. Now J(N)m-xJ(N) = {0} and by 5.4, /(N)"1"1 c soc JV. Also by 5.2

/(JV/soc JV) = (J(JV)+soc JV)/soc N
and, since

(/(JV)+soc JV)"-1 g /(JV)"-1+soc N g Soc JV,
we conclude that

[/(JV/soc
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Since, by 5.5, N/soc TV is tame it follows from the induction assumption that there exists a
positive integer s and right ideals Kh i = 0,..., s, of N/soc N such that

{0} = Ko< Kx <... < Ks = N/socN

where Ki+1/Kh i = 0,..., s — 1, are minimal factors of N/soc N. Now there exists right ideals
K'h i = 0,. . . , 5, of N containing soc N and such that K'Jsoc N= Kt. Also soc TV is a finite
direct sum BiQ.. .©Br of minimal right ideals of N. Set K = r+s, Ro = {0}, Rf = B,©.. .©B,
for i ̂  r and Rt = K;_r for i < r and i g k. The fact that the factors Ri+ilRi, i = 0,...,k-l.
are minimal follows from the isomorphism theorems. The lemma is now proved.

Theorems 5.7. If N is a tame near- ring with minimal condition on right ideals, then N
has minimal and maximal condition on right N-subgroups.

Proof. By 5.6, N has a finite sequence

{0} = R0<R1<R2<...<Rk = N

of right ideals of JVsuch that Ri+i/Rh i = 0,..., k — 1, are minimal factors of N. Let S be the
set of all right JV-subgroups of N. By 4.2, there are no elements of S lying properly between
Ri+1 and Rt for i = 0,..., k — 1. It follows from 3.2 that the elements of S satisfy both chain
conditions. The theor-em is therefore proved.

6. Compatible and 2-tame N-groups

We return to the example of a tame N-group given in the introduction (viz. a near-ring
generated by a semi-group S of endomorphisms of V where S contains Inn (V), the inner
automorphisms of V). As indicated there, such an N-group has a much stronger property
than simply being tame.

Suppose /x or — JU, is in S and v in V. We have (v+ w)fi — u/x is equal to either
u/x + W/JL — u/i, or Wfi. for all w in V. Since Inn (V) g S, it follows that there exists /3 in N
such that

for all w in V. Now suppose that for an a in N, there exists y in N such that

(u + w)a — va= wy

for all win V and take A = a + /x. Computing we see that

(v+w)k-vX. = (v+ w)(a + [i.)-v(a + n)

)a + (v+w)fji— t)/Lt— va

w)a— va+va+ vv/3— va

where K is the inner automorphism of V induced by va. It follows therefore by induction
that given any a in N there exists y in N such that

(v + w)a — va= wy

for all w in V. This is a stronger version of 2.1. We are ready for a definition.
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Let TV be a near-ring. An TV-group Vwill be called compatible if, given v in Vand a in
TV, there exists /3 in TV such that

for all w in V.

Example. Let V be an H-group belonging to some variety °V. Let V(x, V) be the
polynomials in x over V(see (6, p. 215) or (4, pp. 12-13)). Now V(x, V) is a near-ring (not
necessarily zero-symmetric) under substitution (for x) and pointwise addition. If (x)p is in
V(x, V), then the maps of V into V of the form u—» up (u e V) form a near-ring (this
near-ring, the near-ring of polynomial maps (4), is not necessarily zero-symmetric). We
denote the zero-symmetric part of this near-ring by Po( V). We claim that Vis a compatible
^o( V)-group. Indeed, if a is in Po( V) and v in V, then there exists (x)p in V(x, Y) where a
is the map u^>up(u e V). Clearly (x)q = (v + x)p~ vp is in V(x, V) and thus with /3 the
map u—» uq (u e V), it follows that

(u + u)a — va = u/3

for all u in V. This example illustrates the importance of compatible TV-groups.
The notion of a 2-tame N-group will now be introduced. Let V be an TV-group.

Suppose that for each v in V and a in N there exists /3 m TV such that

(v + Wj)a — va= w,j8

for any two elements w,, i = 1, 2, of V. In this case we call V 2-tame.
Clearly being 2-tame is stronger than being tame and likely to be weaker than being

compatible. It is also clear from the definition that one may define an n-tame TV-group
where n is any cardinal.

