
1
Introduction

Since the early 2000s we have seen the basic notions of coding theory expand
beyond the role of error correction and algebraic coding theory. The purpose
of this volume is to provide a brief introduction to a few of the directions that
have been taken as a platform for further reading. Although the approach is to
be descriptive with few proofs, there are parts which are unavoidably technical
and more challenging.

It was mentioned in the Preface that the prerequisite for this work is a basic
course on algebraic coding theory and information theory. In fact only a few
aspects of finite fields, particularly certain properties of polynomials over finite
fields, Reed–Solomon codes and Reed–Muller codes and their generalizations
are considered to provide a common basis and establish the notation to be used.
The trace function on finite fields makes a few appearances in the chapters
and its basic properties are noted. Most of the information will be familiar
and stated informally without proof. A few of the chapters use notions of
information theory and discrete memoryless channels and the background
required for these topics is also briefly reviewed in Section 1.2. The final
Section 1.3 gives a brief description of the chapters that follow.

1.1 Notes on Finite Fields and Coding Theory

Elements of Finite Fields

A few basic notions from integers and polynomials will be useful in several
of the chapters as well as considering properties of finite fields. The greatest
common divisor (gcd) of two integers or polynomials over a field will be a
staple of many computations needed in several of the chapters. Abstractly, an
integral domain is a commutative ring in which the product of two nonzero
elements is nonzero, sometimes stated as a commutative ring with identity

1

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

2 1 Introduction

which has no zero divisors (i.e., two nonzero elements a,b such that ab = 0).
A Euclidean domain is an integral domain which is furnished with a norm
function, in which the division of an element by another with a remainder of
lower degree can be formulated. Equivalently the Euclidean algorithm (EA)
can be formulated in a Euclidean domain.

Recall that the gcd of two integers a,b ∈ Z is the largest integer d
that divides both a and b. Let F be a field and denote by F[x] the ring of
polynomials over F with coefficients from F. The gcd of two polynomials
a(x),b(x) ∈ F[x] is the monic polynomial (coefficient of the highest power
of x is unity) of the greatest degree, d(x), that divides both polynomials. The
EA for polynomials is an algorithm that produces the gcd of polynomials a(x)
and b(x) (the one for integers is similar) by finding polynomials u(x) and v(x)
such that

d(x) = u(x)a(x)+ v(x)b(x). (1.1)

It is briefly described as follows. Suppose without loss of generality that
deg b(x) < deg a(x) and consider the sequence of polynomial division steps
producing quotient and remainder polynomials:

a(x) = q1(x)b(x)+ r1(x), deg r1 < deg b
b(x) = q2(x)r1(x)+ r2(x), deg r2 < deg r1
r1(x) = q3(x)r2(x)+ r3(x), deg r3 < deg r2

...
...

rk(x) = qk+2(x)rk+1(x)+ rk+2(x), deg rk+2 < deg rk+1

rk+1(x) = qk+3(x)rk+2(x), d(x) = rk+2(x).

That d(x), the last nonzero remainder, is the required gcd is established by
tracing back divisibility conditions. Furthermore, tracing back shows how two
polynomials u(x) and v(x) are found so that Equation 1.1 holds.

A similar argument holds for integers. The gcd is denoted (a,b) or
(a(x),b(x)) for integers and polynomials, respectively. If the gcd of two
integers or polynomials is unity, they are referred to as being relatively prime
and denoted (a,b) = 1 or (a(x),b(x)) = 1.

If the prime factorization of n is

n = pe11 p
e2
2 · · ·pekk , p1,p2, . . . ,pk distinct primes,

then the number of integers less than n that are relatively prime to n is given
by the Euler Totient function φ(n) where

φ(n) =
k∏
i=1

p
ei−1
i (pi − 1). (1.2)

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.1 Notes on Finite Fields and Coding Theory 3

A field is a commutative ring with identity in which elements have additive
inverses (0 denotes the additive identity) and nonzero elements have multi-
plicative inverses (1 denotes the multiplicative identity). It may also be viewed
as an integral domain in which the nonzero elements form a multiplicative
group.

A finite field is a field with a finite number of elements. For a finite field,
there is a smallest integer c such that each nonzero element of the field added
to itself a total of c times yields 0. Such an integer is called the characteristic
of the field. If c is not finite, the field is said to have characteristic 0. Notice
that in a finite field of characteristic 2, addition and subtraction are identical in
that 1 + 1 = 0. Denote the set of nonzero elements of the field F by F∗.

