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Compressible Flow and Rapid Prototyping

In previous chapters we have outlined and explained in detail how to discretize and solve
incompressible flow problems. This chapter will teach you how to discretize the basic equa-
tions for single-phase, compressible flow by use of the discrete differential and averaging
operators that were introduced in Section 4.4.2. As briefly shown in Examples 4.4.2 and
4.4.3 in the same section, these discrete operators enable you to implement discretized
flow equations in a compact form similar to the continuous mathematical description.
Use of automatic differentiation (see Appendix A.5 for more details) then ensures that
no analytical derivatives have to be programmed explicitly as long as the discrete flow
equations and constitutive relationships are implemented as a sequence of algebraic opera-
tions. MRST makes it possible to combine discrete operators and automatic differentiation
with a flexible grid structure, a highly vectorized and interactive scripting language, and a
powerful graphical environment. This is in my opinion the main reason why the software
has proved to be an efficient tool for developing new computational methods and workflow
tools. In this chapter, I try to substantiate this claim by showing several examples of rapid
prototyping. We first develop a compact and transparent solver for compressible flow and
then extend the basic single-phase model to include pressure-dependent viscosity, non-
Newtonian fluid behavior, and temperature effects. As usual, you can find complete scripts
for all examples in a subdirectory (ad-1ph) of the book module.

7.1 Implicit Discretization

As our basic model, we consider the single-phase continuity equation,

∂

∂t
(φρ)+ ∇ · (ρ�v) = q, �v = −K

μ
(∇p − gρ∇z) . (7.1)

The primary unknown is usually the fluid pressure p. Additional equations are supplied
to provide relations between p and the other quantities in the equation, e.g., by using
an equation of state to relate fluid density to pressure ρ = ρ(p), specifying porosity as
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7.1 Implicit Discretization 203

function of pressure φ(p) through a compressibility factor, and so on; see the discussion in
Section 4.2. Notice also that q is defined slightly differently in (7.1) than in (4.5).

Using the discrete operators introduced in Section 4.4.2, the basic implicit discretization
of (7.1) reads

(φρ)n+1 − (φρ)n

�tn
+ div(ρv)n+1 = qn+1, (7.2a)

vn+1 = − K

μn+1

[
grad(pn+1)− gρn+1grad(z)

]
. (7.2b)

Here, φ ∈ R
nc denotes the vector with one porosity value per cell, v is the vector of fluxes

per face, and so on. The superscript refers to discrete times at which one wishes to compute
the unknown reservoir states and �t denotes the distance between two such consecutive
points in time.

In many cases of practical interest it is possible to simplify (7.2). For instance, if the fluid
is only slightly compressible, several terms can be neglected so that the nonlinear equation
reduces to a linear equation in the unknown pressure pn+1, which we can write on residual
form as

pn+1 − pn

�tn
− 1

ctμφ
div

(
K grad(pn+1)

)− qn = 0. (7.3)

The assumption of slight compressibility is not always applicable and for generality
we assume that φ and ρ depend nonlinearly on p so that (7.2) gives rise to a nonlinear
system of equations that needs to be solved in each time step. As we will see later in this
chapter, viscosity may also depend on pressure, flow velocity, and/or temperature, which
adds further nonlinearity to the system. If we now collect all the discrete equations, we can
write the resulting system of nonlinear equations in short vector form as

F (xn+1;xn) = 0. (7.4)

Here, xn+1 is the vector of unknown state variables at the next time step and the vector of
current states xn can be seen as a parameter.

We will use the Newton–Raphson method to solve the nonlinear system (7.4): assume
that we have a guess x0 and want to move this towards the correct solution, F (x) = 0. To
this end, we write x = x0+�x, use a Taylor expansion for linearization, and solve for the
approximate increment δx

0 = F (x0 +�x) ≈ F (x0)+ ∇F (x0)δx.

This gives rise to an iterative scheme in which the approximate solution xi+1 in the (i+1)-
th iteration is obtained from

dF

dx
(xi )δxi+1 = −F (xi ), xi+1 ← xi + δxi+1. (7.5)
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204 Compressible Flow and Rapid Prototyping

Here, J = dF/dx is the Jacobian matrix, while δxi+1 is referred to as the Newton
update at iteration number i + 1. Theoretically, the Newton process exhibits quadratic
convergence under certain smoothness and differentiability requirements on F . Obtain-
ing such convergence in practice, however, will crucially depend on having a sufficiently
accurate Jacobian matrix. For complex flow models, the computation of residual equations
typically requires evaluation of many constitutive laws that altogether make up complex
nonlinear dependencies. Analytical derivation and subsequent coding of the Jacobian can
therefore be very time-consuming and prone to human errors. Fortunately, the computation
of the Jacobian matrix can in almost all cases be broken down to nested differentiation of
elementary operations and functions and is therefore a good candidate for automation using
automatic differentiation. This will add an extra computational overhead to your code, but
in most cases the increased CPU time is completely offset by the shorter time it takes you
to develop a proof-of-concept code. Likewise, unless your model problem is very small,
the dominant computational cost of solving a nonlinear PDE comes from the linear solver
called within each Newton iteration.

The idea of using automatic differentiation to develop reservoir simulators is not new.
This technique was introduced in an early version of the commercial Intersect simulator
[80], but has mainly been pioneered through a reimplementation of the GPRS research
simulator [58]. The new simulator, called AD-GPRS, is primarily based on fully implicit
formulations [303, 325, 302], in which independent variables and residual equations are
AD structures implemented using ADETL, a library for forward-mode AD realized by
expression templates in C++ [323, 322]. This way, the Jacobi matrices needed in the
nonlinear Newton-type iterations can be constructed from implicitly computed deriva-
tives when evaluating the residual equations. In [185], the authors discuss how to use the
alternative backward-mode differentiation to improve computational efficiency. Automatic
differentiation is also used in the open-source Flow simulator from the Open Porous Media
(OPM) initiative. OPM Flow can be considered as a C++ sibling of MRST, which originally
used a similar vector-oriented AD library. This has later been replaced by a localized, cell-
based AD library for improved efficiency.

7.2 A Simulator Based on Automatic Differentiation

We will now present step-by-step how you can use the AD library in MRST to implement
an implicit solver for the compressible, single-phase continuity equation (7.1). In particular,
we revisit the discrete spatial differentiation operators from Section 4.4.2 and introduce
additional discrete averaging operators that together enable us to write the discretized
equations in an abstract residual form that resembles the semi-continuous form of
the implicit discretization in (7.2). Starting from this residual form, it is relatively
simple to obtain a linearization using automatic differentiation and set up a Newton
iteration.
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7.2 A Simulator Based on Automatic Differentiation 205

7.2.1 Model Setup and Initial State

For simplicity, we consider a homogeneous box model:

[nx,ny,nz] = deal( 10, 10, 10);
[Lx,Ly,Lz] = deal(200, 200, 50);
G = cartGrid([nx, ny, nz], [Lx, Ly, Lz]);
G = computeGeometry(G);

rock = makeRock(G, 30*milli*darcy, 0.3);
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Beyond this point, our implementation is agnostic to details about the grid, except when
we specify well positions on page 206, which would typically involve more code lines for
a complex corner-point model like the Norne and SAIGUP models discussed in Sections
3.3.1 and 3.5.1.