If a near-ring N has a faithful 2-tame (compatible) TV-group, then we call TV 2-tame
(compatible).

7. TV-endomorphisms of 2-tame TV-groups

Although the TV-endomorphisms of an TV-group V need not form a near-ring the
situation is simplified in the case that V is 2-tame by the fact that if 8 is an TV-
endomorphism then so is 1 — S.

The following proposition is basic.

Proposition 7.1. If Vis a 2-tame N-group and \L an N-endomorphism of V, then

(v+ Wfj,)a — va = (vfj.+ w/xfa —

for all v and w in V and a in N.

Proof. Since V is 2-tame, there exists /3 in TV such that

(i> + w)a — va = w/3; and

(u + w/j.)a -va= w/x/3.
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Now
w/xj3 = w/3/x

and the proposition follows.
Let V be an N-group and 8 an N-endomorphism of V. By 1 — 8 we mean the map of V

into Vtaking uin Vto «-v8 .

Proposition 7.2. / / V is a 2-tame N-group and 8 an N-endomorphism of V, then
u(l — 8) commutes with w8 for all u and w in V.

Proof. In 7.1 take a = 1, fj. = 8 and v = — u. It follows that

-u+w8 + u= -u8+w8 + u8

for all win V (i.e. — u(l — 8) + w8 + u(l - 8) = w8). The proposition follows.

Theorem 7.3. 1/ Vis a 2-tame N-group and 8 an N-endomorphism of V, then I —Sis
an N-endomorphism.

Proof. Let vi and v2 be in V. We have

(vi + v2)(l- 8)= vt + v2- v28- Vx8.

Since by 7.2, v2— v28 commutes with Vi8, it follows that

(vi + v2)(l -8) = Vi~ Vi8 + v2-v28

Thus 1 — 5 is a group homomorphism of Vinto V. Now take /i = 8 and w = — v in 7.1. We
see that

(v— v8)a— va = — (v8a)

for alLu in V and a in N. Thus

u(l - 5)a = - (uaS) + ua.

By 7.2, vaS commutes with va — va8 and

— (va8) +va = va — vaS.
It follows that

u(l — 8)a = va — va8
= ua(l - 8).

The theorem is now proved.
If Vis an N-group we denote the centre of Vby Z( V). Theorem 7.3 has the following

corollary.

Corollary. 1/ V is a 2-tame N-group and 8 an N-endomorphism of V, then V8 and
V ( l - 5 ) are submodules of V, V= V( l -8 )+ V8 and V5D V(l-S)siZ(V).
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Proof. Since 1 — 5 is an N-endomorphism, VS and V(l — 5) are TV-subgroups of V
and thus submodules. Now if v is in V, v = v - vS + vS and therefore V(l - 8) + VS = V. By
7.2, V(l - 8) D VS is in the centre of VS and V(l - S). Therefore VS D V(l - 8) ^ Z( V)
and the corollary follows.

An interesting special case of the above corollary is where Z( V) = {0}. In this case if 8 is
non-trivial, then neither V(l-S) nor VS is {0} and V= V(1-8)©VS. Thus in this case
every TV-endomorphism of V induces a unique split of V and a strong version of the
Krull-Schmitt theorem holds.

We now look at the case where Z( V) ̂  {0}. A non-zero TV-group V will be called
indecomposible if V is not the direct sum of two non-zero submodules. If V is a 2-tame
N-group, the proof of Lemma 14.4 p. 82 of (2) goes through without change. From this the
following theorem is easily deduced.

Theorem 7.4. Let N be a near-ring with a 2- tame N-group V where V has maximal
and minimal condition on submodules. If

V = 17x0.. .0 Ur = Wiffi.. .© Ws

where the Uh i=l,..., r, and Wh i=l,..., s, are indecomposible, thenr= s and there exists a
permutationpof 1,..., rsuch that Ui isN-isomorphic to W^p, i=\,..., r.

8. Primitive 2-tame near-rings

We call TV a primitive 2-tame near-ring, if it has a 2-tame N-group which is minimal and
faithful.

Let us denote the near-ring of all zero-fixing maps of a group V by Mo( V).
It is the purpose of this section to look more closely at primitive 2-tame near-rings.

Indeed in the case where N has minimal condition these near-rings are either of the form
Mo( V) (where V is a finite group) or a complete matrix ring over a division ring.