Denote by Zn the set of integers modulo n, Zn = {0,1,2, . . . ,n − 1}. It is
a finite field iff n is a prime p, since if n = ab, a,b ∈ Z is composite, then it
has zero divisors and hence is not a field. Thus the characteristic of any finite
field is a prime and the symbol p is reserved for some arbitrary prime integer.
In a finite field Zp, arithmetic is modulo p. If a ∈ Zp,a �= 0, the inverse of a
can be found by applying the EA to a < p and p which yields two integers
u, v ∈ Z such that

ua + vp = 1 in Z

and so ua + vp (mod p) ≡ ua ≡ 1 (mod p) and a−1 ≡ u (mod p). The
field will be denoted Fp. In any finite field there is a smallest subfield, a set
of elements containing and generated by the unit element 1, referred to as the
prime subfield, which will be Fp for some prime p.

Central to the notion of finite fields and their applications is the role of
polynomials over the field. Denote the ring of polynomials in the indeterminate
x over a field F by F[x] and note that it is a Euclidean domain (although the
ring of polynomials with two variables F[x,y] is not). A polynomial f (x) =
fnx

n + fn−1x
n−1 + · · · + f1x + f0 ∈ F[x],fi ∈ F is monic if the leading

coefficient fn is unity.
A polynomial f (x) ∈ F[x] is called reducible if it can be expressed as the

product of two nonconstant polynomials and irreducible if it is not the product
of two nonconstant polynomials, i.e., there do not exist two nonconstant
polynomials a(x),b(x) ∈ F[x] such that f (x) = a(x)b(x). Let f (x) be a
monic irreducible polynomial over the finite field Fp and consider the set of
pn polynomials taken modulo f (x) which will be denoted

Fp[x]/〈f (x)〉 =
{
an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0,ai ∈ Fp

}
where 〈f (x)〉 is the ideal in Fp generated by f (x). Addition of two polyno-
mials is obvious and multiplication of two polynomials is taken modulo the

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

4 1 Introduction

irreducible polynomial f (x), i.e., the remainder after division by f (x). The
inverse of a nonzero polynomial a(x) ∈ Fp[x]/〈f (x)〉 is found via the EA as
before. That is since by definition (a(x),f (x)) = 1 there exist polynomials
u(x),v(x) such that

u(x)a(x)+ v(x)f (x) = 1

and the inverse of a(x) ∈ Fp[x]/〈f (x)〉 is u(x). Algebraically this structure
might be described as the factor field of the ring Fp[x] modulo the maximal
ideal 〈f (x)〉.

It follows the set Fp[x]/〈f (x)〉 forms a finite field with pn elements. It is
conventional to denote q = pn and the field of pn elements as either Fpn or
Fq . Every finite field can be shown to have a number of elements of the form
q = pn for some prime p and positive integer n and that any two finite fields of
the same order are isomorphic. It will be noted that an irreducible polynomial
of degree n will always exist (see Equation 1.4) and so all finite fields can be
constructed in this manner.

In general, suppose q = pm and let f (x) be a monic irreducible polynomial
over Fq of degree m (which will be shown to always exist). The set of qm

polynomials over Fq of degree less than m with multiplication modulo f (x)
will then be a finite field with qm elements and designated Fqm . For future
reference denote the set of polynomials of degree less than m by Fq

<m[x]
and those less than or equal by Fq

≤m[x]. Since it involves no more effort,
this general finite field Fqm will be examined for basic properties. The subset
Fq ⊆ Fqm is a field, i.e., a subset that has all the properties of a field, a subfield
of Fqm .

The remainder of the subsection contains a brief discussion of the structure
of finite fields and polynomials usually found in a first course of coding theory.

It is straightforward to show that over any field F (xm− 1) divides (xn− 1)
iff m divides n, written as

(xm − 1)
∣∣(xn − 1) iff m | n.

Further, for any prime p,

(pm − 1)
∣∣(pn − 1) iff m | n.

The multiplicative group of a finite field, F∗
qm , can be shown to be cyclic

(generated by a single element). The order of a nonzero element α in a field F

is the smallest positive integer � such that α� = 1, denoted as ord (α) = � and
referred to as the order of α. Similarly if � is the smallest integer such that the
polynomial f (x) | (x� − 1

)
, the polynomial is said to have order � over the

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.1 Notes on Finite Fields and Coding Theory 5

understood field. The order of an irreducible polynomial is also the order of
its zeros.