We assume constant rock compressibility cr . Accordingly, the pore volume pv obeys the
differential equation1 crpv = dpv/dp or

pv(p) = pvr ecr (p−pr ), (7.6)

where pvr is the pore volume at reference pressure pr . To define the relation between pore
volume and pressure, we use an anonymous function:

cr = 1e-6/barsa;
p_r = 200*barsa;
pv_r = poreVolume(G, rock);

pv = @(p) pv_r .* exp( cr * (p - p_r) );
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The fluid is assumed to have constant viscosity μ = 5 cP, and as for the rock, we assume
constant fluid compressibility c, resulting in the differential equation cρ = dρ/dp for fluid
density. Accordingly,

ρ(p) = ρre
c(p−pr ), (7.7)

where ρr is the density at reference pressure pr . With this set, we can define the equation
of state for the fluid:

mu = 5*centi*poise;
c = 1e-3/barsa;
rho_r = 850*kilogram/meter̂ 3;
rhoS = 750*kilogram/meter̂ 3;
rho = @(p) rho_r .* exp( c * (p - p_r) );
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The assumption of constant compressibility will only hold for a limited range of tem-
peratures. Moreover, surface conditions are not inside the validity range of the constant

1 To highlight the close correspondence between the computer code and the mathematical equation, we here deliberately violate
the advice to never use a compound symbol to denote a single mathematical quantity.
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show = true(G.cells.num,1);
cellInx = sub2ind(G.cartDims, ...

[I-1; I-1; I; I; I(1:2)-1], ...
[J ; J; J; J; nperf+[2;2]], ...
[K-1; K; K; K-1; K(1:2)-[0; 1]]);

show(cellInx) = false;
plotCellData(G,p_init/barsa, show,...

'EdgeColor','k');
plotWell(G,W, 'height',10);
view(-125,20), camproj perspective

Figure 7.1 Model with initial pressure and single horizontal well.

compressibility assumption. We therefore set the fluid density ρS at surface conditions
separately because we will need it later to evaluate surface volume rate in our model of the
well, which consists of a horizontal wellbore perforated in eight cells:

nperf = 8;
I = repmat(2, [nperf, 1]);
J = (1:nperf).'+1;
K = repmat(5, [nperf, 1]);
cellInx = sub2ind(G.cartDims, I, J, K);
W = addWell([ ], G, rock, cellInx, 'Name', 'producer', 'Dir', 'x');

Assuming the reservoir is initially at equilibrium implies that we must have dp/dz

= gρ(p). In our simple setup, this differential equation can be solved analytically, but
for demonstration purposes, we use one of MATLAB’s built-in ODE-solvers to compute
the hydrostatic distribution numerically, relative to a fixed datum point p(z0) = pr .
Without lack of generality, we set z0 = 0 since the reservoir geometry is defined relative to
this height:

gravity reset on, g = norm(gravity);
[z_0, z_max] = deal(0, max(G.cells.centroids(:,3)));
equil = ode23(@(z,p) g .* rho(p), [z_0, z_max], p_r);
p_init = reshape(deval(equil, G.cells.centroids(:,3)), [], 1);

This finishes the model setup, and at this stage we plot the reservoir with well and initial
pressure as shown in Figure 7.1.

7.2.2 Discrete Operators and Equations

We are now ready to discretize the model. As seen in Section 4.4.2, the discrete version
of the gradient operator maps from the set of cells to the set of faces. For a pressure field,
it computes the pressure difference between neighboring cells of each face. Likewise, the
discrete divergence operator is a linear mapping from the set of faces to the set of cells. For
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7.2 A Simulator Based on Automatic Differentiation 207

a flux field, it sums the outward fluxes for each cell. The complete code needed to form the
grad and div operators has already been presented in Examples 4.4.2 and 4.4.3, but here
we repeat it in order to make the example more self-contained.

To define the discrete operators, we must first compute the map between interior faces
and cells

C = double(G.faces.neighbors);
C = C(all(C �= 0, 2), :);

Exterior faces need not be included since they have zero flow, given our assumption of no-
flow boundary conditions. It now follows that grad(x) = x(C(: ,2))− x(C(: ,1)) = Dx,
where D is a sparse matrix with values ±1 in columns C(i,2) and C(i,1) for row i. As a
linear mapping, the discrete div-function is simply the negative transpose of grad; this
follows from the discrete version of the Gauss–Green theorem, (4.58). In addition, we
define an averaging operator that for each face computes the arithmetic average of the
neighboring cells, which we will need to evaluate density values at grid faces:

n = size(C,1);
D = sparse([(1:n)'; (1:n)'], C, ...

ones(n,1)*[-1 1], n, G.cells.num);
grad = @(x) D*x;
div = @(x) -D'*x;
avg = @(x) 0.5 * (x(C(:,1)) + x(C(:,2)));

∂
∂x

∂
∂y

∂
∂z

This is all we need to define the spatial discretization for a homogeneous medium on a grid
with cubic cells. To make a generic spatial discretization that also can account for more
general cell geometries and heterogeneities, we must include transmissibilities. To this end,
we first compute one-sided transmissibilities Ti,j using the function computeTrans, which
was discussed in detail in Section 5.2, and then use harmonic averaging to obtain face-
transmissibilities. That is, for neighboring cells i and j , we compute Tij = (T −1

i,j +T −1
j,i )−1

as in (4.52) on page 133.

hT = computeTrans(G, rock); % Half-transmissibilities
cf = G.cells.faces(:,1);
nf = G.faces.num;
T = 1 ./ accumarray(cf, 1 ./ hT, [nf, 1]); % Harmonic average
T = T(intInx); % Restricted to interior

Having defined the necessary discrete operators, we are in a position to use the basic
implicit discretization from (7.2). We start with Darcy’s law (7.2b),

�v[f ] = −T [f ]

μ

(
grad(p)− g ρa[f ] grad(z)

)
, (7.8)

where the density at the interface is evaluated using the arithmetic average

ρa[f ] = 1
2

(
ρ[C1(f )]+ ρ[C2(f )]

)
. (7.9)
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Similarly, we can write the continuity equation for each cell c as

1

�t

[(
φ(p)[c] ρ(p)[c]

)n+1 − (φ(p)[c] ρ(p)[c]
)n]+ div(ρav)[c] = 0. (7.10)

The two residual equations (7.8) and (7.10) are implemented as anonymous functions of
pressure:

gradz = grad(G.cells.centroids(:,3));
v = @(p) -(T/mu).*( grad(p) - g*avg(rho(p)).*gradz );

presEq = @(p,p0,dt) (1/dt)*(pv(p).*rho(p) - pv(p0).*rho(p0)) ...
+ div( avg(rho(p)).*v(p) );

In the code above, p0 is the pressure field at the previous time step (i.e., pn), whereas p is the
pressure at the current time step (pn+1). Having defined the discrete expression for Darcy
fluxes, we can check that this is in agreement with our initial pressure field by computing
the magnitude of the flux, norm(v(p_init))*day. The result is 1.5× 10−6 m3/day, which
should convince us that the initial state of the reservoir is sufficiently close to equilibrium.

