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The asymmetric instability in two streamwise orthogonal planes for three-dimensional
flow-induced vibration (FIV) of an elastically mounted cube at a moderate Reynolds
number of 300 is numerically investigated in this paper. The full-order computational fluid
dynamics method, data-driven stability analysis via the eigensystem realization algorithm
and the selective frequency damping method and total dynamic mode decomposition
(TDMD) are applied here to explore this problem. Due to the unsteady non-axisymmetric
wakefield formed for flow passing a stationary cube, the FIV response was found to
exhibit separate structural stability and oscillations (including lock-in and galloping
behaviour) in the two different streamwise orthogonal planes while the body is released.
The initial kinetic energy accompanying the release of the cube could destabilize the
above-mentioned structural stability. The observed FIV asymmetric instability is verified
by the root trajectory of the structural mode obtained via data-driven stability analysis. The
stability of the structural modes dominates regardless of whether the structural response
oscillates significantly in various (reduced) velocity ranges. Further TDMD analysis on the
wake structure, accompanied by the time–frequency spectrum of time-history structural
displacements, suggested that the present FIV unit with galloping behaviour is dominated
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by the combination of the shifted base-flow mode, structure modes and several harmonics
of the wake mode.

Key words: flow-structure interactions, instability control, vortex dynamics

1. Introduction

Flow-induced vibration (FIV) is one kind of fluid–solid coupling behaviour quite common
in nature as well as in industrial environments, and it also widely exists in the fields of
marine science, aerospace, energy and medicine. The works of Sarpkaya (1979), Parkinson
(1989), Williamson & Govardhan (2004) and Ma et al. (2022) have comprehensively
reviewed the FIV phenomenon. The generation of FIV is caused by the interaction between
the fluid and the elastically supported and/or flexible structure. From the mechanism
perspective, FIV patterns are classified as lock-in (resonance and flutter), galloping,
buffeting, surge, etc. (Modi & Munshi 1998; Waals, Phadke & Bultema 2007). Aside from
having potential utility when applied to energy extractors, FIV may cause fatigue/fracture
to these mechanical structures and therefore cause threat to life.

Geometric shapes have a decisive influence on the response of FIV, and past research on
FIV has explored a multitude of shapes, such as circular cylinders (Navrose & Sanjay 2016;
Huera-Huarte 2020; Domínguez, Piedra & Ramos 2021), square cylinders (Zhao, Cheng &
Zhou 2013; Li et al. 2019), trapezoids (Wang et al. 2021; Zhu et al. 2021), spheres (Jauvtis,
Govardhan & Williamson 2001; Govardhan & Williamson 2005; Rajamuni, Thompson
& Hourigan 2018, 2020; Chizfahm, Joshi & Jaiman 2021), airfoils (Besem et al. 2015;
Derakhshandeh et al. 2016), etc. These studies have provided insights into the vibrational
characteristics of the various shapes. However, there is much less attention on the FIV of
cubes. To our knowledge, the only works on the FIV study of a cube are the experimental
measurements carried out by Zhao et al. (2019). Zhao et al. experimentally measured the
vibration response of the elastically mounted cube at different angles of attack, with the
accompanying Reynolds number Re varying from 2840 to 36 595. At all three angles
of attack (specifically, 0◦, 20◦ and 45◦), the systems of concern all eventually exhibited
galloping behaviour as the incoming velocity (reduced velocity) increased. The detailed
division of the synchronization regions depends on the locking relationship between the
various dynamics coefficients. However, the work of Zhao et al. (2019) only tabulated
the response characteristics for different configurations from the characterization of the
measured data. There has been no relevant study to investigate the mechanism of the FIV
of the cube from the modal point of view. In addition, there is an absence of investigations
that deal with the cube’s FIV in the case of low to moderate Reynolds numbers. As we
have discovered in this study, the system of flow past a cube has special wake dynamic
features at Reynolds numbers in the low to moderate range.

Following the previous works of Khan, Sharma & Agrawal (2019), Saha (2004) and
Klotz et al. (2014), we calculate three typical wake structures for flow past a cube and
present these in figure 1. The correlated wake structures evolve from steady axisymmetric
to steady non-axisymmetric and then to unsteady non-axisymmetric with increasing
Reynolds number. In detail, the wake is stable and symmetrical at Re less than 200, as
shown in figure 1(a). In this Re interval, as Re increases the drag coefficient decreases
while the recirculation length increases. This symmetric structure will collapse as Re rises
to approximately 200–215. With respect to range of 215 < Re < 250, the symmetry of
one streamwise orthogonal plane is maintained while the asymmetry of the other plane
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(b)

(a)

(c)

Figure 1. Instantaneous streamline visualization (via line integral convolution vector methodology) at two
streamwise orthogonal planes for flow passing a cube at Reynolds numbers of (a) 150, (b) 250 and
(c) 300. Panels show (a) Re = 150: steady axisymmetric, (b) Re = 250: steady non-axisymmetric,
(c) Re = 300: unsteady non-axisymmetric.

is triggered (cf. figure 1b) due to the lack of viscous force balancing the centrifugal
force separating the bubbles, there is a transfer of fluid from one vortex to another (Saha
2004). When the Reynolds number increases to a threshold (approximately equal to 270),
Hopf bifurcation occurs and causes the wake structure to become unsteady. In this case,
the flow structure forms symmetric behaviour in one plane and asymmetric behaviour
in the other plane, as exhibited in figure 1(c). As Re is further increased to around
340, the symmetric structure on the streamwise orthogonal planes completely disappears
and the system becomes unsteady and non-axisymmetric in all directions. Considering
the specific characteristics (i.e. symmetric on one plane, asymmetric on the other and
overall vortex shedding) of flow past a stationary cube at Re = 300, we have chosen this
configuration here as the basis for the study of the cube’s FIV in this paper.

To study the mechanism underlying FIV, previous studies have tried to explore, from
a modal perspective, the flow–structure coupling behaviour using data-driven stability
analysis. The data-driven methodologies applied in FIV research include linear stability
analysis (LSA) (Zhang et al. 2015; Yao & Jaiman 2017), global stability analysis (Navrose
& Sanjay 2016), machine learning (Amir & Rajeev 2022), etc. Zhang et al. (2015) carried
out a LSA of vortex-induced vibration of a circular cylinder using the reduced-order
model based on the autoregressive with exogenous input (ARX) identification method.
The modes dominating the FIV system involve the structure mode (SM) and wake
mode (WM), whose internal coupling will have a significant impact on the system
response. Besides the ARX method, Yao & Jaiman (2017) and Cheng et al. (2022c)
applied the eigensystem realization algorithm (ERA) identification technology to conduct
linear stability analysis for the two-dimensional (2-D) FIV system. The above stability
method sought to explain the various behaviours/phenomena in FIV fields through
modal interactions, transformation and competition. The present work will apply the
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ERA identification method to the LSA of the configuration of interest, and the detailed
methodology will be introduced in the next section.

This work will explore the detailed characterization of the cube’s FIV response and
the mechanisms underlying the complex dynamics based on: (i) full-order results obtained
using computational fluid dynamics (CFD) methods; (ii) data-driven modal analyses based
on the ERA and selective frequency damping method; and (iii) analysis via the total
dynamic modal decomposition of the wake dynamics.

The paper is structured as follows: § 2 details the numerical and analytical methods
listed above. The accuracy of the implemented models used herein is validated carefully
and systematically in § 3. In § 4, the asymmetric structural instability in two transverse
directions for the FIV of the cube is analysed. The detailed response features and wake
dynamics are also explored. Finally, in § 5, the key results of this study are summarized.

2. Numerical methodology

2.1. Computational fluid dynamics
For the configuration of interest in this work, which is an elastically mounted cube
submerged in a three-dimensional (3-D) uniform flow, a full-order model (FOM) CFD
method is first applied to calculate the FIV response. In more detail, the governing
equations of the flow dynamics are the unsteady incompressible Navier–Stokes (NS)
equations, while the boundary changes induced by the cube’s motion are resolved based
on an arbitrary Lagrangian–Eulerian (ALE) scheme. The NS equations in the ALE scheme
are expressed as

∂ui

∂xi
= 0, (2.1)

and
∂ui

∂t
+ (

uj − ûj
) ∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xi∂xj
, (2.2)

where ui is the velocity component in the xi-direction of fluid flow, ûi is the component
of mesh movement velocity in the xi-direction, (x1, x2, x3) = (x, y, z) are the Cartesian
coordinates, p is the pressure and t is the time; ρ and ν are the density and kinematic
viscosity of the fluid, respectively.

The dimensionless structural equation controlling the transverse vibration of the cube is
given by the following:

ḧi + 4πFsζ ḣi + (2πFs)
2 hi = Ci/2m∗, (2.3)

where Fs = fnD/U0 ≡ U−1
r is the reduced natural frequency (D is the side length of

the cube, fn is the structural natural frequency, U0 is the incident flow velocity and Ur
is the reduced velocity); m∗ = ρs/ρ is the mass ratio (ρs is the body density and ρ is
the fluid density); hi is the non-dimensional transverse displacement in the xi-direction
normalized by D; Ci is the lift coefficient in the xi-direction; and, ζ is the structural
damping coefficient.

OpenFOAM (2017), an open-source software for CFD developed by the OpenFOAM
Foundation, is applied for the flow field simulations herein. The NS equations are
discretized by the finite volume method. The transient terms are discretized using the
second-order implicit Eulerian scheme, and the advection, pressure gradient and diffusion
terms are discretized using the second-order Gaussian integration scheme. The large
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Obtain base flow past a stationary

body at prescribed value of Re
using FOM/CFD

1.

Calculate impulse response for Ci,
by applying input pulse for hi to
the stationary body immersed in

base flow (Step 1)

2.

From impulse response data for Ci
(Step 2), use ROM/ERA to

estimate state-space model for the

fluid flow

3.