If β has order �, then βi has order �/(i,�). Similarly if β has order � and γ
has order κ and (�,κ) = 1, then the order of βγ is �κ .

An element α ∈ Fqm of maximum order qm−1 is called a primitive element.
If α is primitive, then αi is also primitive iff (i,qm − 1) = 1 and there are
φ(qm − 1) primitive elements in Fqm .

A note on the representation of finite fields is in order. The order of
an irreducible polynomial f (x) over Fq of degree k can be determined by
successively dividing the polynomial (xn− 1) by f (x) over Fq as n increases.
If the smallest such n is qk − 1, the polynomial is primitive. To effect the
division, arithmetic in the field Fq is needed. If f (x) is primitive of degree k
over Fq , one could then take the field as the elements

Fqk =
{

0,1,x,x2, . . . ,xq
k−2
}

.

By definition the elements are distinct. Each of these elements could be taken
modulo f (x) (which is zero in the field) which would result in the field
elements being all polynomials over Fq of degree less than k. Multiplication
in this field would be polynomials taken modulo f (x). The field element x
is a primitive element. While this is a valid presentation, it is also common to
identify the element x by an element α with the statement “let α be a zero of the
primitive polynomial f (x) of degree k over Fq .” The two views are equivalent.

There are φ(qk − 1) primitive elements in Fqk and since the degree of
an irreducible polynomial with one of these primitive elements as a zero is
necessarily k, there are exactly φ(qk − 1)/k primitive polynomials of degree
k over Fq .

Suppose f (x) is an irreducible nonprimitive polynomial of degree k over
Fq . Suppose it is of order n < qk − 1, i.e., f (x) | (xn− 1). One can define the
field Fqk as the set of polynomials of degree less than k

Fqk =
{
ak−1x

k−1 + ak−2x
k−2 + · · · + a1x + a0, aiFq

}
with multiplication modulo f (x). The element x is not primitive if n < (qk−1)
but is an element of order n,n | qk − 1 (although there are still φ(qk − 1)
primitive elements in the field).

Let α ∈ Fqm be an element of maximum order (qm−1) (i.e., primitive) and
denote the multiplicative group of nonzero elements as

F∗
qm = 〈α〉 =

{
1,α,α2, . . . ,αq

m−2
}

.

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

6 1 Introduction

Let β ∈ F∗
qm be an element of order � which generates a cyclic multiplica-

tive subgroup of F∗
qm of order � and for such a subgroup � | (qm − 1). The

order of any nonzero element in Fqm divides (qm − 1). Thus

xq
m − x =

∏
β∈Fqm

(x − β), xq
m−1 − 1 =

∏
β∈F∗

qm

(x − β) (1.3)

is a convenient factorization (over Fqm).
Suppose Fqm has a subfield Fq k – a subset of elements which is itself a field.

The number of nonzero elements in Fqk is (qk − 1) and this set must form a
multiplicative subgroup of F∗

qm and hence (qk − 1) | (qm− 1) and this implies
that k | m and that Fqk is a subfield of Fqm iff k | m. Suppose Fqk is a subfield
of Fqm . Then

β ∈ Fqm is in Fq k iff β q
k = β

and β = αj ∈ Fqm is a zero of the monic irreducible polynomial f (x) of
degree k over Fq . Thus

f (x) = xk + fk−1x
k−1 + · · · + f1x + f0, fi ∈ Fq, i = 0,1,2, . . . ,k − 1

and f (αj) = 0. Notice that

f (x)q = (xk + fk−1x
k−1 + · · · + f1x + f0

)q
= xkq + f qk−1x

q(k−1) + · · · + f q1 xq + f q0
= xkq + fk−1x

q(k−1) + · · · + f1x
q + f0, as f qi = fI for fi ∈ Fq

= f (xq)
and since β = αj is a zero of f (x) so is βq . Suppose � is the smallest integer
such that βq

� = β (since the field is finite there must be such an �) and let

Cj =
{
αj = β,βq,βq2

, . . . ,βq
�−1
}

referred to as the conjugacy class of β. Consider the polynomial

g(x) =
�−1∏
i=0

(
x − βqj

)
and note that

g(x)q =
�−1∏
i=0

(
x − βqj

)q =
�−1∏
i=0

(
xq − βqj+1

)
=
�−1∏
i=0

(
xq − βqj

)
= g(xq)

and, as above, g(x) has coefficients in Fq , i.e., g(x) ∈ Fq [x]. It follows that
g(x) must divide f (x) and since f (x) was assumed monic and irreducible it
must be that g(x) = f (x). Thus if one zero of the irreducible f (x) is in Fqm ,

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.1 Notes on Finite Fields and Coding Theory 7

all are. Each conjugacy class of the finite field corresponds to an irreducible
polynomial over Fq .