7.2.3 Well Model

The production well will appear as a source term in the pressure equation. We therefore
need to define an expression for flow rate in all cells the well is connected to the reservoir
(which we refer to as well connections). Inside the well, we assume instantaneous flow so
that the pressure drop is always hydrostatic. For a horizontal well, the hydrostatic term is
zero and could obviously be disregarded, but we include it for completeness and as a robust
precaution in case we later want to reuse the code with a different well path. Approximating
the fluid density in the well as constant, computed at bottom-hole pressure, the pressure
pc[w] in connection w of well Nw(w) is given by

pc[w] = pbh[Nw(w)]+ g �z[w] ρ(pbh[Nw(w)]), (7.11)

where �z[w] is the vertical distance from the bottom-hole to the connection. We use the
standard Peaceman model introduced in Section 4.3.2 to relate the pressure at the well
connection to the average pressure inside the grid cell. Using the well-indices from W, the
mass flow-rate at connection c reads

qc[w] = ρ(p[Nc(w)])

μ
WI[w]

(
pc[w]− p[Nc(w)]

)
, (7.12)

where p[Nc(w)] is the pressure in cell Nc(w) containing connection w. In our code, this
model is implemented as follows:
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wc = W(1).cells; % connection grid cells
WI = W(1).WI; % well-indices
dz = W(1).dZ; % depth relative to bottom-hole

p_conn = @(bhp) bhp + g*dz.*rho(bhp); %connection pressures
q_conn = @(p, bhp) WI .* (rho(p(wc)) / mu) .* (p_conn(bhp) - p(wc));

pbh

qc

We also include the total volumetric well-rate at surface conditions as a free variable. This
is simply given by summing all mass well-rates and dividing by the surface density:

rateEq = @(p, bhp, qS) qS-sum(q_conn(p, bhp))/rhoS;

With free variables p, bhp, and qS, we lack exactly one equation to close the system. This
equation should account for boundary conditions in the form of a well control. Here, we
choose to control the well by specifying a fixed bottom-hole pressure

ctrlEq = @(bhp) bhp-100*barsa;

7.2.4 The Simulation Loop

What now remains is to set up a simulation loop that will evolve the transient pressure. We
start by initializing the AD variables. For clarity, we append _ad to all variable names to
distinguish them from doubles. The initial bottom-hole pressure is set to the corresponding
grid-cell pressure.

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);

This gives the following AD pairs that make up the unknowns in our system:

p_ad = ADI Properties:
val: [1000x1 double]
jac: {[1000x1000 double]

[1000x1 double]
[1000x1 double]}

∂p

∂p
≡ I

∂p

∂qs
≡ 0

∂p

∂pbh
≡ 0

bhp_ad = ADI Properties:
val: 2.0188e+07
jac: {[1x1000 double]

[1]
[0]}

∂pbh

∂p
≡ 0

∂pbh

∂qs

∂pbh

∂pbh

qS_ad = ADI Properties:
val: 0
jac: {[1x1000 double]

[0]
[1]}

∂qs

∂p
≡ 0

∂qs

∂
qs

∂qs

∂pbh

To solve the global flow problem, we must stack all the equations into one big system,
compute the corresponding Jacobian, and perform a Newton update. We therefore set
indices for easy access to individual variables

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);
nc = G.cells.num;
[pIx, bhpIx, qSIx] = deal(1:nc, nc+1, nc+2);
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Next, we set parameters to control the time steps in the simulation and the iterations in the
Newton solver:

[numSteps, totTime] = deal(52, 365*day); % time-steps/ total simulation time
[tol, maxits] = deal(1e-5, 10) % Newton tolerance / maximum Newton its
dt = totTime / numSteps;

Simulation results from all time steps are stored in a structure sol. For efficiency, this
structure is preallocated and initialized so that the first entry is the initial state of the
reservoir:

sol = repmat(struct('time',[], 'pressure',[], 'bhp',[], 'qS',[]), [numSteps+1, 1]);
sol(1) = struct('time', 0, 'pressure', double(p_ad), ...

'bhp', double(bhp_ad), 'qS', double(qS_ad));

We now have all we need to set up the time-stepping algorithm, which consists of an outer
and an inner loop. The outer loop updates the time step, advances the solution one step
forward in time, and stores the result in the sol structure. This procedure is repeated until
we reach the desired final time:

t = 0; step = 0;
while t < totTime,

t = t + dt; step = step + 1;
fprintf('\nTime step %d: Time %.2f -> %.2f days\n', ...

step, convertTo(t - dt, day), convertTo(t, day));
% Newton loop
[resNorm, nit] = deal(1e99, 0);
p0 = double(p_ad); % Previous step pressure
while (resNorm > tol) && (nit <= maxits)

: % Newton update
:
resNorm = norm(res);
nit = nit + 1;
fprintf(' Iteration %3d: Res = %.4e\n', nit, resNorm);

end
if nit > maxits, error('Newton solves did not converge')
else % store solution

sol(step+1) = struct('time', t, 'pressure', double(p_ad), ...
'bhp', double(bhp_ad), 'qS', double(qS_ad));

end
end

The inner loop performs the Newton iteration by computing and assembling the Jacobian
of the global system and solving the linearized residual equation to compute an iterative
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update. The first step to this end is to evaluate the residual for the flow pressure equation
and add source terms from wells:

eq1 = presEq(p_ad, p0, dt);
eq1(wc) = eq1(wc) - q_conn(p_ad, bhp_ad);