Recast the structural equation of

motion (with input Ci and output

hi)into state-space form
4.

Couple state-space models for

fluid flow (Step 3) and structural

motion (Step 4) to obtain a state-

space model for the FIV system

5.

Figure 2. Flow diagram summarizing the five key steps in the workflow to obtain the ROM/ERA for a FIV
system involving the coupling of a fluid dynamics ROM (with input hi and output Ci) to a structural dynamics
model (with input Ci and output hi).

time-step transient PIMPLE (merged PISO-SIMPLE) algorithm, which combines the
semi-implicit method for pressure-linked equations (SIMPLE) and the pressure implicit
with the splitting of operators (PISO) algorithm, is used to solve the continuity and
momentum transport equations together in a segregated manner. All of these algorithms
are iterative solvers, but PISO and PIMPLE are used for transient problems, whereas
SIMPLE is used herein for steady-state problems. The pressure–velocity coupling
provided by the PIMPLE algorithm results in better stability and higher accuracy when
large time steps are applied (Penttinen, Yasari & Nilsson 2011). In this case, an adaptive
time-step technique is used herein to ensure that the maximum Courant–Friedrichs–Lewy
(CFL) number CFLmax is limited to 5 (CFLmax ≡ ‖�u‖�t/�xmin, where ‖�u‖ is the
magnitude of the fluid velocity �u, �t is the time step and �xmin is the size of the smallest
grid cell in the computational domain). Additionally, the iteration number for SIMPLE
(steady-state) treatment and pressure–momentum coupling inside PIMPLE are fixed at
50 and 2, respectively, for each time step in the present work. An explicit second-order
symplectic method (Dullweber, Leimkuhler & McLachlan 1997) is applied to integrate
the structural equations of motion. The weakly coupled approach (Wang et al. 2019) is
applied to solve the fluid–structure interaction that links the fluid flow equations ((2.1) and
(2.2)) with the structural equation of motion (2.3).

2.2. Data-driven modal analysis
This section provides a brief description of the reduced-order model (ROM) for the FIV
system and the associated stability analysis. More detailed information is provided in our
previous works (Cheng et al. 2022c, 2023b). Several key steps in constructing the final
coupled ROM (represented as a state-space model) for the FIV system being considered
are depicted in figure 2. The final coupled fluid–solid model contains two parts: the linear
fluid model and the structural model. The linear fluid model is herein represented by the
state-space model obtained by ERA (described in detail later), with inputs hi ≡ y/D or z/D
and outputs Ci (i = 2 and 3 denote y- and z-directions, respectively). The structural model
is derived from the motion control equations and is also expressed as a state-space model
with input Ci and output hi. Finally, the above two state-space models will be coupled
together as described above. The detailed steps are described below:

The first step of the workflow is to apply FOM/CFD calculation to obtain the equilibrium
base flow passing the stationary structure. The steps to obtain the equilibrium base flow for
the 2-D case can be found in our past work (Cheng et al. 2022c, 2023b), and the selective
frequency damping (SFD) (introduced later) will be applied for obtaining the equilibrium
base flow of the 3-D situation in the present work. The equilibrium base flow surrounding
the structure could be viewed as a dynamical system with displacement inputs and
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lift outputs. More specifically, the inputs are the normalized transverse displacements
ur ≡ hi and the outputs are the lift coefficients or ≡ Ci . We then model the fluid dynamics
system using a discrete-time state-space model as follows:

xr (k + 1) = Ãrxr (k) + B̃rur (k) , (2.4)

or (k) = C̃rxr (k) + D̃rur (k) , (2.5)

where xr(k) is the Nx-dimensional state vector, ur(k) is the Nu-dimensional input vector
and or(k) is the Ny-dimensional output vector obtained at discrete-time step k. Here, it
is noted that tk ≡ k�t is the time associated with the kth discrete-time step, where �t is
the time-step size. Immediately following the second step of the workflow, the dynamical
system described above is given a discrete-time Kronecker delta function input uδ

r (or
impulse function) with amplitude Aδ

uδ
r (k) ≡ uδ

r(tk) = Aδ

{
1, k = 0;
0, k = 1, 2, 3, . . . .

(2.6)

This impulse will lead to the impulse response oδ
r(k) ≡ oδ

r(k�t) of the dynamical system

oδ
r(k) ≡ oδ

r(k�t) =
{

D̃r, k = 0;
C̃rÃ

k−1
r B̃r, k = 1, 2, 3, . . . ,

(2.7)

in which the impulse response is the time series of the corresponding coefficients Ci of the
stationary body after it has been transversely displaced by the impulsive inputs (cf. (2.6))
in the xi-direction).

The third step of the workflow will be to construct a low-dimensional linear input–output
state-space model of the dynamic system based on the ERA. This work is achieved by
stacking the time series of the impulse response oδ

r (obtained in step 2) to construct the
(r × s) Hankel matrix

Hc =

⎡⎢⎢⎢⎣
oδ

r(1) oδ
r(2) · · · oδ

r(s)
oδ

r(2) oδ
r(3) · · · oδ

r(s + 1)
...

...
. . .

...

oδ
r(r) oδ

r(r + 1) · · · oδ
r(s + r − 1)

⎤⎥⎥⎥⎦ . (2.8)

The corresponding shifted Hankel matrices of the same size are as follows:

H̃c =

⎡⎢⎢⎢⎣
oδ

r(2) oδ
r(3) · · · oδ

r(s + 1)

oδ
r(3) oδ

r(4) · · · oδ
r(s + 2)

...
...

. . .
...

oδ
r(r + 1) oδ

r(r + 2) · · · oδ
r(s + r)

⎤⎥⎥⎥⎦ . (2.9)

Next, a singular value decomposition of the Hankel matrix Hc yields (the superscript T
denotes matrix transpose)

Hc = UΣVT = [U1 U2]
[
Σ1 0
0 Σ2

] [
VT

1
VT

2

]
, (2.10)

where U is a r × r orthonormal matrix with columns containing the left singular
vectors, Σ is a r × s rectangular ‘diagonal’ matrix with diagonal entries containing
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the non-negative singular values in non-decreasing order, and V is a s × s orthonormal
matrix with columns containing the right singular vectors. Here, we select the rows and
columns of the spectral decomposition corresponding to the dominating modes only, so
the negligible modes represented by the tiny singular values in the diagonal matrix Σ2 are
omitted. Consequently, only the first l singular values in Σ1 are retained.

The Hankel matrix representing the relevant physical modes is estimated using
the truncated singular value decomposition Ĥ = U1Σ1VT

1 = ∑l
k=1 σkkūkv̄

T
k where the

positive singular values σkk are the (k, k)th entries of the diagonal matrix Σ1 ordered
by their non-decreasing value, ūk is the kth column of U (left singular vector) and v̄k is
the kth column of V (right singular vector). This reduced decomposition of Hc provides a
rank-l approximation of the (r × s) Hankel matrix Ĥ . More specifically, the Hankel matrix
Ĥ provides a low-rank approximation for the dynamical system and, as such, represents
the significant temporal patterns in the time sequence impulse response data. Finally,
the system matrices (Ãr, B̃r, C̃r, D̃r) for the discrete-time state-space model (ROM) are
estimated in accordance to

Ār = Σ
−1/2
1 UT

1 H̃cV1Σ
−1/2
1 ; (2.11)

B̄r = Σ
1/2
1 VT

1 Em; (2.12)

C̄r = EtU1Σ
1/2
1 ; (2.13)

D̄r = oδ
r(0), (2.14)

where

Em = [
Iq 0

]T and Et = [
Ip 0,

]
(2.15a,b)

are used to extract the first q columns and first p rows in order to create B̄r and C̄r,
respectively. Here, In is the identity matrix of order n. In the current investigation, the
dimensionless transverse displacement (hi) and lift coefficient (Ci), respectively, are the
input (ur) and output (or), so p = q = 1.

Finally, the system matrices for the discrete-time state-space model, (Ãr, B̃r, C̃r, D̃r), are
transformed into the system matrices for the corresponding continuous-time state-space
model using the relationships Ar = �t−1 ln(Ār), Br = Ar[Ār − I]−1B̄r, Cr = C̄r and Dr =
D̄r, where I is an identity matrix of the same size as Ār (Shieh, Wang & Yates 1980). The
fluid flow system’s continuous-time state-space model then takes the following form:

ẋr (t) = Arxr (t) + Brur (t) ,

or (t) = Crxr (t) + Drur (t) .

}
(2.16)

The dimensionless structural equation of motion provided by

ḧi + 4πFsζ ḣi + (2πFs)
2 hi = asCi/m∗, (2.17)

is transformed into a representation of continuous-time state-space in the fourth step of
the workflow. With input Ci and output hi, (2.17) may be converted into a continuous-time
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state-space form as follows:

ẋs (t) = Asxs (t) + qBsor (t) ,

hi (t) = Csxs (t) + qDsor (t) ,

}
(2.18)

with the structural system’s state vector xs ≡ (hi, ḣi)
T, q ≡ as/m∗ and

As =
[

0 1
− (2πFs)

2 −4πFsc

]
, Bs =

[
0
1

]
, Cs = [1 0] , Ds = [0] . (2.19a–d)

Here, Fs = fnD/U0 ≡ U−1
r is the reduced natural frequency. Finally, a characteristic

length scale as (cf. (2.17)) is determined by the geometry of the body as

as = 1
Ab

· D2

2
, (2.20)

where Ab and D are the cross-sectional area and characteristic length of the bluff body,
respectively, and as is equal to 1/2 for the cube in this work.