Lemma 8.1. LetNbe a near-ring, Va minimal N-group which is 2-tame, AutNVthe
group of all N-automorphisms of V and 0 the zero N-endomorphism of V. If AutN V^ {1}
then AutNVU{0} is a division ring under composition and pointwise addition.

Proof. Since V is minimal, any non-trivial N-endomorphism of V is in AutNV. Let
S^l be in AutNV. By 7.3, 1-5 and 1-S"1 are in AutjvV. But S(l-5~1) = S - l . Thus
S - 1 is in AutN V. Hence (1 - 8)(8 -1)"1 is in AutN V. Now

u(l - 8)(5 -1)" 1 = - v(8 - 1)(S -1)" 1

= — v
for all v in V, and the map — 1: u—» — v is in AutjvV It follows that V is abelian.

We shall show that AutNVU{0} is an abelian group under addition. Clearly 0 is an
additive identity of AutNVU{0} and, if /*, is in AutA,VU{0}, then - / A = (-1) /U, is an
additive inverse of pu Suppose 8i and S2 are in AutN VU{0}. If either Si or 82 is zero then it
is certainly true that Si - S2 is in AutN VU{0}. If St = ( - l)S2 = - 82, then 81 + 82 = 0, and if
8^(-1)52 then 1 - 8~[\- 1)S2 is in Aut^V by 7.3. In this case
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is in AutN V. Hence, under addition, AutNVU{0} is a group. This group is abelian since Vis
abelian. The left distributive law clearly holds and since the elements of AutNVU{0} are
distributive in M0(V) the right distributive law holds. Also a non-zero element of
Aut/vVU{0} has a multiplicative inverse and the lemma is proved.

Lemma 8.2. IfNis a near-field with a minimal 2- tame N- group V, then N is a division
ring.

Proof. By (6, 8.3, p. 237) N has no proper right N-subgroups (0: V) = {0}, and N is
faithful on V. Clearly if V has only one non-zero element, then N is the field of order two.
Now if u and v are two non-zero elements of V, then (0: u) = 0 = (0: v) and there exists an
N-isomorphism jx. of uN( = V) onto vN( = V) such that ufj. = v. Now, by 8.1, 1 + fi is an
N-endomorphism of V. If a is in N, then

(u+v)a =

= ua +
= ua+va

and the elements of AT distributive over V. Now V^ {0} and, since Vis a unitary N-group,
(0: V) = {0}. The elements of N are distributive in Mo( V) and the lemma follows.

Before we state our main result on primitive 2-tame near-rings we need a proposition.
A submodule U of an N-group V will be called abelian if addition in U* is

commutative and elements of N distribute over U (i.e. if A7(0: U){ = A) is a ring and U is
an A-module in the ring sense).

Proposition 8.3. IfanN-group V is a direct sum V,® V2 of two minimal N-groups and
if Vi is non- abelian, then Vj and V2 are the only proper submodules of V.

Proof. If Wis a proper submodule of Vand W^ Vh j= l , 2, then by (6,2.23, p. 48)

(v, + w)n(v2+ W)/w
is abelian. But

V, + W= V2+ W= V

and, since VIW is N-isomorphic to

v1/v1nw= vt/{0},

V\ is abelian. This contradiction establishes the proposition.
If N is a near-ring and V a faithful minimal N-group we may regard N as a

subnear-ring of Mo( V). We say Nis dense in Mo( V), if it is dense with respect to the finite
topology (see (6, 4.26, p. 111)).

Theorem 8.4. Let N be a near-ring with a faithful minimal N-group V. The N-group V
is 2-tame if, and only if, N is either dense in Mo( V) or N is a ring.

Proof. Suppose N is a ring. Since for v^ 0 in V, vN= V, it is evident that V is a ring
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module. Thus if v and w are in V and a is in N, then (v+w)a — va= wa. Clearly V is
2-tame.

Suppose Nis dense in Mo( V). It follows that if vvi and w2 are any two distinct elements
of V, then there exists /3 in Vsuch that wxfi = vt and w2/3 = v2 for any two elements v^ and
v2 of V. Let v be in V and a in N and take

v,, = (v+ wja — va, i = l ,2 .