Most of the lines we have implemented so far are fairly standard, except perhaps for the
definition of the residual equations as anonymous functions. Equivalent statements can be
found in almost any computer program solving this type of time-dependent equation by
an implicit method. Now, however, comes what is normally the tricky part: linearization
of the equations that make up the whole model and assembly of the resulting Jacobian
matrices to generate the Jacobian for the full system. And here you have the magic of
automatic differentiation: you do not have to do this at all! The computer code necessary
to evaluate all Jacobians has been defined implicitly by the functions in the AD library
in MRST, which overloads the elementary operators used to define the residual equations.
An example of a complete calling sequence for a simple calculation is shown in Figure
A.7 on page 625. The sequence of operations we use to compute the residual equations is
obviously more complex than this example, but the operators used are in fact only the three
elementary operators plus, minus, and multiply applied to scalars, vectors, and matrices, as
well as element-wise division by a scalar and evaluation of exponential functions. When
the residuals are evaluated by use of the anonymous functions defined in Sections 7.2.2 and
7.2.3, the AD library also evaluates the derivatives of each equation with respect to each
independent variable and collects the corresponding sub-Jacobians in a list. To form the
full system, we simply evaluate the residuals of the remaining equations (the rate equation
and the equation for well control) and concatenate the three equations into a cell array:

eqs = {eq1, rateEq(p_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};
eq = cat(eqs{:});

In doing this, the AD library will correctly combine the various sub-Jacobians and set up
the Jacobian for the full system. Then, we can extract this Jacobian, solve for the Newton
increment, and update the three primary unknowns:

J = eq.jac{1}; % Jacobian
res = eq.val; % residual
upd = -(J \ res); % Newton update

% Update variables
p_ad.val = p_ad.val + upd(pIx);
bhp_ad.val = bhp_ad.val + upd(bhpIx);
qS_ad.val = qS_ad.val + upd(qSIx);

The sparsity pattern of the Jacobian is shown in the plot to the left of the code for the
Newton update. The use of a two-point scheme on a 3D Cartesian grid gives a Jacobi
matrix that has a heptadiagonal structure, except for the off-diagonal entries in the two
red rectangles. These arise from the well equation and correspond to derivatives of this
equation with respect to cell pressures.
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Figure 7.2 Time evolution of the pressure solution for the compressible single-phase problem. The
plot to the left shows the well rate (blue line) and average reservoir pressure (green circles) as function
of time, and the plots to the right show the pressure after 2, 5, 10, and 20 pressure steps.

Figure 7.2 plots how the dynamic pressure evolves with time. Initially, the pressure is in
hydrostatic equilibrium as shown in Figure 7.1. When the well starts to drain the reservoir,
the pressure drawdown near the well will start to gradually propagate outward from the
well. As a result, the average pressure inside the reservoir is reduced, which again causes a
decay in the production rate.

Computer exercises

7.2.1 Apply the compressible pressure solver to the quarter five-spot problem from
Section 5.4.1.

7.2.2 Rerun compressible simulations for the three different grid models that were
derived from the seamount data set Section 5.4.3. Replace the fixed boundary
conditions by a no-flow condition.

7.2.3 Use the implementation from Section 7.2 as a template to develop a solver for
slightly compressible flow (7.3). More details about this model can be found on
page 118 in Section 4.2. How large can cf be before the assumptions of slight
compressibility become inaccurate? Use different heterogeneities, well placements,
and model geometries to investigate this.

7.2.4 Extend the compressible solver developed in this section to incorporate other
boundary conditions than no flow.

7.2.5 Try to compute time-of-flight by extending the equation set to also include the time-
of-flight equation (4.40). Hint: the time-of-flight and the pressure equations need
not be solved as a coupled system.

7.2.6 Same as the previous exercise, except that you should try to reuse the solver from
in Section 5.3. Hint: you must first reconstruct fluxes from the computed pressure
and then construct a state object to communicate with the TOF solver.
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7.3 Pressure-Dependent Viscosity 213

7.3 Pressure-Dependent Viscosity

One particular advantage of using automatic differentiation in combination with the dis-
crete differential and averaging operators is that it simplifies the testing of new models
and alternative computational approaches. In this section, we discuss two examples that
hopefully demonstrate this aspect.

In the model discussed in the previous section, the viscosity was assumed to be constant.
However, viscosity will generally increase with increasing pressures and this effect may
be significant for the high pressures seen inside a reservoir, as we will see later in the
book when discussing black-oil models in Chapter 11. To illustrate, we introduce a linear
dependence, rather than the exponential pressure-dependence used for pore volume (7.6)
and the fluid density (7.7). That is, we assume the viscosity is given by

μ(p) = μ0
[
1+ cμ(p − pr)

]
. (7.13)

Having a pressure dependence means that we have to change two parts of our discretization:
the approximation of the Darcy flux across a cell face (7.8) and the flow rate through a well
connection (7.12). Starting with the latter, we evaluate the viscosity using the same pressure
as was used to evaluate the density, i.e.,

qc[w] = ρ(p[Nc(w)])

μ(p[Nc(w)])
WI[w]

(
pc[w]− p[Nc(w)]

)
. (7.14)

For the Darcy flux (7.8), we have two choices: either use a simple arithmetic average as in
(7.9) to approximate the viscosity at each cell face,

v[f ] = − T [f ]

μa[f ]

(
grad(p)− g ρa[f ] grad(z)

)
, (7.15)

or replace the quotient of the transmissibility and the face viscosity by the harmonic average
of the mobility λ = K/μ in the adjacent cells. Both choices introduce changes in the struc-
ture of the discrete nonlinear system, but because we are using automatic differentiation,
all we have to do is code the corresponding formulas. Let us look at the details of the
implementation, starting with the arithmetic approach.

Arithmetic Average

First, we introduce a new anonymous function to evaluate the relation between viscosity
and pressure:

[mu0,c_mu] = deal(5*centi*poise, 2e-3/barsa);
mu = @(p) mu0*(1+c_mu*(p-p_r));

Then, we can replace the definition of the Darcy flux (changes marked in red):

v = @(p) -(T./mu(avg(p))).*( grad(p) - g*avg(rho(p)).*gradz );
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Figure 7.3 The effect of increasing the degree of pressure-dependence for the viscosity.

and similarly for flow rate through each well connection:

q_conn = @(p,bhp) WI.*(rho(p(wc))./ mu(p(wc))) .* (p_conn(bhp) - p(wc));

Figure 7.3 illustrates the effect of increasing the pressure dependence of the viscosity. Since
the reference value is given at p = 200 bar, which is close to the initial pressure inside the
reservoir, the more we increase cμ, the lower μ will be in the pressure-drawdown zone
near the well. Hence, we see a significantly higher initial production rate for cμ = 0.005
than for cμ = 0. On the other hand, the higher value of cμ, the faster the drawdown effect
of the well will propagate into the reservoir, inducing a reduction in reservoir pressure
that eventually will cause production to cease. In terms of overall production, a stronger
pressure dependence may be more advantageous as it leads to a higher total recovery and
higher cumulative production early in the production period.