In the fifth (and final) step of the workflow, the state-space model for the fluid flow
system provided by (2.16) is coupled to the state-space model for the structural dynamics
provided by (2.18) and (2.19a–d) to generate the linear and reduced-order coupled model
for the FIV system. As a result, the linear and reduced model for the FIV system finally
takes the following shape:

ẋrs (t) = Arsxrs (t) ≡
[

As + qBsDrCs qBsCr
BrCs Ar

]
xrs (t) , (2.21)

h (t) = [Cs 0] xrs (t) , (2.22)

where xrs ≡ (xs, xr)
T is the state vector for the FIV system.

By examining the behaviour of the eigenvalues of the system matrix Ars shown in (2.21),
the FIV stability problem will be addressed. The system’s two or three most dominant
modes, which comprise both the SM and WM, are correlated to the two or three leading
eigenvalues (which vary depending on the Reynolds number). Later in the study, we will
detail our methods for identifying the SM/WM and how we interpret the physical processes
connected to their behaviour. The system matrix Ars complex eigenvalues determine the
associated (eigen)mode’s growth/decay rate and oscillatory properties. More specifically,
the growth or decay rate of the mode is determined by the positivity or negativity of the real
parts of the eigenvalues. Each eigenvalue’s imaginary part corresponds to the accompanied
mode’s oscillatory (eigen)frequency. The (eigen)frequency of the mode is provided by
the expression Im(λ)/2π, where λ is the (complex) eigenvalue and Im(·) stands for the
imaginary part of a complex number.

While the flutter-induced lock-in and galloping behaviours are correlated with an
unstable structure mode (i.e. when the real part of the eigenvalue associated with the
SM is positive) and arise from the interaction between the SM and WM, the resonance
lock-in results from the closeness in value of the frequency associated with the SM to
those associated with the WMs. Furthermore, depending on whether there is a significant
distinction between the root loci associated with the SM and WM, the modal behaviour
of one FIV system is either coupled or uncoupled. It is required to establish which of
the two coupled modes for one FIV system (which we refer to as WSMI and WSMII
below) corresponds to the hidden structure-dominated mode for each value of the natural
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frequency (Fs). In fact, the hidden structure-dominated mode can start as WSMI at
one value of Fs and change to WSMII at a different value of Fs (or vice versa), a
process known as ‘mode veering’ (Gao et al. 2017). The hidden structure-dominated mode
SMc is characterized in this study as the coupled mode with an eigenfrequency that is
closest in value to the reduced natural frequency Fs. In this identification of the hidden
structure-dominated mode, the reader is reminded by the subscript ‘c’ that this mode is
correlated to the coupled status.

2.3. Selective frequency damping
For certain complex configurations where equilibrium base flow is difficult to obtain, the
SFD method (Åkervik et al. 2006; Jordi, Cotter & Sherwin 2015; Casacuberta et al. 2018;
Plante & Laurendeau 2018) can be used to obtain equilibrium base flow for carrying out
further ERA identification. Specifically, the NS equations corresponding to (2.1) and (2.2)
could be expressed in the following form:

q̇ = F (q) . (2.23)

The main strategy of SFD is to add a proportional feedback control to the right end of the
equation

q̇ = F (q) − χ
(
q − qs

)
. (2.24)

It can be seen that, when qs is a static solution of (2.24), qs will also become a static
solution of (2.23). However, there is a concern here in that qs is not a variable that is
known in advance. To address this, the SFD method changes the unknown qs to a low-pass
filtered solution q̄. At the same time, a new equation is added as the differential form of
the low-pass temporal filter {

q̇ = F (q) − χ (q − q̄)

˙̄q = ωc (q − q̄)
. (2.25)

A more detailed description of SFD can be found in other works (Richez, Leguille &
Marquet 2016; Casacuberta et al. 2018; Plante & Laurendeau 2018). Thus, (2.1) and (2.2)
will be rewritten as

∂ui

∂xi
= 0, (2.26)

∂ui

∂t
+ (

uj − ûj
) ∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xi∂xj
− χ (ui − ūi) , (2.27)

and
∂ ūi

∂t
= ωc (ui − ūi) , (2.28)

where χ is the filter gain and ωc is the cutoff circular frequency. In the choice of
parameters, χ must be positive and larger than the growth rate of the target unstable
component, while ωc must be lower than the eigenfrequency of the target unstable
component.
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2.4. Total dynamic mode decomposition
Dynamic mode decomposition (DMD) is a common data order reduction method. As
a data-driven methodology, DMD, although not constrained by the physical model
and governing equations, could be applied to directly extract the eigenmodes in the
(time-varying) snapshot data provided by experimental measurements and/or numerical
data, to accurately characterize the flow structure (Schmid 2010). The data snapshots could
be presented in the form of matrices X and Y

X = {ν1, ν2, ν3, . . . , νN−1} , (2.29)

Y = {ν2, ν3, ν4, . . . , νN} , (2.30)

where νi represents the flow field at the ith moment, and the snapshot sampling interval is
δt. It is assumed that there is a linear mapping relationship H ∈ R

M×M between the flow
fields νi and νi+1

νi+1 = Hνi, (2.31)

and that the above relation is satisfied for the entire region and also over the entire time
period. This process is a linear estimation process although the dynamical system itself is
nonlinear to some degree. Thus the following relationship is satisfied between the sampled
snapshot sequences:

Y = HX . (2.32)

Thus, the system matrix H is able to translate the time–space physical field along the
time interval δt. The eigenvalues of H characterize the time evolution of Y . However,
H is a indeed very high-dimensional matrix, so we would like to transform H into a
small low-dimensional equivalent matrix H̃c ∈ R

r×r. The DMD algorithm is to find the
low-dimensional matrix H̃c to replace the high-dimensional matrix H

H = U rH̃cU∗
r , (2.33)

where U r can be obtained by (reduced) singular value decomposition (SVD) of X

X = U rΣV ∗
r , (2.34)

where Σ is a diagonal matrix of dimension r × r. U r ∈ R
M×r, U∗

r U r = I, V r ∈
R

r×N, V ∗
r V r = I , where I is a unit matrix. Thus H thereby could be approximated as

H ∼= H̃c = U∗
r YV rΣ

−1. (2.35)

Since the matrix H̃c is the low-dimensional approximation matrix of H , the eigenvalues
of H̃c are part of those of H , i.e. the Ritz eigenvalues. The eigenvalue of the jth mode is
defined as μj and the corresponding eigenvector is ωj. The corresponding DMD modality
is defined as

Φ j = U rωj. (2.36)

The stability characteristics of the corresponding modes can be determined by the
Ritz eigenvalues (or modal growth rates). The preceding description of eigenmode
identification using DMD is limited to the scenario with ‘perfect’ snapshot data. Indeed,
in many cases when the data are imprecise and noisy, the underconstrained scenario is
undesirable since solutions will definitely overfit the noise. To obtain noise-corrected
snapshot data, the total DMD (TDMD) strategy is used, which projects the snapshot data
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onto an appropriate basis using projection P (the orthogonal projections are self-adjoint
herein), the standard DMD algorithm can then be applied to the resulting corrected
snapshot data to yield a de-biased characterization of the dynamics (Hemati et al.
2016, 2017). The TDMD procedure consists of the following workflow:

(i) correcting snapshot data via projection P (= V rV ∗
r ): X̄ = XP = XV rV ∗

r ;
(ii) conducting the SVD of X̄ = ŪΣ̄V̄

∗
;

(iii) constructing the de-biased proxy system Ā := Ū
∗
Y V̄ Σ̄

−1 ∈ R
r×r;

(iv) performing the eigenvalue decomposition Āωj = λjωj, the corresponding DMD
modes are represented as:

Φ j = Ūωj. (2.37)

The most significant feature of the DMD algorithm, despite its many variations (Hemati
et al. 2017; Kiewat, Indinger & Tsubokura 2019), is that each DMD mode corresponds to
a low-dimensional coherent spatio-temporal pattern in the data set and is associated with
a distinctive complex frequency (or eigenvalue). The corresponding DMD (dynamical)
mode’s growth/decay and oscillatory properties are described by the Ritz eigenvalues.
A convergent mode is represented by the Ritz eigenvalue falling within the unit circle with
a growth rate less than zero; a divergent mode is represented by one falling outside the unit
circle with a growth rate greater than zero; and a stable periodic mode is represented by
one falling on the unit circle with a growth rate close to zero.

3. Computational domain and model validation

Figure 3 exhibits the configuration of one cube elastically supported by a linear spring
unit and submerged in uniform inflow. With respect to the 3-D computational domain, the
initial position of the cube centre is at the centreline of both transverse (or cross-stream)
directions (i.e. z = y = 0), and situated at 8D downstream from the inlet boundary in
x-direction. The streamwise (x-) length and two cross-stream (y−, z-) lengths of the
computational domain are 43D, 16D and 16D leading to a blockage of 6.25 %, which
is close to the those applied in the other FIV calculations of 3-D spheres and 2-D columns
(Prasanth & Mittal 2008; Amir & Rajeev 2021, 2022). A Dirichlet boundary condition
was prescribed for the incident flow velocity �u = (Ux, 0, 0) on the inlet face annotated in
blue in figure 3. A Neumann boundary condition is imposed on the velocity at the outflow
(outlet) boundaries, i.e. the five face patches of the domain except the one coloured blue,
to avoid potential blockage effects. The initial state of the cube’s motion is assigned to be
y = 0, ẏ = 0, z = 0, ż = 0. In light of the present focus on dynamical asymmetry of the
FIV response and considering that the introduction above mentioned that wake dynamics
for flow passing a stationary cube exhibits hairpin vortex shedding at 277 < Re < 350,
we chose Re = 300 for the incident flow environment. The hairpin vortex shedding means
that the wake maintains stability in one cross-stream (or streamwise orthogonal) plane but
becomes periodically time dependent with regular oscillations of the recirculation zone in
another plane, as described in the Introduction section (Saha 2004; Klotz et al. 2014; Khan
et al. 2019).