The fact that Vis 2-tame follows from the existence of 3.
Now suppose that V is 2-tame and that N is not a ring. The result will follow from (6,

4.54, p. 129) if we can show that an N-automorphism /xof Vmust in fact be the identity.
Let v be a non-zero element of V. If for all non-zero elements u of V, (0: v) = (0: M),

then (0: u) = D(0: u) where u ranges over all elements of V. In this case (0: v) = 0, since
(0: V) = {0}. Therefore uN(= V) is N- isomorphic to N and N has no proper right
N-subgroups. By (6, 8.3, p. 237) N is a near-field and by 8.2, N is a division ring.

Thus we may assume that there exists a non-zero element u in V such that
(0: «)T^(0: V). If a is in (0: v), then ua = u/xa = 0 and, by 7.1 it follows that (u+ wja)a =

w/x)a for all w in V. Thus

(1)

for all Wi in Vand a in (0: v). Now take Wi such that u + u^ = u and set x = u/x + Wi. Since
u^O, (0: u) is, by (6, p. 103), a maximal right ideal of N. Also (0: u)^(0: v). Thus
(0: u) + (0: v) = Nand 1 = el-\- e2 where ei is in (0: u) and e2 is in (0: v). Now

u = uei + ue2 = «e2 = xe2 (2)

by (1). Since xe2^0, x^0. We shall show that (0: u)D(0: t>)^(0: x). If y is in
(0: M)D(0: U) then, since Vis 2-tame, there exists A in Nsuch that

and
( + '^y— vy=

Now v + Wi=u and, since 7 is in (0: u)fl(0: v), it follows that W!A = 0. Therefore
1 = 0 . Thus

and, since try = O, we see that (u + w1/i~
1)7 = 0. It now follows that

= xy.
Hence 7 is in (0: x) and (0: u)C\(0: v)^(0: x).

Now XT^O and (0: x) is a maximal right ideal of N. By (2) xe2^0 and (0: x)^(0: D).
Thus (0: x) + (0: u) = N and with i? = (0: M)D(0 : v), it follows that

N/R = (0: x)/R + (0: t>)/i? = (0: u)/R@(0: v)/R.

Now (0: u)/R is N-isomorphic to N/(0: u) which is N-isomorphic to uN(= V). Similarly
(0: v)/R is N-isomorphic to V. Since (0: x)/R is a proper submodule of N/R, it follows by
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8.3 that (O:x)/R is equal 'to either (O:u)/R or (O:v)/K But since (0: x)^(0: v),
(0: u)/R = (0:x)/R and (0: u) = (0: x). Thus x = xe2. By (2) u = x. Thus t; + tvj = u/x + wx

and u = U/LL This is true for any v in V and n is therefore the identity. The proof is
complete.

In Section 5 we saw that for tame near-rings minimal condition on right ideals implies
maximal condition on right ideals. However, if 2-tame near-rings depart far enough from
rings, minimal condition implies finiteness.

We shall call a near-ring Nring-free if no non-zero homomorphic image of N is a ring.
With the aid of 8.4 it is possible to deduce the following theorem.

Theorem 8.5. If N is a 2-tame ring-free near-ring with minimal condition on right
ideals then N is finite.

This is proved by considering right ideals

{0} = Ro< Rt <... < Rk = N

as in lemma 5.6 and, out of all minimal factors of N, N-isomorphic to Ri+1/Rt (i in
{0,..., k — 1}) choosing one R/H with R minimal. Then, as in the proof of 4.2, one finds an
element v of a faithful 2-tame TV-group V such that vR > vH. The proof is completed by
observing that the 2-tame TV-group vR/vH is TV-isomorphic to Ri+JRi from which it
follows, by 8.4 and (6, 4.61, p. 132), that Ri+JRi is finite.

9. Centralisers of abelian submodules

In this section we prove certain specialised results to be used in proving the final
theorem in the next section.

Let V be a group and Hi and H2 subsets of V. By [Hi, H2] we shall mean the subset of
V consisting of all —hi — h2 + hi + h2 where /i, is in Hh i = 1, 2.

Let U be a submodule of a tame JV-group V, then Cv( U) will denote the set of all
elements v in Vsuch that [vN, U] = {0}.

Proposition 9.1. If U is a submodule of a tame N- group V, then Cv( U) is a submodule.

Proof. Since the set of all v in V such that [v, U] = {0} forms a subgroup H of V,
CV( U) is simply the sum of all submodules of V contained in H.