Face Mobility: Harmonic Average

A more correct approximation is to write Darcy’s law based on mobility instead of using
the quotient of the transmissibility and an averaged viscosity:

v[f ] = −�[f ]
(
grad(p)− g ρa[f ] grad(z)

)
. (7.16)
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The face mobility �[f ] can be defined in the same way as the transmissibility is defined
in terms of the half transmissibilities using harmonic averages. That is, if T [f,c] denotes
the half transmissibility associated with face f and cell c, the face mobility �[f ] for face
f can be written as

�[f ] =
( μ[C1(f )]

T [f,C1(f )]
+ μ[C2(f )]

T [f,C2(f )]

)−1
. (7.17)

In MRST, the corresponding code reads:

hf2cn = getCellNoFaces(G);
nhf = numel(hf2cn);
hf2f = sparse(double(G.cells.faces(:,1)),(1:nhf)',1);
hf2if = hf2f(intInx,:);
fmob = @(mu,p) 1./(hf2if*(mu(p(hf2cn))./hT));

v = @(p) -fmob(mu,p).*( grad(p) - g*avg(rho(p)).*gradz );

Here, hf2cn represents the maps C1 and C2, which enable us to sample the viscosity value
in the correct cell for each half-face transmissibility, whereas hf2if represents a map from
half-faces (i.e., faces seen from a single cell) to global faces (which are shared by two
cells). The map has a unit value in row i and column j if half-face j belongs to global face
i. Hence, premultiplying a vector of half-face quantities by hf2if amounts to summing the
contributions from cells C1(f ) and C2(f ) for each global face f .

Using the harmonic average for a homogeneous model should produce simulation results
that are identical (to machine precision) to those produced by the arithmetic average. With
heterogeneous permeability, there will be small differences in well rates and averaged
pressures for the specific parameters considered herein. For sub-samples of the SPE 10
data set, we typically observe maximum relative differences in well rates of the order 10−3.

Computer exercises

7.3.1 Investigate the claim that the difference between using an arithmetic average of the
viscosity and a harmonic average of the fluid mobility is typically small. To this
end, you can for instance use the following sub-sample from the SPE 10 data set:
rock = getSPE10rock(41:50,101:110,1:10).

7.4 Non-Newtonian Fluid

Viscosity is the material property that measures a fluid’s resistance to flow, i.e., the resis-
tance to a change in shape, or to the movement of neighboring portions of the fluid relative
to each other. The more viscous a fluid is, the less easily it will flow. In Newtonian fluids, the
shear stress or the force applied per area tangential to the force at any point is proportional
to the strain rate (the symmetric part of the velocity gradient) at that point, and the viscosity
is the constant of proportionality. For non-Newtonian fluids, the relationship is no longer

https://doi.org/10.1017/9781108591416.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.010


216 Compressible Flow and Rapid Prototyping

linear. The most common nonlinear behavior is shear thinning, in which the viscosity of
the system decreases as the shear rate increases. An example is paint, which should flow
easily when leaving the brush, but stay on the surface and not drip once it has been applied.
The second type of nonlinearity is shear thickening, in which the viscosity increases with
increasing shear rate. A common example is the mixture of cornstarch and water. If you
search YouTube for “cornstarch pool” you will find several spectacular videos of pools
filled with this mixture. When stress is applied to the mixture, it exhibits properties like a
solid and you may be able to run across its surface. However, if you go too slow, the fluid
behaves more like a liquid and you fall in.

Solutions of large polymeric molecules are another example of shear-thinning liquids.
In enhanced oil recovery, polymer solutions may be injected into reservoirs to improve
unfavorable mobility ratios between oil and water and improve the sweep efficiency of the
injected fluid. At low flow rates, the polymer molecule chains tumble around randomly and
present large resistance to flow. When the flow velocity increases, the viscosity decreases as
the molecules gradually align themselves in the direction of increasing shear rate. A model
of the rheology is given by

μ = μ∞ + (μ0 − μ∞)

(
1+

(
Kc

μ0

) 2
n−1

γ̇ 2
) n−1

2

, (7.18)

where μ0 represents the Newtonian viscosity at zero shear rate, μ∞ represents the Newto-
nian viscosity at infinite shear rate, Kc represents the consistency index, and n represents
the power-law exponent (n < 1). The shear rate γ̇ in a porous medium can be approxi-
mated by

γ̇app = 6

(
3n+ 1

4n

) n
n−1 |�v|√

Kφ
. (7.19)

Combining (7.18) and (7.19), we can write our model for the viscosity as

μ = μ0

(
1+ K̄c

|�v|2
Kφ

) n−1
2

, K̄c = 36

(
Kc

μ0

) 2
n−1
(

3n+ 1

4n

) 2n
n−1

, (7.20)

where we for simplicity have assumed that μ∞ = 0.

Rapid Development of Proof-of-Concept Codes

We now demonstrate how easy it is to extend the simple simulator developed so far in
this chapter to model non-Newtonian fluid behavior (see nonNewtonianCell.m). To sim-
ulate injection, we increase the bottom-hole pressure to 300 bar. Our rheology model has
parameters:

mu0 = 100*centi*poise;
nmu = .3;
Kc = .1);
Kbc = (Kc/mu0)̂ (2/(nmu-1))*36*((3*nmu+1)/(4*nmu))̂ (2*nmu/(nmu-1));
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In principle, we could continue to solve the system using the same primary unknowns
as before. However, it has proved convenient to write (7.20) in the form μ = η μ0, and
introduce η as an additional unknown. In each Newton step, we start by solving the equation
for the shear factor η exactly for the given pressure distribution. This is done by initializing
an AD variable for η, but not for p in etaEq so that this residual now only has one unknown,
η. This will take out the implicit nature of Darcy’s law and hence reduce the nonlinearity
and simplify the solution of the global system.

while (resNorm > tol) && (nit < maxits)
% Newton loop for eta (shear multiplier)
[resNorm2,nit2] = deal(1e99, 0);
eta_ad2 = initVariablesADI(eta_ad.val);
while (resNorm2 > tol) && (nit2 <= maxits)
eeq = etaEq(p_ad.val, eta_ad2);
res = eeq.val;
eta_ad2.val = eta_ad2.val - (eeq.jac{1} \ res);
resNorm2 = norm(res);
nit2 = nit2+1;

end
eta_ad.val = eta_ad2.val;

Once the shear factor has been computed for the values in the previous iterate, we can use
the same approach as earlier to compute a Newton update for the full system. (Here, etaEq
is treated as a system with two unknowns, p and η.)

eq1 = presEq(p_ad, p0, eta_ad, dt);
eq1(wc) = eq1(wc) - q_conn(p_ad, eta_ad, bhp_ad);
eqs = {eq1, etaEq(p_ad, eta_ad), ...

rateEq(p_ad, eta_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};
eq = cat(eqs{:});
upd = -(eq.jac{1} \ eq.val); % Newton update