The mesh dependency study is conducted via a 3-D simulation of uniform flow
past an elastically mounted cube at (Re, m∗, Ur) = (300, 15, 40). The corresponding
FIV response for different mesh qualities is calculated and the associated results are
summarized in table 1. The important parameters of the FIV response here include mean
lift coefficients Cz,mean, root-mean-square (r.m.s.) drag coefficients Cx,rms and maximum
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xy

z

16D

16D

8D 35D

D
Inflow

Figure 3. Three-dimensional computational domain applied in the present calculation for flow passing an
elastically mounted cube submerged in uniform inflow.

Mesh Cell number Cz,mean Cx,rms zmax/D �xmin/D

1 1956765 −0.11650 0.7692 0.6361 5.0 ×10−3

2 2245860 −0.09625 0.8058 0.6049 3.0 ×10−3

3 2695420 −0.09042 0.8715 0.5831 2.0 ×10−3

4 2843865 −0.09030 0.8708 0.5835 1.5 ×10−3

Table 1. Maximum normalized structural displacements zmax/D and aerodynamic coefficients (mean lift and
root-mean-square drag coefficients Cz,mean and Cx,rms) in the z-direction of flow past an elastically mounted
cube at Re = 300 for different mesh conditions. Here, �xmin represents the size of the smallest grid cell.

Saha (2004) Khan et al. (2019) present

0.84 0.83 0.87

Table 2. Drag coefficients for flow passing a stationary cube at Re = 300. The results are compared between
Saha (2004), Khan et al. (2019) and the present work.

structural displacements zmax in the z-direction. It can be seen that the relative differences
of each parameter between mesh 1 to mesh 2 are considerable, but all decrease to a
value smaller than 0.5 % as the mesh is refined to mesh 3 (fine) or mesh 4 (very fine).
To follow up, we use mesh 3 to calculate the flow passing a stationary cube at Re =
300 and compare the drag coefficients between the present results and other accessible
numerical works (Saha 2004; Khan et al. 2019). The results summarized in table 2 indicate
high conformance between this study and other results. As a consequence, mesh 3 is
adopted in the present work to achieve the best balance of calculation time and accuracy.
Figure 4(a) displays the overview of the mesh domain used in the present study, with
the expanded/close-up views of mesh in the immediate vicinity of the cube shown in
figure 4(b).

To our knowledge, there are no available/accessible past works on the investigation of
a cube’s FIV response at moderate Reynolds numbers. To validate the accuracy of the
implementation and prediction of present FOM/CFD, we first chose the square cylinder,
whose cross-section is similar to the cube to some degree and was also proven to be
able to induce galloping behaviours. The square cylinder is limited to moving in the
transverse direction at (Re, m∗) = (150, 10) with no structural damping. Furthermore,
the FIV response of an elastically mounted 3-D sphere (also restricted to translate in the
transverse direction) at (Re, m∗, ζ ) = (200, 10, 0.01) is calculated via the fluid-structure
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(b)(a)

Figure 4. Mesh set-up (mesh 3) used in the present simulation. (a) Domain showing the overall mesh in one
streamwise orthogonal x–z plane (which is consistent with the mesh in the other streamwise orthogonal x–y
plane), and (b) domain showing the overall mesh in the transverse orthogonal y–z plane, with an expanded view
of the immediate vicinity of the cube walls.

5 10 15 20 25 30

Ur Ur

0

0.1

0.2
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 A
m

ax
/
D

Present work
Li et al. (2019) 

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

0.2

0.4

0.6
Rajamuni et al. (2018)
Present work

(b)(a)

Figure 5. Comparison of the maximum normalized transverse structural displacement of flow passing an
elastically mounted (a) square cylinder at (Re, m∗, ζ ) = (150, 10, 0) between the present work and Li et al.
(2019), and (b) sphere at (Re, m∗, ζ ) = (200, 10, 0.01) between the present work and Rajamuni et al. (2018).

interaction (FSI) model implemented in the present work. The meshing construction
strategy and refinement level of this validation case are comparable to those presented
in figure 4. The reduced velocity Ur is changed by modifying the spring stiffness for
both validation cases. Present results of the square cylinder and sphere are compared with
Li et al. (2019) and Rajamuni et al. (2018), respectively, in figures 5(a) and 5(b). The
excellent agreement regarding normalized maximum structural displacements implies the
correctness of the present fluid–structure coupling model, which is now demonstrated to
be capable of providing good accuracy for FIV prediction in this work.

4. Discussion

4.1. Wake dynamics of stationary cube and description of the present FIV problem
Figure 6(a) shows the contour of the instantaneous velocity magnitude in the x–y and x–z
orthogonal planes for flow past a cube at Re = 300. As introduced above, both numerical
and experimental research have reported that the flow dynamics past a stationary cube
at Re = 300 is classified as unsteady patterns with axisymmetric behaviour in one plane
and non-axisymmetric behaviour in another plane (Klotz et al. 2014; Khan et al. 2019).
This phenomenon is also observed by our present work, as displayed in figure 6(a,b)
(which displays the 3-D vortex contour). It is clearly evident that a considerable fluctuation
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Figure 6. Vorticity contour for flow passing a stationary cube at Re = 300. (a) Two streamwise orthogonal
planes; (b) 3-D visualization.
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Figure 7. Dynamics coefficients (including lift coefficients in the z-direction Cz, y-direction Cy and drag
coefficient Cx) for flow past a stationary cube at Re = 300. Time histories and spectra are plotted in (a) and
(b), respectively.

of the wake dynamics occurs in the z-direction, while in the y-direction, the vortex
behaviours demonstrate a stable symmetry. This phenomenon is also verified by the
dynamic coefficients displayed in figure 7, in which Cz and Cy indicate significant and
insubstantial fluctuation, respectively. Additionally, figure 7(b) shows the vortex-shedding
frequency for flow past a cube at Re = 300 is generated at around St = 0.10 (i.e. fvD/U0 =
0.10, where St is the Strouhal number). It should be noted that the choice of this oscillation
direction is arbitrary and may occur in either the y- or z-direction. For the convenience of
the ensuing analysis, the default wake fluctuation for flow past a stationary cube will be
presumed to appear in the z-direction in this paper.

This phenomenon stimulates another inquiry: whether this heterogeneous wake
characteristic of the flow passing a fixed cube would have an impact on the FIV response
of the cube. In more detail, a cube initially is fixed in the incident coming flow, a
heterogeneous wake characteristic thereby appears and wake fluctuations are presumed to
be in the z-direction (cf. figure 6). Under this state, if the degrees of freedom in one of the
transverse directions (y- or z-) are released for the cube and it becomes simultaneously
elastically supported in this direction, how will its FIV response develop? To answer
this question, the configuration of figure 8 will be investigated. In particular, the initial
flow fields for the following FIV calculation are composed of already developed (mature)
flow fields generated from flow passing the same fixed cube at Re = 300 (with wake
dynamics stationary/symmetry on the x–y plane but fluctuating/asymmetry on the x–z
plane), as demonstrated in figure 6b). Two scenarios are considered here, with the cube
to be constrained to move in the y- or z-direction, for a comparative study to investigate
the potential asymmetric instability.

996 A34-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.690


Asymmetric instability of FIV for cube

x

y

z

Inflow

x

y

z

Inflow

(b)(a)

Figure 8. The dynamics system reaches a mature flow field (stationary/symmetry on the x–y plane and
fluctuating/asymmetry on the x–z plane) for flow past a fixed cube before one of the following scenarios is
triggered: (a) scenario 1: the cube is allowed to move in the z-direction (cf. the double arrows) and is also
elastically supported in the z-direction; (b) scenario 2: the cube is allowed to move in the y-direction and is also
elastically supported in the y-direction.

4.2. Dynamical responses of FIV problem
We first focus on the dynamic response of scenario 1 (cf. the caption of figure 8, i.e. motion
in the z-direction), which is summarized in figure 9. Figure 9(a) indicates the envelope
of normalized maximum displacements in structural fluctuation components z̃max/D as
a function of reduced velocity Ur; z̃max/D has a tiny undulation around a Ur of 9 to
11, as emphasized in the inset. Meanwhile, the normalized structural natural frequency
Fs (= 1/Ur) here approaches the normalized vortex-shedding frequency fvD/U0, whose
value is shown in figure 7. In this case, we suggest that the small amplitude increase here
is due to the lock-in phenomenon, which is marked in the green colour. However, it is
apparent that the maximum structural amplitude of the cube within the lock-in regime
is very small (viz. around 0.015), which is much smaller compared with those of the
circular and square cylinders (equal to almost 0.50 (Cheng et al. 2022a) and 0.15 (Li
et al. 2019), respectively). This is attributable to the relatively lower vortex-shedding
strength of the cube compared with those of circular and square cylinders, as implied
in figure 6(b). Therefore, the periodic lift force of lower strength here (cf. Cz

L in figure 7)
would lead to weaker structural amplitudes compared with those of the square cylinder
whose CL fluctuations could achieve amplitudes as large as 0.3 (Cheng et al. 2023b). The
experimental work of Gonçalves et al. (2013) on the FIV of circular cylinders with low
aspect ratios also demonstrated that, as the aspect ratio decreases, the vibration amplitude
of the cylinder in the transverse direction becomes smaller. This trend is consistent with the
phenomenon studied herein, i.e. the suppression of the transverse amplitudes with square
cylinders turning into cubes. As the reduced velocity Ur increases to approximately 30, the
structural displacements start to become amplified again, and furthermore, continuously
enlarge with increasing Ur. This range is determined to have the galloping behaviour and is
marked with orange shading. Overall, there are two spaced synchronization regimes in the
response of the system, which is consistent with the results observed in the experiments
carried out by Zhao et al. (2019).