From now on we shall be dealing with the following situation.

(a) N is a near-ring with minimal condition on right ideals;
(b) V is a faithful compatible N-group;
(c) U is an abelian minimal N-subgroup of V; and
(d) ( I / : V)^(0: U).

Proposition 9.2. There exists y in (U: V) such that uy = u for all u in U.

Proof. Since U is minimal and abelian and N has minimal condition N/(0: U) is a
simple ring. Thus (0: U) is a maximal ideal of TV and by (d), (0: U) + (U: V) = N. Let
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1 = 71 + 72 where yi is in (0: 17) and y2 is in (U: V). If we take y = y2 the proposition
follows.

Lemma 9.3. Let vh i e I, be a system of coset representatives of VIU in V. For each k in
I there exists gk in N such that

(0 & = lmod(l/: V);
(ii) (vk + u)^k = (vk)^k for all u in U; and
(Hi) u£k = 0 for all u in U.

Proof. Let y be as in 9.2. There exists ak in TV such that

( - vk + v)y- (- vk)y = vak

for all t; in V. Since y is in (17: V), it follows that for all v in V, vak is in U and ak is in
(U: V). Set pfc = 1 - ak. Clearly pk = 1 mod (17: V). Now

(t>k + u)pk = vk + u-

for all uin U. Since(— wk)yisin 17, L7isabelianand uy= uforall uin U, it follows that

(ufc + u)pk = vk + (-vk)y

for all u in t7. Taking M = 0 we see that vk + (—vk)y= vkpk and

for all u in U. Suppose, without loss of generality, that 0 is in J and v0 represents the coset
U. Take £k = pkp0. Now up0 = vopo for all u in U and since 0po = 0, it follows that up0 = 0
for all u in U. Thus u£k = upkp0 = 0 for all urn U since Mpk is in U. We have shown (iii)
holds. Also, since pk = po= 1 mod (U: V), ^k = l mod (U: V) and (j) holds. Finally

for all u in 17 and (ii) holds. The lemma is proved.

Lemma 9.4. Let vh i s I be a system of coset representatives of VIU in V. Let S be the
subset of I consisting of all s in I such that vs = 0 mod Cv( U). If Sis a proper subset of land k
is in I- S, then there exists Ak in (C7: V) such that

(i) (vk + Mi)Ak^ vk\k for some ut in U; and
(ii) «\k = 0 for all u in U.

Proof. Let & be as in 9.3. Set crk = - £k + 1 . Clearly ak is in (U: V) and
(vk + u)ak = - ufc& + vk + u

= ukafc + u (1)

for all u in U. Since vk is not in Cv( I/), there exists TJ in TV such that

[vkV, U)?0. (2)
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Take Afc =[17, ak]. Clearly Afc is in (U: V). If u is in U, then

u\k = — MTJ — «afc + ur) + uak

= 0

since U is abelian. Thus (ii) holds. If u is in U then, since (7 is a submodule of V,

where u' is in U. Thus

(uk + u)Afc = - ( « k ) i j - u'-(ufc + u)ak+ u'+ vkr) + (vk + u)ak

(3)

since (vk + u)ak is in I/and I/is abelian. From (1) and the fact that vkak is in U,(vk + u)ak

takes all values of U as u ranges over U. From (2) and (3)

(4)

for some u in U. If in (3) we take u2 — — (vk)ak, then from (1), (vk + u2)ak = 0 and

(vk + u2)\k=[vk7), 0]

= 0. (5)

Now (i) follows as a consequence of (4) and (5). The lemma is proved.

Lemma 9.5. Let vh i e I. be a system of coset representatives of VIU in V. Let S be the
subset of I consisting of all s in I such that vs = 0 mod Cv( V).

If S is a proper subset of I and k is in I— S, then there exists yk in (U: V) such that

(0 (Vk + u)lk = vkyk for all u in U; and
(ii) uxyk^ 0 for some Ui in U.