To finish the solver, we need to define the flow equations and the extra equation for the shear
multiplier. The main question now is how we should compute |�v|? One solution could be to
define |�v| on each face as the flux divided by the face area. In other words, use a code like

phiK = avg(rock.perm.*rock.poro)./G.faces.areas(intInx).^2;
v = @(p, eta) -(T./(mu0*eta)).*( grad(p) - g*avg(rho(p)).*gradz );
etaEq = @(p, eta) eta - (1 + Kbc*v(p,eta).^2./phiK).^((nmu-1)/2);

Although simple, this approach has three potential issues: First, it does not tell us how
to compute the shear factor for the well perforations. Second, it disregards contributions
from any tangential components of the velocity field. Third, the number of unknowns in
the linear system increases by almost a factor six since we now have one extra unknown
per internal face. The first issue is easy to fix: To get a representative value in the well cells,
we simply average the η values from the cells’ faces. If we now recall how the discrete
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divergence operator was defined, we realize that this operation is almost implemented for
us already: if div(x)=-D’*x computes the discrete divergence in each cell of the field x
defined at the faces, then wavg(x)=1/6*abs(D)’*x computes the average of x for each
cell. In other words, our well equation becomes:

wavg = @(eta) 1/6*abs(D(:,W.cells))'*eta;
q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*wavg(eta))) .* (p_conn(bhp) - p(wc));

The second issue would have to be investigated in more detail, and this is not within the
scope of this book. The third issue is simply a disadvantage.

To get a method that consumes less memory, we can compute one η value per cell. Using
the following formula, we can reconstruct an approximate velocity �vi at the center of cell i

�vi =
∑

j∈N(i)

vij

Vi

(�cij − �ci

)
, (7.21)

where N(i) is the map from cell i to its neighboring cells, vij is the flux between cell i and
cell j , �cij is the centroid of the corresponding face, and �ci is the centroid of cell i. For a
Cartesian grid, this formula simplifies so that an approximate velocity can be obtained as
the sum of the absolute value of the flux divided by the face area over all faces that make up
a cell. Using a similar trick as we used in the wavg operator to compute η in the well cells,
our implementation follows trivially. We first define the averaging operator to compute cell
velocity

aC = bsxfun(@rdivide, 0.5*abs(D), G.faces.areas(intInx))';
cavg = @(x) aC*x;

In doing so, we also rename our old averaging operator avg as favg to avoid confusion
and make it more clear that this operator maps from cell values to face values. Then we can
define the needed equations:

phiK = rock.perm.*rock.poro;
gradz = grad(G.cells.centroids(:,3));
v = @(p, eta) -(T./(mu0*favg(eta))).*( grad(p) - g*favg(rho(p)).*gradz );
etaEq = @(p, eta)

eta - ( 1 + Kbc* cavg(v(p,eta)).^2 ./phiK ).^((nmu-1)/2);
presEq= @(p, p0, eta, dt) ...

(1/dt)*(pv(p).*rho(p) - pv(p0).*rho(p0)) + div(favg(rho(p)).*v(p, eta));

With this approach, the well equation becomes particularly simple, since all we need to do
is sample the η value from the correct cell:

q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*eta(wc))) .* (p_conn(bhp) - p(wc));
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Figure 7.4 Single-phase injection of a highly viscous, shear-thinning fluid computed by four different
simulation methods: (i) fluid assumed to be Newtonian, (ii) shear multiplier η computed in cells, (iii)
shear multiplier computed at faces, and (iv) shear multiplier computed at faces, but η ≡ 1 used in
well model.

A potential drawback of this second approach is that it may introduce numerical smearing,
but this will, on the other hand, most likely increase the robustness of the resulting scheme.

Figure 7.4 compares the predicted flow rates and average reservoir pressure for two
different fluid models: one that assumes a standard Newtonian fluid (i.e., η ≡ 1) and
one that models shear thinning. With shear thinning, the higher pressure in the injection
well causes a decrease in the viscosity, which leads to significantly higher injection rates
than for the Newtonian fluid and hence a higher average reservoir pressure. Perhaps more
interesting is the large discrepancy in rates and pressures predicted by the face-based and
cell-based simulation algorithms. If we disregard the shear multiplier q_conn in the face-
based method, the predicted rate and pressure buildup is smaller than what is predicted by
the cell-based method, and closer to the Newtonian fluid case. We take this as evidence
that the differences between the cell and the face-based methods to a large extent can be
explained by differences in the discretized well models and their ability to capture the
formation and propagation of the strong initial transient. To further back this up, we have
included results from a simulation with ten times as many time steps in Figure 7.5, which
also includes plots of the evolution of min(η) as function of time. Whereas the face-based
method predicts a large, immediate drop in viscosity in the near-well region, the viscosity
drop predicted by the cell-based method is much smaller during the first 20–30 days. This
results in a delay in the peak of the injection rate and a much smaller injected volume.

We leave the discussion here. The parameters used in the example were chosen quite
haphazardly to demonstrate a pronounced shear-thinning effect. Which method is the most
correct for real computations is a question that goes beyond the current scope, and could
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Figure 7.5 Single-phase injection of a highly viscous, shear-thinning fluid; simulation with �t =
1/520 year. The right plot shows the evolution of η as a function of time: solid lines show min(η)

over all cells, dashed lines min(η) over the perforated cells, and dash-dotted lines average η value.

probably best be answered by verifying against observed data for a real case. Our point
here was mainly to demonstrate the capability for rapid implementation of proof-of-concept
codes that comes with the use of MRST. However, as the example shows, this lunch is not
completely free: you still have to understand features and limitations of the models and
discretizations you choose to implement.

Computer exercises

7.4.1 Investigate whether the large differences observed in Figures 7.4 and 7.5 between
the cell-based and face-based approaches to the non-Newtonian flow problem is a
result of insufficient grid resolution.

7.4.2 The non-Newtonian fluid has a strong transient during the first 30–100 days. Try
to implement adaptive time steps that utilize this fact. Can you come up with a
strategy that automatically choose good time steps?

7.5 Thermal Effects

As another example of rapid prototyping, we extend the single-phase flow model (7.1) to
account for thermal effects. That is, we assume that ρ(p,T ) is now a function of pressure
and temperature T and extend our model to also include conservation on energy,

∂

∂t

[
φρ
]+∇ · [ρ�v] = q, �v = −K

μ

[∇p − gρ∇z
]
, (7.22a)

∂

∂t

[
φρEf (p,t)+ (1− φ)Er

]+ ∇ · [ρHf �v
]−∇ · [κ∇T

] = qe. (7.22b)
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Here, the rock and the fluid are assumed to be in local thermal equilibrium. In the energy
equation (7.22b), Ef is energy density per mass of the fluid, Hf = Ef + p/ρ is enthalpy
density per mass, Er is energy per volume of the rock, and κ is the heat conduction
coefficient of the rock. Fluid pressure p and temperature T are used as primary variables.