Figure 9(b) displays the variation of correlated dynamics coefficients CT in the
transverse direction. Specifically, with respect to the lift coefficients in the y- and
z-directions, the r.m.s. of fluctuation components C̃y,rms and C̃z,rms, and the mean value
Cy,mean and Cz,mean are plotted. It could be found that, when the FIV is triggered in the
z-direction, the dynamics coefficients in the y-direction remain almost unchanged (i.e.
near zero) as Ur is varied, which is consistent with the system response of a stationary
structure. There is a slight increase and decrease in Cz,mean and C̃z,rms, respectively, in
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Figure 9. (a) Maximum fluctuating components of the normalized structural displacements in the z-direction
z̃max/D, (b) dynamics coefficients in the transverse directions CT (including r.m.s. of fluctuation components
C̃y,rms and C̃z,rms, and the mean values Cy,mean and Cz,mean), (c) drag coefficient Cx,rms and (d) normalized
structural oscillation frequency fz,oscD/U0 as a function of reduced velocity Ur for the FIV configuration
being investigated in scenario 1. Lock-in and galloping regimes are marked with green and orange background
shadings, respectively.

the lock-in regime. Moreover, C̃z,rms continues to climb within the galloping regime,
consistent with the trend in structure displacement and also the r.m.s. of the drag
coefficient Cx,rms (cf. figure 9c). The increase in structural oscillation amplitude also leads
to an increase in the r.m.s. value of the drag force for a constant incoming flow velocity
as well as the Reynolds number, which is in alignment with the characterization of the
FIV response variation of the cylinder/column with square and trapezoidal cross-sections
(Cheng et al. 2023b). A perusal of figure 9(d) indicates that the structural oscillation
frequency approaches the structural natural frequency in the lock-in region and is also
locked by the structural natural frequency in the galloping range. The FIV system of
concern exhibits forced vibration features outside of the lock-in and galloping regions.
More specifically, the structural response does not demonstrate the synchronization pattern
and the structural frequency is dominated by the vortex-shedding frequency.

To further explore the development trend of structural displacements for flow passing the
elastically mounted cube, we extract the evolution of amplitude z/D at Ur = 6, 9, 18 and 30
and depict those in figure 10. The equilibrium point of structural vibration (marked by the
solid red line) is shifting to the negative phase in the z-direction and finally stabilizes at a
certain position. This behaviour is related to the shift mode proposed by Liao et al. (2023)
and will be described in detail later. The normalized structural oscillation frequencies
foscD/U0 at Ur = 6 and 18 (corresponding to the desynchronization regime) are both
equal to 0.102, consistent with the peak frequency in figure 7, while those at Ur = 9
and 30 (corresponding to the lock-in and galloping regimes) are locked by the structural
natural frequencies.

With respect to the development of structural displacements in the z direction at
Ur = 18 and 30 (cf. figure 10c,d), we depict the corresponding time–frequency spectrum
in figure 11. A careful examination of figure 11(a) reveals that there are two dominant
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Figure 10. Time history of the transverse structural displacements in the z-direction for scenario 1 at Ur = (a)
6, (b) 9, (c) 18 and (d) 30. The normalized structural oscillation frequency is noted in the top-right corner in
each panel. The red solid line indicates the development of the oscillation equilibrium point.

components, peaks 1 and 2 in the spectrum, which are located specifically at 0.103 Hz
and 0.05 Hz, respectively. To begin, it is clear that peaks 1 and 2 correspond to the
vortex-shedding frequency and structural natural frequency, respectively. Specifically, it is
found that the power of peak 2 is stronger than peak 1 in the initial stage and then gradually
vanishes, while peak 1 remains continuously robust. The spectrum behaviour here is
consistent with the features of the displacement time history shown in figure 10(c), which
demonstrates that the FIV system is subjected to a forced vibration pattern herein. From
the modal perspective, this is because of the competition between the SM and WM, and
the final dominance of the WM (Cheng et al. 2022c). The balanced competition between
SM and WM could also lead to a long lag time before the system achieves equilibrium
status. Moreover, it also found that the broadband frequency feature is present for peak
2 in the response. In particular, the spectrum characteristic of peak 2 does not exhibit the
sharp contraction of the single-peak feature as usually seen in the FIV amplitude response.
This is owing to the fact that, in the initial stages of the FIV development, the structural
frequencies, as well as their corresponding harmonic components, all try to impose the
effect in the fluid–structure coupling, but eventually all disappear due to the inability to
generate synchronization behaviour. However, in contrast, the time–frequency spectrum
for galloping behaviour in figure 11(b) demonstrates that the SMs (with the frequency of
0.31 at peak 2) dominate the FIV response throughout the whole time range, accompanied
by a wake component corresponding to original vortex-shedding located at peak 1. This
suggests that the elastic cube system transfers quickly into the galloping response in the
initial stage of FIV development, which could also be observed in the time history of
displacements in figure 10(d).

Regarding the phase difference θ(◦) between z and Cz fluctuations, we selected Ur
values involved in figure 10 for detailed study and have plotted the real-time historical
data of z̃/D and C̃D in figure 12. Observing the envelope of the amplitude fluctuations,
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Figure 11. Time–frequency spectrum for the development of transverse structural displacements in the
z-direction at Ur = (a) 18.0 and (b) 30.0.
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Figure 12. Time histories of fluctuation components in the lift coefficient C̃z and normalized transverse
displacement z̃/D in the z-direction for scenario 1 at Ur = 6, 9, 18 and 30.

it is shown that θ(◦) at Ur values of 6 and 9 is close to 0. When Ur increases to 18,
θ(◦) jumps to 180◦. As the FIV system enters the galloping region, the body vibration
frequency is too low to lock the vortex-shedding behaviour as the structure is already
locked by the natural frequency (or 1/Ur). As a consequence, the vortex shedding
frequency is only correlated to the inflow Reynolds number and is thus close to the
original vortex-shedding frequency (for flow passing a stationary cube at the same Re).
Therefore, it is not meaningful here to determine the phase difference for the galloping
behaviour. More specifically, when galloping occurs, the structural vibration cannot lock
the vortex-shedding frequency because of the relatively low vibration frequency. The
cube could thereby be considered as a migrating vortex source, accompanied by a small
variation in the incoming Reynolds number, which is determined by the combination of
the incident flow velocity (constant here) and the moving velocity (varying periodically).
For the lift coefficient herein, the variation is dominated by both the vibration of the cube
and the vortex-shedding behaviour. Since the vibration frequency is much smaller than
the vortex-shedding frequency, in addition to the overall tendency of the lift change (to
be influenced by the structural vibration), there are also several cycles induced by vortex
shedding within each structural cycle. Therefore, the phase difference has no physical
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significance in this case. In general, the overall variation trend of phase difference is
consistent with that of a square cylinder (Cheng et al. 2023b).

The wake dynamics exhibits small variations in the x–y plane since it is in a stable
symmetric structure in the y-direction. We thereby focus special attention on the x–z
plane to observe possible wake variations. Figure 13(a) displays the time histories of
the fluctuating components C̃z and z̃/D in the displacement and lift coefficients over
several cycles inside the lock-in response (at Ur = 9.0), and for comparison, the galloping
situation (at Ur = 40.0) is shown in figure 13(b). We then select several representative
time points (TL,G

1,2,3,4,5) within a structural cycle in figures 13(a) and 13(b) and depict
the corresponding velocity fields (accompanied by the line integral convolution vector
field) in figures 13(c) and 13(d), respectively. The line integral convolution vector field
visualization methodology (Petkov 2005) is also employed herein for identifying the
vortical and recirculating regions. From the overall view, the wake structure embodied by
the streamlines, including the wake perturbation features and the lengths of recirculating
regions, is not drastically different between the lock-in and galloping response. When
lock-in (at Ur = 9) occurs, there is a tiny discrepancy between the original vortex-shedding
frequency (at fvD/U0 = 0.10) and the structural vibration frequency (1/Ur ∼= 0.11).
However, due to the relatively small vibration amplitude (Amax/D = 0.015), the structural
vibration fails to influence the overall wake structure. Therefore, the vortex shedding
cannot be locked by the structural oscillation as in the FIV of a circular cylinder, and
the vortex structure is still similar to that of flow passing a stationary cube. For galloping
behaviour (at Ur = 40.0), although a considerable vibration amplitude (Amax/D = 0.58)
occurs, owing to the relatively low vibration frequency (1/Ur = 0.025), the cube motion
is slow. Consequently, the vortex-shedding behaviour is also not locked by the structural
vibration frequency, although it is affected by the vibration to a certain degree, which will
be analysed in more detail later. To summarize, the macrostructure of the wake pattern
in both lock-in and galloping behaviours for the present configuration does not exhibit
considerable differences from that of the stabilized cube in figure 6(a).

In order to observe the flow dynamics from the micro-perspective in more detail,
we depict the enlarged view close to the cube surface in figure 14. Here, TL

2,3,5
correspond to the three locations of the cube in the lock-in response when it moves in
the z-positive direction, reaches the maximum amplitude and moves in the z-negative
direction, respectively. The time points for the galloping response are chosen with the same
strategy. It could be observed that four intense vortex structures (marked by red arrows)
appear in all the chosen units, with two located on the top and bottom of the square and two
in the wake. In contrast to the lock-in response, the more amplified oscillations of galloping
have a stretching impact on the vortex structures in the recirculation region and cause the
vortex structures to deform. However, as mentioned above, the galloping vibrations (with
a relatively low structural frequency) are not able to lock the vortex shedding, hence there
are several lift fluctuations (corresponding to vortex shedding) in one structural cycle (cf.
figure 13b). In addition, at some specific time points, there are the ‘singularities’ appearing
in the x–z plane (marked by red dash boxes) where the velocity direction is perpendicular
to the x–z plane, reflecting the characteristics of a 3-D flow field.