Proof. Let u, be the representative of the coset - vk + U of U. Let A, be as in 9.4.
Take yk to be an element of N such that

for all v in V. Since Aj is in (I / : V) so is yk. Now

for some Mj in [/and thus u^y^O. Hence (ii) holds. Also

(vk + u) yk = (Vj + vk + u)A, - ViXi

for all u in U. Since u, + vk is in U, (vt + vk + M)X, = 0 and

(vk + u)yk= -u.A;

for all u in U. On taking u = 0 we see that vkyk = — u,A,. Thus

(vk + u)yk = vkyk

for all u in U. Thus (i) follows and the lemma is proved.
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Lemma 9.6. Let vh i e I, be a system of coset representatives of VI[/ in V. Let S be the
subset of I consisting of all s in I such that vs = 0 mod CV( U). If Sis a proper subset of I and k
is in I— S, then there exists 8k in N such that

(i) 8k = lmod(U: V);
(ii) (vk + u)8k = vk8k for all u in U; and

(Hi) u8k = u for all u in U.

Proof. Let yk be as in 9.5 and yk be the image of yk in N/(0: L0- By (ii) of 9.5,
«i 7k 7^0 for some Mi in [/.Since C/isabelian, N/(0: U) is a ring which is primitive on [/and
has minimal condition. Thus N/(0: U) is simple and there exists dh i= 1,..., r, and /3;,
j = 1,..., s, in N/(0; U) such that

Id,7fc/5y = l (1)
Ui

(where I is the identity of N/(0: [/)). By assumption (d), (0: U) + (U: V) = Nand there
exists a, and /3; in ([ / : V) such that ud, = ua, and ufy = ufy for i = 1,..., r, and ]'• = 1,. . . , 5.
Let & be as in 9.3. Set

Piy = ( & + «.-) 7fc/3y

for i = 1,..., r, and j=l,..., s. Clearly each pn is in ( [ / : V) which has an abelian additive

group. The sum X Ay is therefore well defined. Take
'. i

8k = 4 + Z p,y.

Clearly Sk = 1 mod ([ / : V). Now for u in [/

(uk + u)p0 = [vk£k +(vk + u)a,]ykj8y

and ufc& = ufc + u' (M' e [/), since & = 1 mod ([ / : VO. Thus

(uk + u)pu = [vk+u' + (vk + M)a,]Tfc/3y

and, since u' + (vk + M)a, is in U, it follows from (i) of 9.5 that

as can be seen on taking u = 0. Thus for all u in U

= vk8k.

Hence (ii) follows. Now for u in U

and by (1), £ upy = u. Thus for u in U
••i

u8k = u£

= u
and (HI) follows. The lemma is proved.
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Lemma 9.7. Let vh i e I, be a system of coset representatives of VIU in V. Let S be the
subsetof Iconsisting of all sin Isuch that vs = 0 mod CV(U). IfS is a proper subset of I, then
there exists p in N such that

(i) p=lmod(U: V);
(ii) (vk + u)p = vkp for all kin I—S and u in U; and

(Hi) up= u for all u in U.

Proof. Let Si be the set of all 8k as in 9.6. Let S2 be the set of all finite products of
elements of St. Take p in S2 such that pN is minimal (this is possible by 5.7). Clearly
p = 1 mod (U: V) and up= u for all u in U. Suppose for i in /— S

P (1)

for some ux in U. Consider pS, where St is as in 9.6. Now for u in U

where u' is in U, because p = 1 mod (U: V). Thus

(vi + u)pSi = ViSi =

for all u in U. Hence

for all /3 in N and

for all TJ in pS.TV. Now p8j is in S2 and pSiN^pN. Since p is in pJVwe see from (1) that
pSiN<pN. This-contradiction to the minimality of pN establishes that p satisfies (ii). The
lemma is now proved.

Lemma 9.8. Let vh i e I, be a system of coset representatives of VIU in V. For k in I
there exists trk in N such that

(0 (Vk + U\)irkf^ vk7rk for some ux in U; and
(ii) (vi + u)irk = Viirk for all u in U and v,^ vk mod Cv( U)-

Proof. Let o; represent the coset — vk + U. Let p be as in 9.7. Take Vk to be an
element of JV such that

( - vk + v)p -(- vk)p = virk

for all v in V. Now taking v = vk + u where u is in U we see

(vk + u)TTk=Up~(Vj)p

= U~(Vj)p.

Clearly (vk + u)irk^ vkirk for some u in U and (i) follows. Now if i in / is such that
Vi + u^ vk mod Cv( U) where u is in U, then, since

u) irk = ( - vk + Vi + u)p - ( - vk)p
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and

— Ufc + Vii + U = V, + U.'

for some u' in U and vM 0 mod Cv( CO, it follows that

(t), + u) TTfc = VrP - ( - t)fc)p

and the lemma follows.
We are now in a position to state the main result of this section in the form of a theorem.