As in the original isothermal simulator, we must first define constitutive relationships
that express the new physical quantities in terms of the primary variables. The energy
equation includes heating of the solid rock, and we therefore start by defining a quantity
that keeps track of the solid volume, which also depends on pressure:

sv = @(p) G.cells.volumes - pv(p);

For the fluid model, we use

ρ(p,T ) = ρr

[
1+ βT (p − pr)

]
e−α(T−Tr ),

μ(p,T ) = μ0
[
1+ cμ(p − pr)

]
e−cT (T−Tr ). (7.23)

Here, ρr = 850 kg/m3 is the density and μ0 = 5 cP the viscosity of the fluid at reference
conditions with pressure pr = 200 bar and temperature Tr = 300 K. The constants are
βT = 10−3 bar−1, α = 5 × 10−3 K−1, cμ = 2 × 10−3 bar−1, and cT = 10−3 K−1. This
translates to the following code:

[mu0,cmup] = deal( 5*centi*poise, 2e-3/barsa);
[cmut,T_r] = deal( 1e-3, 300);
mu = @(p,T) mu0*(1+cmup*(p-p_r)).*exp(-cmut*(T-T_r));

[alpha, beta] = deal(5e-3, 1e-3/barsa);
rho_r = 850*kilogram/meter̂ 3;
rho = @(p,T) rho_r .* (1+beta*(p-p_r)) .* exp(-alpha*(T-T_r));

We use a simple linear relation for the enthalpy, which is based on the thermodynamical
relations that give

dHf = cp dT +
(

1− αTr

ρ

)
dp, α = − 1

ρ

∂ρ

∂T

∣∣∣
p
, (7.24)

where cp = 4× 103 J/kg. The code for enthalpy/energy densities reads:

Cp = 4e3;
Hf = @(p,T) Cp*T+(1-T_r*alpha).*(p-p_r)./rho(p,T);
Ef = @(p,T) Hf(p,T) - p./rho(p,T);
Er = @(T) Cp*T;

We defer discussing details of these new relationships and only note that it is important that
the thermal potentials Ef and Hf are consistent with the equation of state ρ(p,T ) to get a
physically meaningful model.

Having defined all constitutive relationships in terms of anonymous functions, we can
set up the equation for mass conservation and Darcy’s law (with transmissibility renamed
to Tp to avoid name clash with temperature):
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v = @(p,T) -(Tp./mu(avg(p),avg(T))).*(grad(p) - avg(rho(p,T)).*gdz);
pEq = @(p,T,p0,T0,dt) ...

(1/dt)*(pv(p).*rho(p,T) - pv(p0).*rho(p0,T0)) ...
+ div( avg(rho(p,T)).*v(p,T) );

In the energy equation (7.22b), the accumulation and the heat-conduction terms are on the
same form as the operators appearing in (7.22a) and can hence be discretized in the same
way. We use an artificial “rock object” to compute transmissibilities for κ instead of K:

tmp = struct('perm',4*ones(G.cells.num,1));
hT = computeTrans(G, tmp);
Th = 1 ./ accumarray(cf, 1 ./ hT, [nf, 1]);
Th = Th(intInx);

The remaining term in (7.22b), ∇ · [ρHf �v], represents advection of enthalpy and has a
differential operator on the same form as the transport equations discussed in Section 4.4.3
and must hence be discretized by an upwind scheme. To this end, we introduce a new
discrete operator that will compute the correct upwind value for the enthalpy density,

upw(H )[f ] =
{

H [C1(f )], if v[f ] > 0,

H [C2(f )], otherwise.
(7.25)

With this, we can set up the energy equation in residual form in the same way as we
previously have done for Darcy’s law and mass conservation:

upw = @(x,flag) x(C(:,1)).*double(flag)+x(C(:,2)).*double(�flag);
hEq = @(p, T, p0, T0, dt) ...

(1/dt)*(pv(p ).*rho(p, T ).*Ef(p ,T ) + sv(p ).*Er(T ) ...
- pv(p0).*rho(p0,T0).*Ef(p0,T0) - sv(p0).*Er(T0)) ...

+ div( upw(Hf(p,T),v(p,T)>0).*avg(rho(p,T)).*v(p,T) ) ...
+ div( -Th.*grad(T));

With this, we are almost done. As a last technical detail, we must also make sure that the
energy transfer in injection and production wells is modeled correctly using appropriate
upwind values:

qw = q_conn(p_ad, T_ad, bhp_ad);
eq1 = pEq(p_ad, T_ad, p0, T0, dt);
eq1(wc) = eq1(wc) - qw;
hq = Hf(bhp_ad,bhT).*qw;
Hcells = Hf(p_ad,T_ad);
hq(qw<0) = Hcells(wc(qw<0)).*qw(qw<0);
eq2 = hEq(p_ad,T_ad, p0, T0,dt);
eq2(wc) = eq2(wc) - hq;

Here, we evaluate the enthalpy using cell values for pressure and temperature for produc-
tion wells (for which qw<0) and pressure and temperatures at the bottom hole for injection
wells.
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What remains are trivial changes to the iteration loop to declare the correct vari-
ables as AD structures, evaluate the discrete equations, collect their residuals, and
update the state variables. These details can be found in the complete code given in
singlePhaseThermal.m and have been left out for brevity.

Understanding Thermal Expansion

Except for the modifications discussed in the previous subsection, the setup is the exact
same as in Section 7.2. That is, the reservoir is a 200× 200× 50 m3 rectangular box with
homogeneous permeability of 30 mD, constant porosity 0.3, and a rock compressibility
of 10−6 bar−1, realized on a 10 × 10 × 10 Cartesian grid. The reservoir is realized on a
10×10×10 Cartesian grid. Fluid is drained from a horizontal well perforated in cells with
indices i = 2, j = 2, . . . ,9, and k = 5, and operating at a constant bottom-hole pressure
of 100 bar. Initially, the reservoir has constant temperature of 300 K and is in hydrostatic
equilibrium with a datum pressure of 200 bar specified in the uppermost cell centroids.

In the same way as in the isothermal case, the open well will create a pressure drawdown
that propagates into the reservoir. As more fluid is produced from the reservoir, the pressure
will gradually decay towards a steady state with pressure values between 101.2 and 104.7
bar. Figure 7.6 shows that the simulation predicts a faster pressure drawdown, and hence a
faster decay in production rates, if thermal effects are taken into account.