The FIVs of a cube could trigger galloping behaviour at much lower Reynolds numbers
than those of a sphere (Govardhan & Williamson 2005; Chizfahm et al. 2021). As
demonstrated by the works of Khan et al. (2019), Jiang & Cheng (2020) and Yang, Feng
& Zhang (2022), for a sphere or circular cylinder with a round surface, the fluid clings to
the wall surface until it detaches, and the distance of this boundary layer separation point
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Figure 13. Time histories of fluctuating components C̃z and z̃/D of displacements and lift coefficients in the
z-direction for (a) Ur = 9.0 of lock-in and (b) Ur = 40.0 of galloping behaviours. The velocity contours
(accompanied by vortex structures) on the x–z plane at TL

1,2,3,4,5 in the lock-in region and TG
1,2,3,4,5 in the

galloping region are depicted in (c,d).

from the rear stagnation point is related to the Reynolds number. In this case, the Reynolds
number will affect the surface forces variation (which is correlated to vortex-shedding
behaviour), and thereby has a great influence on its FIV response. On the contrary, for
the cube or square cylinder, the separation point is generally independent of the Reynolds
numbers. Regarding the square cylinder, past work (Jiang & Cheng 2020) has noted that
flow separation always emerges at the leading edge while the Reynolds number is larger
than 100. For the wall-mounted cube (Gao & Chow 2005; Liakos & Malamataris 2014)
or stationary midair cube (Khan et al. 2019), it was also reported that the sharp edges
act as fixed separation points and the leading face as the stagnation point at varying
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Figure 14. The velocity contours (accompanied by vortex structures) in the local region on the x–z plane
surrounding the cube at (a) TL

2,3,5 for Ur = 9.0 and (b) TG
1,2,4 for Ur = 40.0. The local region ranges from the

lower-left corner of (x/D, z/D) = (−1, 2) and the upper-right corner of (x/D, z/D) = (3, 1), respectively.

Reynolds numbers. In the case of the present FIV system, owing to the galloping vibration
frequency of the cube being relatively low, the above-introduced behaviour (of fixed
separation location with varying Re) will be expected. This can also be observed in
figure 14 where the fluid separates from the leading edge faces.

As discussed in § 4.1, in this paper we intend to explore the difference, specifically
the asymmetry, in the cube’s FIV response between two transverse directions. For this
purpose, the response of scenario 2 will be investigated in figure 15, i.e. the cube will be
constrained to move and elastically supported in the y-direction, with the wake fluctuations
of the initial field occurring in the z-direction. For the convenience of the study, we only
consider the response of scenario 2 at Ur = 9 and 40, i.e. to determine whether the system
will exhibit lock-in and galloping behaviours. The relevant results are shown in panel (a)
(the two left subfigures) of figure 15. It is distinctly shown that the system’s amplitude
responses at Ur = 9 and 40 gradually decay, indicating that the system is unable to trigger
a sizable amplitude response for scenario 2.

However, a readily apparent potential cause stems from the fact that the initial field of
fluid around the cube only provides excitation forces in the z-direction. To further discern
the underlying mechanism, we thus applied an initial velocity in the y-direction to the cube
when it is released in scenario 2. The initial structural velocity of 5U0 is large enough
to create a periodic significant excitation force in the y-direction at the beginning of the
response development. The time history of the structural displacements for a cube with
initial velocity impulses is shown in figure 15(b). As noted in the right two subfigures, the

996 A34-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.690


Z. Cheng, J.H. Zhang, R. Wang, F.-S. Lien and E.H. Dowell

0 50 100 150 200
–5

0

5

 y/D

(×10–4)

0 50 100 150 200
–0.2

0

0.2

0 100 200 300 400

tU0/D tU0/D

–0.05

0

0.05

 y/D

0 100 200 300 400 500

0

ymax/D = 0.0151

ymax/D = 0.605

0.8

1.6

–0.8

–1.6

(b)(a)

Figure 15. Time history of the transverse structural displacements in the z directions for scenario 2 at Ur = 9
and 40 (a) without and (b) with initial velocity impulse in the y-direction. Here, Ur = 9 and 40 correspond
to potential lock-in and galloping regimes, respectively. (a) Without initial velocity impulse in the y direction.
(b) With initial velocity impulse in the y direction.

maximum structural amplitudes of equilibrium status at Ur = 9 and 40 reach 0.0151 and
0.605, respectively, which are similar to those of scenario 1, which refers to the envelope
displayed in figure 9(a). This demonstrates that the forced oscillation impulse in the initial
stage could modify the flow structures and finally trigger large amplitude responses.

The galloping behaviour of the cube in the y-direction is similar to that of ‘hard
galloping’ from the perspective of the extrinsic behaviour, i.e. both require a large initial
excitation to induce the galloping response. However, the intrinsic physical mechanism
is completely different. Firstly, we briefly explain the differences between the triggering
of ‘soft’ and ‘hard galloping’ (Nakamura & Tomonari 1977; Park, Kumar & Bernitsas
2013; Cheng et al. 2023a). ‘Soft galloping’ implies that the elastically supported structure
could spontaneously generate galloping (with considerable vibration amplitudes) under
the coupling effect with the incident flow. The galloping behaviour in the z-direction of
the present cube is subjected to this category. In contrast, for some special geometries
or columns with special cross-sectional shapes, self-excited (or spontaneous) galloping
cannot appear. However, galloping can occur when the initial kinetic energy (e.g. initial
velocity or initial impulse force) reaches a certain threshold value. This behaviour is
referred to as ‘hard galloping’. Galloping requires the presence of negative damping in
the FIV system, i.e. the moving body absorbs sufficient energy from the fluid to support
its further movement during large amplitude vibrations. In this case, structures that exhibit
‘hard-galloping’ characteristics require initial kinetic energy to achieve the oscillation with
considerable amplitude in the initial stage. In the present work, the initial kinetic energy
in the y-direction of the cube is applied to alter its flow structure, as displayed in figure 16.
Hence, the fluctuations in the asymmetric wake will be shifted from the x–z plane to the
x–y plane, and the flow dynamics in the x–z plane will be transformed into symmetry. In
this case, changes in the dynamics on the x–y plane will induce the FIV system to produce
‘soft galloping’ in the y-direction.
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Figure 16. Three-dimensional visualization of the vorticity for the final equilibrium state of scenario 2 at
Ur = 30 with momentum (or kinetic energy) impulse applied at the time the body is released into motion.

4.3. Modal behaviours of the FIV system
This section focuses on employing an ERA-based data-driven model to investigate the
mechanism underpinning the FIV of the aforementioned configurations from a modal
point of view. Before analysing the configuration of the present work, we introduce the
modal behaviour of similar but more familiar geometries, i.e. a 2-D square cylinder, and
then compare it with the case of a 3-D cube. For a 2-D ROM of a square cylinder, the
results for (Re, m∗) = (150, 50) and (150, 10) of the presently implemented model and
those of Li et al. (2019) are shown and compared in figures 17(a) and 17(b), respectively.
The root trajectory in figure 17(a) illustrates the uncoupled situation of Re = (150, 50),
and thus, only one root trajectory for the SM is shown. The root trajectory in figure 17(b)
exhibits the coupled situation of the fluid and solid modes at Re = (150, 10). Decreasing
the mass ratio will reinforce the degree of coupling between the fluid and SMs. With
respect to the physical meaning of the growth rate Re(λ) in the data-driven stability
analysis, it can be explained as the expansion rate of the structural amplitude in the
initial stage of the FIV development process, where the fluid dynamics is still subjected to
linear features. Even in high-precision FOM/CFD calculations, factors such as numerical
schemes, meshing strategies and time steps all have an impact on the amplitude expansion
rate before the FIV system develops to equilibrium status, and thereby may cause
differences between different calculations for the same scenario. In addition, the base
flow required for ROM identification is obtained based on CFD calculations. Therefore
it is reasonable that there are some differences between the values of Re(λ). Furthermore,
in the data-driven stability analysis, the present work uses the ERA method, while Li
et al. (2019) use the ARX method, and the training signals used in the two methods are
different, which can also cause the difference in the value of Re(λ). However, the key factor
determining whether the system is stable or not is whether Re(λ) is positive or negative,
and it can be observed that the results of the ROM in this paper match very well with those
of Li et al. (2019), thus supporting the correctness of the present model.

In the above process of ERA identification for a 2-D square cylinder, we obtain the base
flow by using a procedure that involves solving the continuity and momentum transport
equations (viz., (2.1) and (2.2)) using a large dimensionless time-step value, which is the
same technique as applied in our previous works (Cheng et al. 2023a,b). However, for the
3-D configuration, directly applying the large time-step calculation will yield inaccurate
results. Therefore, we use the SFD method (Åkervik et al. 2006; Jordi et al. 2015;
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Figure 17. Root loci obtained by the data-driven (or ERA/ROM) method for the 2-D FIV system consisting
of the elastically mounted square cylinder at (Re, m∗) = (a) (150, 50) and (b) (150, 10). The trajectories of the
single SM and coupled wake–structure modes are depicted in (a) and (b), respectively.
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Figure 18. Vorticity contour obtained via the SFD method for flow passing a stationary cube at Re =
300. The two plots share the same colour bars with figure 6. (a) Two streamwise orthogonal planes.
(b) Three-dimensional visualization.

Casacuberta et al. 2018; Plante & Laurendeau 2018) to obtain the base flow for the flow
passing a stationary cube here.

Applying the SFD method we have described above in § 2.3 to the current case and
implementing the corresponding custom solver in OpenFOAM, we obtain the 3-D base
flow of the cube at a Reynolds number of 300, with the vorticity contour produced shown
in figure 18. In comparison with the work of figure 6, it is demonstrated that the fluctuating
components in the wake flow have been completely eliminated. Next, we thereby compute
the dynamical response (i.e. CL) of the cube with the impulse of the displacement on the
basis of the base flow.