Theorem 9.9. If conditions (a), (b), (c) and (d) are satisfied, then the index of Cv( U)
in V is finite.

Proof. We may assume that Cv( U)<V. Let vh i e I, be a system of coset representa-
tives of V/Uin V. We rename some of the indices in /with the ordinals 1,2,... in such a
way that the Vb, b an ordinal, are coset representatives of Cv( U) in V.

Let r be a positive integer and let M, be the set of all a in N such that

(uf + u)a = Via

for all u in U and all i € I, where

Uĵ Uymod CV(U)

for any j in {1,. . . , /•}. Clearly the Mn r = 1, 2 , . . . are right N-subgroups of N and

Let TT2, ITI, ••• be as in 9.8. We have ir2 is in M2 but not in Mt; TT3 is in M3 but not in M2 etc.
Thus, if the set of indexing ordinals is infinite, we have a contradiction to 5.7. It follows that
the number of cosets of Cv( V) in V is finite and the theorem holds.

10. Minimal condition and the near-ring generated by inner automorphisms

In this section we prove that if the near-ring generated by the inner automorphisms of a
group has minimal condition, then it is finite.

We state a lemma for tame TV-groups where N has minimal condition.

Lemma 10.1. Let N be a near-ring with minimal condition on right ideals and V a
faithful tame N-group. If Uis a minimal N-subgroup of Vand (U:V)^ {0}, then (U: V) is
a finite direct sum of right ideals N- isomorphic to U.

Proof. Since V(U: V)c U, it follows that V(U: V)J(N) = {0}, ( [ / : V)J(W) = {0}
and, by 5.3, (U: V)Ssoc N. Now soc N is absolutely reducible in N. Thus (17: V) is a
direct sum of minimal right ideals (cf. (2,15.2, p. 86)). By minimal condition this direct sum
is finite. Thus

(U: V) = *!©

where Rhi = l,...,k, are minimal right ideals of N. For any Rh i in {1,. . . , k}, there exists v
in Vsuch that uR,/{0}. But since Ri^(U: V), vRt= U. Clearly (0: u)ni?,={0} and it
follows that Ri is N-isomorphic to U. The proof is complete.
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If V is a group, then /(V) will denote the near-ring generated by the inner automorph-
isms of V. In Section 6 we saw that V is a compatible /(V)-group. Clearly the 7( V)-
subgroups of V are precisely the normal subgroups.

Proposition 10.2 / / V is a group and U a normal subgroup of V, then

: V).

Let AT be a near-ring with a faithful compatible N-group Vand a minimal N-subgroup
U. In Section 9 we were considering the situation where (U: V) ^ (0: [/). These considera-
tions are now required.

Lemma 10.3. Let V be a group with a minimal normal subgroup U. If I(V) has
minimal condition on right ideals and ( [ / : V)^(0: If), then U is finite.

Proof. Suppose LT is non-abelian. We have [/is a minimal compatible /(V)/(0: [/)-
group. In particular [/is 2-tame. Also for u in U, uJV = [/where N" = I{ V)/(0: [/). Thus
[7V]+ is non-abelian and a non-ring. Since N has minimal condition, it follows by 8.4 that
JVsMo(U) and [/is finite (see (6, 7.19, p. 198)).

If I/*" is abelian, then the inner automorphisms of V distribute over U and
/(V)/(0 :[/)( = N1) is a ring and U an AT-module in the ring sense. The conditions (a) to (d)
of Section 9 are satisfied. Thus the index | V: Cv( U) | of Cv( U) in V is finite by 9.9. Now
all v in Vsuch that [v, U] = {0} form a normal subgroup Cof Vcontaining CV(U). Thus
CV(U)<C and, since C is an J( V)-submodule, C= Cv([/), and | V: C\ is finite. Let
Vi,..., vn. be a system of coset representatives of V/Cin V. Let u, be a non-zero element of
[/. Clearly [/is the normal subgroup of Vgenerated by uu and thus [/is generated by all
elements of the form

i = 1,..., n, with v in C. Thus [/ is generated by the elements of the form

of V. Hence [/is a finitely generated abelian group and is a finite direct sum A]©. ..®Akoi
cyclic groups. Also being a minimal normal subgroup of V, it is characteristically simple
and therefore it is a finite elementary abelian p-group. The lemma is proved.