The change in temperature of an expanding fluid will not only depend on the initial and
final pressure, but also on the type of process in which the temperature is changed:

• In a free expansion, the internal energy is preserved and the fluid does no work. That is,
the process can be described by the following differential:

dEf

dp
�p + dEf

dT
�T = 0. (7.26)
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Figure 7.6 To the left, time evolution for pressure for an isothermal simulation (solid lines) and a
thermal simulation with α = 5 × 10−3 (dashed lines). To the right, decay in production rate at the
surface.
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224 Compressible Flow and Rapid Prototyping

When the fluid is an ideal gas, the temperature is constant, but otherwise the temperature
will either increase or decrease during the process depending on the initial temperature
and pressure.

• In a reversible process, the fluid is in thermodynamical equilibrium and does positive
work while the temperature decreases. The linearized function associated with this adia-
batic expansion reads

dE + p

ρV
dV = dE + p d

(
1

ρ

)
= 0. (7.27)

• In a Joule–Thomson process, the enthalpy remains constant while the fluid flows from
higher to lower pressure under steady-state conditions and without change in kinetic
energy. That is,

dHf

dp
�p + dHf

dT
�T = 0. (7.28)

Our case is a combination of these three processes and their interplay will vary with
the initial temperature and pressure as well as with the constants in the fluid model for
ρ(p,T ). To better understand a specific case, we can use (7.26–7.28) to compute the
temperature change that would take place for an observed pressure drawdown if only one
of the processes took place. Computing such linearized responses for thermodynamical
functions is particularly simple using automatic differentiation. Assuming we know the
reference state (pr,Tr) at which the process starts and the pressure pe after the process has
taken place, we initialize the AD variables and compute the pressure difference:

[p,T] = initVariablesADI(p_r,T_r);
dp = p_e - p_r;

Then, we can solve (7.26) or (7.28) for �T and use the result to compute the temperature
change resulting from a free expansion or a Joule–Thomson expansion:

E = Ef(p,T); dEdp = E.jac{1}; dEdT = E.jac{2};
Tfr = T_r - dEdp*dp/dEdT;

hf = Hf(p,T); dHdp = hf.jac{1}; dHdT = hf.jac{2};
Tjt = T_r - dHdp*dp/dHdT;

The temperature change after a reversible (adiabatic) expansion is not described by a total
differential. In this case we have to specify that p should be kept constant. This is done by
replacing the AD variable p by an ordinary variable double(p) in the code at the specific
places where p appears in front of a differential; see (7.27).

E = Ef(p,T) + double(p)./rho(p,T);
dEdp = hf.jac{1};
dEdT = hf.jac{2};
Tab = T_r - dEdp*dp/dEdT;
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The same kind of manipulation can be used to study alternative linearizations of systems of
nonlinear equations and the influence of neglecting some of the derivatives when forming
Jacobians.

To illustrate how the interplay between the three processes can change significantly and
lead to quite different temperature behavior, we compare the predicted evolution of the
temperature field for α = 5× 10−n, n = 3,4, as shown in Figures 7.7 and 7.8. The change
in behavior between the two figures is associated with the change in sign of ∂E/∂p,

dE =
(

cp − αT

ρ

)
dT +

(
βT p − αT

ρ

)
dp, βT = 1

ρ

∂ρ

∂p

∣∣∣
T

. (7.29)

In the isothermal case and for α = 5× 10−4, we have that αT < βT p so that ∂E/∂p > 0.
The expansion and flow of fluid will cause an instant heating near the well-bore, which is
what we see in the initial temperature increase for the maximum value in Figure 7.7. The
Joule–Thomson coefficient (αT − 1)/(cpρ) is also negative, which means that the fluid
gets heated if it flows from high pressure to low pressure in a steady-state flow. This is seen
by observing the temperature in the well perforations. The fast pressure drop in these cells
causes an almost instant cooling effect, but soon after we see a transition in which most of
the cells containing a well perforation start having the highest temperature in the reservoir
because of heating from the moving fluids. For α = 5 × 10−3, we have that αT > βT p

so that ∂E/∂p < 0 and likewise the Joule–Thomson coefficient is positive. The moving
fluids will induce a cooling effect and hence the minimum temperature is observed at the
well for a longer time. The weak kink in the minimum temperature curve is the result of
the point of minimum temperature moving from being at the bottom front side to the far
back of the reservoir. The cell with lowest temperature is where the fluid has done most
work, neglecting heat conduction. In the beginning, this is the cell near the well because
the pressure drop is largest there. Later, it will be the cell furthest from the well, since
this is where the fluid can expand most. The discussion in this subsection is only meant to
illustrate physical effect and does not necessarily represent realistic wells.

Computational Performance

If you are observant, you may have realized that the code presented in this chapter contains
a number of redundant function evaluations that may potentially add significantly to the
overall computational cost: in each nonlinear iteration we keep reevaluating quantities that
depend on p0 and T0 even though these stay constant for each time step. We can easily avoid
this by moving the definition of the anonymous functions evaluating the residual equations
inside the outer time loop. The main contribution to potential computational overhead,
however, comes from repeated evaluations of fluid viscosity and density. Because each
residual equation is defined as an anonymous function, v(p,T) appears three times for
each residual evaluation, once in pEq and twice in hEq. This, in turn, translates to three
calls to mu(avg(p),avg(T)) and seven calls to rho(p,T), and so on. In practice, the
number of actual function evaluations is smaller, since the MATLAB interpreter most likely
has some kind of built-in intelligence to spot and reduce redundant function evaluations.
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Figure 7.7 Time evolution of temperature for a compressible, single-phase problem with α = 5 ·
10−4. The upper plots show four snapshots of the temperature field. The lower plot shows minimum,
average, maximum, and well-perforation values.
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Figure 7.8 Time evolution of temperature for a compressible, single-phase problem with α = 5 ×
10−3. The upper plots show four snapshots of the temperature field. The lower plot shows minimum,
average, maximum, and well-perforation values.
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Nonetheless, to cure this problem, we can move the computations of residuals inside a
function so that the constitutive relationships can be computed one by one and stored in
temporary variables. The disadvantage is that we increase the complexity of the code and
move one step away from the mathematical formulas describing the method. This type
of optimization should therefore only be introduced after the code has been profiled and
redundant function evaluations have proved to have a significant computational cost.

Computer exercises

7.5.1 Perform a more systematic investigation of how changes in α affect the temperature
and pressure behavior. To this end, you should change α systematically, e.g., from
0 to 10−2. What is the effect of changing β, the parameters cμ and cT for the
viscosity, or cp in the definition of enthalpy?

7.5.2 Use the MATLAB profiling tool to investigate to what extent the use of nested
anonymous functions causes redundant function evaluations or introduces other
types of computational overhead. Hint: to profile the CPU usage, you can use the
following call sequence

profile on, singlePhaseThermal; profile off; profile report

Try to modify the code as suggested above to reduce the CPU time. How low can
you get the ratio between the cost of constructing the linearized system and the cost
of solving it?
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