Figure 19 presents the impulse response of CT in the transverse z- and y-directions (i.e.
Cz and Cy) arising from imposing an impulse input signal on the transverse displacement in
the z- and y-directions, respectively. This impulse response was obtained from FOM/CFD
over 1200 time steps and also from the corresponding ROM/ERA over 900 time steps.
There is very good agreement between the impulse response obtained from FOM and
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Figure 19. Impulse response CT provided by FOM/CFD method and corresponding values predicted by
ROM/ERA method. Here, CT includes the time histories of Cz and Cy for scenarios 1 and 2 at Re = 300,
with the first one becoming amplified and the second trending towards a stable status. High conformance could
be observed between ROM and FOM, which is emphasized via the insets.

ROM (marked by triangles and solid lines, respectively) for the dynamics response in
both directions. More specifically, the lift coefficient in the z-direction displays instability
trends characterized by a Hopf bifurcation, whereas that in the y-direction it tends to
remain stable. This suggests that, when the wake dynamics of flow past a cube forms a
mature asymmetry in the established configuration, the wake dynamics will eventually
return to the original mature state even if displacement excitation/impulse is applied in
the corresponding transverse directions. Asymmetry here means the wake is unstable
in one transverse direction (which is the z-direction herein) and stable in the other
transverse direction (the y-direction herein). Meanwhile, when the cube is released from
the stationary state into the elastically supported state in separate transverse directions,
the discrepancy of lift forces between the two directions will inevitably affect the FIV
response.

Our previous works (Cheng et al. 2023a,b), as well as those of others (Li et al.
2019), have proven that retaining the first 15 to 35 singular values of H in the system
matrix Ar (see 2.16) accurately describes the dominant modes in the dynamics system.
For the fluid flowing through an elastically supported cube at Re of 300, the first 35
singular values of Hankel’s matrix are displayed in figure 20. It can be observed that the
singular values decrease to zero at an exponential rate, demonstrating that the dominant
dynamics is concentrated on a highly structured low-dimensional subspace (manifold).
We thus establish that the ROM in this work has the ability to provide excellent low-rank
estimations of the FIV system of interest.

Figure 21(a) shows the root loci for the presently simulated FIV system at (Re, m∗) =
(300, 15) in separate z- and y-directions. The root loci here were obtained via
the ROM/ERA method. The red solid squares represent the stationary case of the
corresponding configuration, and the location of WM is notated in the root loci. It is
indicated that the WM belonging to the x–z plane (marked by blue) in figure 21(a)
corresponds to unstable vortex shedding in the z direction, as indicated in the actual
physical scenario (cf. figure 6). Moreover, the root trajectory of the FIV system on the
x–y plane has two WMs (marked in black) in the positive Re(λ) region, which seems to
contradict the phenomenon that the fluid dynamics remains stable on the x–y plane (cf.
figure 6). However, in the case of the present cube unit, unlike a cylinder or a square
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Figure 20. The evolution of the first 35 singular values in the Hankel matrix H for flow passing a cube at
Re = 300.
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Figure 21. (a) Root loci of the FIV system of interest at scenarios 1 (z-direction) and 2 (y-direction) at
(Re, m∗) = (300, 15) without initial body momentum impulse. Red solid points denote the stationary state.
(b) The variation of the eigenfrequency Im(λ)/2π and growth/decay rate Re(λ) as a function of Ur for scenario
1. The dotted line corresponds to the relationship f = 1/Ur .

column that has a considerable length in the spanwise direction, the fluctuation of the
wake dynamics in the x–z plane will inevitably affect its dynamic response in the x–y
plane. Consequently, unstable wake modes obtained by ERA identification also appear in
the x–y plane.

As for the structural modes, it is clear that the trajectory development of the SM root loci
in the z and y directions are substantially discrepant. A perusal of figure 21(a) shows that
the SM transforms into the unstable status in the z-direction with an increasing reduced
velocity Ur, and meanwhile, in stark contrast, the trajectory of the SM remains in the
stable left half-plane (Re(α) < 0) in the same range of Ur for the y-direction. From the
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physical point of view, this implies that the FIV system will exhibit stable and unstable
behaviours (correlated to galloping), respectively, for the self-excited response in the y- and
z-directions. This modal behaviour also proves that the present statement on asymmetric
instability of FIV for the cube at moderate Re is reasonable. It is noted once again that the
wake dynamics in the initial state fluctuates in the z-direction in this work.

Regarding the potential SM instability shift for the z-direction, the corresponding
eigenfrequency Im(λ)/2π and growth rate Re(λ) as a function of reduced velocity Ur are
plotted in figure 21(b). Red markers denote the SM’s trajectory. It can be observed that
the data-driven results show the structural mode in the z-direction becomes unstable as Ur
increases to approximately 8. Furthermore, figure 21(b ii) indicates that Im(λ)/2π of the
SM (marked with red colour) approaches that of WM (marked by black colour), which
implies that the structure synchronizes with the wake dynamics. This modal behaviour is
consistent with the lock-in behaviour displayed in figure 9. As Ur continues to increase,
the root loci demonstrate that the SM remains unsteady, implying that the SMs are
continuously unstable herein and galloping should occur.

However, it can be observed that the instability range predicted by ROM/ERA herein
differs to some degree from the FOM/CFD results, which indicate two separate stable
ranges in the FIV response corresponding to the lock-in (8.5 < Ur < 12) and galloping
(Ur > 30) intervals, respectively. More specifically, in the Ur region ranging from 12 to 30,
the structural response remains stable as predicted by the high-fidelity FOM/CFD method,
but becomes unstable in ROM/ERA identification. This discrepancy also occurs in the
work of Li et al. (2019) on FIV of a square cylinder, and this mentioned interval was
stated as ‘pre-galloping’. Li et al. (2019) thereby applied the mode competition behaviour
(between SM and WM) to explain this difference. In this region, the stiffness of the system
is not reduced to a certain threshold to bring about a negative damping sufficient to induce
galloping to occur (Hartog 1956; Cheng et al. 2023a), and therefore the system is still
dominated by the vortex-induced vibration (VIV) mechanism in this interval (Li et al.
2019). However, due to the increasing differences between the modal frequencies of SM
and WM, resonance cannot appear. The structural response is finally dominated by the
WM and exhibits a vortex-forced vibration behaviour. In contrast, when the system enters
the galloping interval, as shown in figure 11(b), the structural modes gradually dominate
the structural vibration response.

Besides using modal competition theory to explain this misfit between the identification
method and the system dynamics, the difference herein is also caused by the inaccuracy of
the data-driven reduced model while identifying the present configuration. In more detail,
the present data-driven methodology is only concerned about the relationship between
the inputs and outputs of the dynamics in one specific transverse direction, which could
obtain an ideal match for 2-D systems. In the case of flow past a cube, unlike long rods
that only consider the effects of certain cross-sections, consideration for the flow/vortex
behaviours at the two end sides becomes indispensable. This ‘end effect’ in another
transverse direction affects the ERA identification of the dynamics. Nonetheless, the
present data-driven model succeeds in distinguishing the response of the two directions,
which is in agreement with the results obtained by the FOM/CFD method. The study of
vibrational asymmetry in this work contributes to a better understanding of applications in
some potential future scenarios with medium Reynolds numbers.

4.4. The TDMD analysis of the wake dynamics
Continuing with the above analysis, the TDMD methodology is used in this section to
explore the modal dynamics of the wake flow in more detail, and also to facilitate a better
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understanding of the features of the vortical dynamics and the mode interaction anticipated
by ROM/ERA, especially the implication of structural modes on whole system response.
Applying TDMD to investigate the given FIV system at (Re, m∗, Ur) = (300, 15, 40), we
explore the modal behaviours underpinning the dynamic asymmetry and the dominant
modes driving the dynamics of the flow past an elastically mounted cube. The velocity
snapshots are collected 4,500 times in each oscillation cycle for the TDMD performed
here, and 5 cycles of structural displacements are taken into account.

Figure 22(a) displays the eigenvalue λ of the companion matrix. According to the
introduction of sub-section 2.4, the TDMD mode’s growth/decay rate is represented
by the magnitude |λ| of the corresponding (complex) eigenvalue. More specifically, the
eigenvalues of nearly all modes lie on the unit circle (or |λ| = 1). This demonstrates that
DMD modes of this problem are generally stably and periodically oscillatory in nature.
Since the present work only extracts the snapshots while the structural limit cycle is
achieved, there are no damped (decaying) modes with eigenvalues inside the circle of
unity (or |λ| = 1).

The amplitude |α| of the TDMD modes is shown in figure 22(b), where the modes
with the highest amplitude are regarded to be dominant (and could generate a reasonable
approximation of the underlying dynamics in a low-rank subspace). To identify the
physically dominant modes, sparsity is induced herein by regularizing the least-squares
deviation between the matrix of the first snapshot and the linear superposition of DMD
modes, and an additional term is applied to penalize the l1-norm of the vector of DMD
amplitudes. The detailed introduction of modal normalization criteria and a strategy to
obtain the optimal modal amplitude refers to the works of Jovanović, Schmid & Nichols
(2014) and Matsumoto & Indinger (2017). In this case, the 5 most intense modes are
annotated with eigenfrequency ‘fi’, where i corresponds to the wake and structural mode
labels. We can immediately discern that the first TDMD WM with the largest |α| is located
at fw0 = 0, implying that there are no fluctuations in this modal dynamics, which thereby
indicates that this mode corresponds to the base flow. To further validate this, we extract
the corresponding modal wake contour and exhibit it in figure 22(c i,ii). The first and
second columns visualize the real part of the DMD modes depicted using contours of the
streamlined velocity component, as viewed on the x–z and x–y planes, respectively. The
third column displays the real part of the DMD modes, which is depicted using contours
of the magnitude velocity. The spatial outline of the first mode is similar to that of the base
flow (cf. figure 18) used for ERA identification but adds an overall shifting pattern and is
absent of any obvious fluctuating features. Moreover, this mode is essentially consistent
with the ‘shift mode’ proposed by Liao et al. (2023). To represent the slow variations of
base flow between the steady and time-averaged periodic solutions, the ‘shift mode’ in
wake modal dynamics is defined as the difference between the unstable fixed point and the
mean of the limit cycle. The first mode (corresponding to the base flow) in this work does
not exhibit shift characteristics because the present work only extracts the snapshots while
the structural limit cycle is achieved. However, based on the observation of figure 10, the
variation of the oscillation equilibrium location (marked with a red line) also implies this
shift behaviour. This demonstrates the base-flow mode is responsible for the progressive
shift from the initial rest status (with a value equal to 0) in the variation of Cz

L,mean and
zmean.