Theorem 10.4. Let Vbe a group. If I{ V) has minimal condition on right ideals, then it
is finite.

Proof. By 5.6 there exists a positive integer k{ V) and right ideals

of J( V) such that for i = 0,... , k( V) -1, Ri+1/Ri is a minimal factor of /(V). We proceed by
induction on k(V). If k( V) = 0, then J(V) = {0}, the identity map of Vonto Vis zero and,
V={0}. It may therefore be assumed that fc( V)>0 and that /(V)^{0}.

Out of all ideals of the form (W: V) where Wis a submodule of V, choose one {H: V)
such that (H: V) is minimal for being non-zero. We also assume that His minimal since, if
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Hh i e I, are such that (Hf: V) = (H: V) and W= D Hh then (W: V) = (H: V). Take #

to be a minimal right ideal of /(V) contained in (H: V). By 4.2, R is a minimal /(V)-group.
Set

K= I oR.
v e V

For each i> in V, ui? = {0} or vR is 7( V)-isomorphtc to R. Thus K is, by 5.1, absolutely
reducible in V. Also vR^H,R^(H: V), and we see that K^H. But R^(K: V)^{0}.
From the minimality oiH,H= K. From the absolute reducibility otK,H= KO(BKU where
Ko is a minimal /(V)-subgroup of V. Set Y= VI Kx and X=K/Ki. It follows that X is a
minimal submodule of Yand by 10.2

/(Y)/(X: Y) = /(Y/X) = I( VIK) s /(V)/(K: V). (1)

Now Y= V/Ki and thus

/( i1 = / ( V ) P . : V)

by 10.2. Since, by the minimality of K, {Kx: V) = {0} it follows that

I(Y) = I(V). (2)

But(iC: V) >{0}and k(V)> k(V/K) so that by (1) we may assume I(Y)/(X: Y) is finite.
From (2) it will then follow that J( V) is finite if it is shown that (X: Y) is finite. By 10.1 this
will follow if it is shown that X is finite. It follows from 10.3 that we may assume
(X: Y) g (0: X). Now J( Y)/(0: X){ = N) has X as a minimal N-group. Also

and iVis finite. Since for x^0 in X, xN=X, it follows that X is finite. The theorem is
proved.

11. Comments

Although it has been assumed throughout that the tame JV-groups considered are
unitary this assumption is not always required. Indeed the results of Section 1 do not need
the existence of an identity and the results of Sections 3 and 4 hold if N has an identity
although the N-groups considered may not be unitary.

One defect in the theory developed is that homomorphic images of tame (2-tame,
compatible) near-rings need no longer be tame (2-tame, compatible). This defect can, to a
certain extent, be overcome by generalising the notion of tame.

It seems hopeful that a worthwhile theory of tame near-rings with maximal condition
on right ideals can be developed and that results resembling those due to Goldie (see (3,
Ch. 3)) for rings, also hold.

In the considerations of Section 9 we dealt with the situation where V was a faithful
compatible JV-group with a minimal submodule t/such that (U: V)^(0: £7)- In a more
detailed study of the structure of a compatible near-ring N with minimal condition this
situation is of special importance. In this case the near-ring N has a wreath product
structure.

The final theorem (10.4) has as a consequence that if the near-ring generated by the
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inner automorphisms of a group Vhas a minimal condition on right ideals, then Vis centre
by finite. If maximal condition on right ideals is assumed it is still possible to obtain
information about V. A question that would seem to be of importance in this direction is
whether 9.9 holds with the weaker assumption of maximal condition.

As was noted in Section 6 the near-ring of zero-symmetric polynomial maps over an
ft-group forms a compatible near-ring. Dr G. Baird and the author have considered this
situation. It turns out that finite simple il-groups are, apart from certain interesting
exceptions, polynomially complete (cf. 8.4; for a definition of polynomial completeness
see (6,7.74, p. 219) or (4) or (5)). The exceptions have been bound to be fl-groups bearing
an interesting similarity to Lie-algebras. We hope to publish these results shortly.

The author wishes to thank Dr G. Baird for the interest he has taken in the writing of
this paper and also the referee for his comments.
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