In addition to the stable mode Mw0 corresponding to the base flow, the other four
unstable/fluctuating modes that have the most intense magnitudes are also annotated
in figure 22(b), i.e. mode Mw1 (with frequency fw1) corresponding to the original
vortex-shedding frequency, as well as its two harmonic components Mw2 (with
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Figure 22. The DMD modes of velocity time series obtained in the wake of an elastically mounted cube with
(Re, m∗, Ur) = (300, 15, 40): (a) spectrum showing the distribution of the real and imaginary parts of the
eigenvalues; (b) amplitudes of the DMD modes as a function of the normalized frequency; and (c) real part
of the DMD modes depicted using 2-D contours of the velocity streamwise component and 3-D contours of
velocity magnitude, for the base mode Mwo and several harmonics Mw1,w2,w3 of fluctuating modes inside the
wake dynamics.

fw2 = 2fw1) and Mw3 (with fw3 = 3fw1). The original vortex-shedding frequency represents
the vortex-shedding frequency of the identical configuration at the same Re for the
stationary cube. Here, fw1D/U0 of 0.105 Hz is equal to the frequency of peak 1 in
figure 11. Figure 22(c iii–viii) displays the contour of the above-introduced fluctuating
WMs Mw1,w2,w3. The spatial geometrical meaning of these fluctuating WMs is explained
first. The Lw1,w2,w3 annotated in the panels represent the distance migrated by each fluid
mode for one cycle in the streamline direction, i.e. fw1 = U0/Lw1, fw2 = U0/Lw2 and
fw3 = U0/Lw3. All these modes are left–right symmetric in the y-direction, which is
consistent with what is shown in figure 7, indicating that the dynamics features stability in
the y-direction and asymmetric wake instability in the z-direction.

According to the assertion of Rajamuni et al. (2020), for the incident flow passing a
stationary circular cylinder, the reconstructed flow field based on the stable mode (or
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Figure 23. (a) Reconstructions of the velocity field using based flow mode Mw0, original vortex-shedding WM
Mw1 and its harmonics Mw2,w3, as well as the structure-induced WM Ms. (b) Original velocity field obtained
by FOM/CFD calculation.

shift mode) Mw0, the fluctuating mode Mw1 and its few harmonical modes Mw2,w3,w4 is
already comparable to the original flow field. In addition to the above-mentioned modes,
one fluctuating mode (with a peak of fs in figure 22) corresponding to the structural
vibrations is added in this work. The frequency fs of the structural mode is too small,
resulting in a long migration distance Ls for one cycle in its modal contour. Therefore,
the spatial scale of the present domain is not enough to identify its modal contour, and
hence it is not exhibited in figure 22(c). However, the spectrum in figure 22(b) captures
the component corresponding to fs, located at 0.22 Hz (which is approximately equal to
the reduced structural natural frequency, i.e. 1/Ur). Overall, one remarkable feature is that
the magnitude corresponding to the base-flow mode in the present cube’s FIV response
is extremely intense, and in fact much stronger than those shown in the FIV responses of
other columns (Cheng et al. 2022b).

Following up on the above statement, based on the obtained DMD modal
information, we then reconstruct the flow dynamics using the first 5 dominant modes
Mw0,w1,w2,w3,w4,s, and the comparison between the reconstructed wake (velocity) structure
and original/actual velocity field is exhibited in figure 23. It can be observed that the
reconstructed flow field excellently captures the dynamical features. The reconstructed and
original fields are highly consistent in scale and detail, for both the near-field recirculating
and the far-field fluctuating zones downstream. In addition, the reconstructed flow field
also exhibits symmetry and unsteady features on the x–y and x–z planes, respectively.

The above information indicates that the base-flow mode (of fw0) dominates the
wake structure in the present problem, and overlaps other unstable fluctuating modes
(of fs, fw1, fw2, fw3). With respect to the cube, even when stationary, the corresponding
(original) vortex-shedding frequency fw1D/U0 at Re = 300 is around 0.1, which is lower
than those of other shapes such as 2-D circular cylinders. In addition, owing to the ‘end
effect’ mentioned above, its vortex-shedding energy is also drastically reduced compared
with the 2-D square cylinder. This contributes to the intense value of the base flow
regarding its energy ratio in the overall wake dynamics. Furthermore, when the cube
gallops, the impact originating from its structural vibration also has a small effect on the
wake pattern owing to the relatively small vibration frequency (although the normalized
structural amplitude achieves approximately 0.6), as can be observed from the comparison
of the 3-D vorticity contour between figure 6(b) (stationary cube) and figure 16 (galloping
cube). In more detail, from the mechanism point of view, we know that, for FIV systems
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with structures such as square/circular cylinders, the vortex shedding is completely locked
by the vibration frequency (i.e. the structural natural frequency) in its lock-in region.
However, as for the galloping that occurs at Ur = 40 herein, firstly, the structural vibration
frequency fs is much lower than the original vortex-shedding frequency fw1, and secondly,
the structural vibration is relatively gentle and belongs to low-frequency oscillation.
The above-mentioned factors lead to the intense energy ratio of base-flow components.
Therefore, the whole moving cube system could be regarded as a vortex-shedding source
that rocks back and forth slowly in the transverse direction. In this case, in addition to the
base-flow mode, we observe two sources of fluctuating modes (from structural vibration
and original vortex shedding, respectively), but both have insufficient energy to challenge
that of the base flow.

The work of Hemati et al. (2016) suggests that data noise influences less-dominant
modes to a greater extent in standard DMD, which can have implications for interpreting
the dynamic characteristics. Compared with standard DMD, TDMD proposes forming
an augmented snapshot matrix to account for the errors present in all of the available data
during the subspace projection step (as introduced above), then the systematic introduction
of error is removed herein and an unbiased formulation of DMD is obtained (Hemati
et al. 2017). Hence, the system behaviour provided by TDMD models will be more
representative than that based on standard DMD models, especially for the weak modes
with less energy ratio. Regarding the present work, figure 22(b) indicates that the energy
ratio of several fluctuating modes is weak compared with that of the base flow. In this case,
we were concerned about potential noise issues affecting the identification of fluctuating
modes and TDMD was chosen to avoid potential noise issues.

According to the LSA conducted by Navrose & Sanjay (2016) for flow passing stationary
and elastically mounted circular cylinders, the region with large perturbation in the mode
contour moves downstream with respect to the cylinder if the frequency associated with the
eigenmode is comparatively smaller. This appears to be contrary to the results presented
in this work. However, Navrose & Sanjay (2016) present an argument that the structural
mode frequency in the wake dynamics follows the natural frequency of the structure-only
system, which is consistent with the viewpoint of this paper.

5. Conclusion

In the present work, an exploration of the asymmetric instability of an elastically mounted
cube at a Reynolds number of 300 on two streamwise orthogonal planes is conducted
for the first time, and special attention is paid to the underlying modal behaviour. To
address the problem under consideration, three numerical methodologies, i.e. full-order
CFD method, data-driven stability analysis based on ERA and SFD and TDMD, are
applied herein.

The present work observes for the first time that the structural response of a cube
is asymmetric when it is elastically released on two streamwise orthogonal planes.
Specifically, the vortex shedding structure that is formed around the stationary cube is
axisymmetric on one plane and non-axisymmetric on another orthogonal plane, and thus
the lift forces on the surface of the cube holds constant in one transverse direction while
fluctuating sharply in the other direction. Thus, when the cube is gently released, it
exhibits structural stability in one plane and oscillations (including lock-in and galloping
behaviour) in the other. However, the initial kinetic energy accompanying the release of
the cube can completely annul the initial structure of the flow field and eliminate the
above-introduced stability asymmetry.
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The time–frequency spectrum analysis of the structural displacement of the galloping
response demonstrates the presence of modes corresponding to the structural natural
frequency and the original vortex-shedding frequency. This is further verified by the
TDMD analysis of the wake flow. The vortex-shedding structure is mainly composed of the
following modes: the shift mode corresponding to the base flow, the SM corresponding to
the structural natural frequency and several harmonic modes corresponding to the original
vortex-shedding frequency.

The observation provided by full-order CFD results is also supported by data-driven
stability analysis. Root loci obtained via ROM indicate that the wake dynamics is unstable
at the Reynolds number of 300. Moreover, the trajectory of structural modes indicates that
the structural modes transfer to the unstable plane and maintain stable status, respectively,
when the cube is elastically mounted in non-axisymmetric wake and axisymmetric wake
planes. In contrast to (T)DMD methods, which could only explore the wake structures,
ERA/ROM allows further modal analysis of the whole FIV system and prediction of its
stability. The system stability prediction via ROM/ERA is also much faster than that of
FOM/CFD, but is accompanied by a certain loss of accuracy.

In this work, the cube moves with only one degree of freedom when it is released,
and future extensions could investigate the scenario where it is allowed to be elastically
supported and free to move in all three translational dimensions. Additionally, correlated
exploration at high Reynolds numbers and corresponding experimental measurements will
also be valuable to conduct.
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