By similar reasoning it can be shown that if f (x) is irreducible of degree k
over Fq , then f (x) | (xqm−x) iff k | m. It follows that the polynomial xq

m−x
is the product of all monic irreducible polynomials whose degrees divide m.
Thus

xq
m − x =

∏
f (x) irreducible

over Fq
degreef (x)=k|m

f (x).

This allows a convenient enumeration of the polynomials. If Nq(m) is the
number of monic irreducible polynomials of degree m over Fq , then by the
above equation

qm =
∑
k|m
kNq(k)

which can be inverted using standard combinatorial techniques as

Nq(m) = 1

m

∑
k|m
μ

(
m

k

)
qk (1.4)

where μ(n) is the Möbius function equal to 1 if n = 1, (−1)s if n is the
product of s distinct primes and zero otherwise. It can be shown that Nq(k) is
at least one for all prime powers q and all positive integers k. Thus irreducible
polynomials of degree k over a field of order q exist for all allowable
parameters and hence finite fields exist for all allowable parameter sets.

Consider the following example.

Example 1.1 Consider the field extension F26 over the base field F2. The

polynomial x26 − x factors into all irreducible polynomials of degree dividing
6, i.e., those of degrees 1,2,3 and 6. From the previous formula

N2(1) = 2, N2(2) = 1, N2(3) = 2, N2(6) = 9.

For a primitive element α the conjugacy classes of F26 over F2 are (obtained by
raising elements by successive powers of 2 mod 63, with tentative polynomials
associated with the classes designated):

α1,α2,α4,α8,α16,α32 ≈ f1(x)

α3,α6,α12,α24,α48,α33 ≈ f2(x)

α5,α10,α20,α40,α17,α34 ≈ f3(x)

α7,α14,α28,α56,α49,α35 ≈ f4(x)

α9,α18,α36 ≈ f5(x)

α11,α22,α44,α25,α50,α37 ≈ f6(x)

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

8 1 Introduction

α13,α26,α52,α41,α19,α38 ≈ f7(x)

α15,α30,α60,α57,α51,α39 ≈ f8(x)

α21,α42 ≈ f9(x)

α23,α46,α29,α58,α53,α43 ≈ f10(x)

α27,α54,α45 ≈ f11(x)

α31,α62,α61,α59,α55,α47 ≈ f12(x).

By the above discussion a set with � integers corresponds to an irreducible
polynomial over F2 of degree �. Further, the order of the polynomial is the
order of the conjugates in the corresponding conjugacy class.

Notice there are φ(63) = φ(9 · 7) = 3 · 2 · 6 = 36 primitive elements in F26

and hence there are 36/6 = 6 primitive polynomials of degree 6 over F2. If α
is chosen as a zero of the primitive polynomial f1(x) = x6 + x + 1, then the
correspondence of the above conjugacy classes with irreducible polynomials is

Poly. No. Polynomial Order
f1(x) x6 + x + 1 63
f2(x) x6 + x4 + x3 + x2 + x + 1 21
f3(x) x6 + x5 + x2 + x + 1 63
f4(x) x6 + x3 + 1 9
f5(x) x3 + x2 + 1 7
f6(x) x6 + x5 + x3 + x2 + 1 63
f7(x) x6 + x4 + x3 + x + 1 63
f8(x) x6 + x5 + x4 + x2 + 1 21
f9(x) x2 + x + 1 3
f10(x) x6 + x5 + x4 + x + 1 63
f11(x) x3 + x + 1 7
f12(x) x6 + x5 + 1 63

The other three irreducible polynomials of degree 6 are of orders 21 (two of
them, f2(x) and f8(x)) and nine (f4(x)). The primitive element α in the above
conjugacy classes could have been chosen as a zero of any of the primitive
polynomials. The choice determines arithmetic in F26 but all choices will
lead to isomorphic representations. Different choices would have resulted in
different associations between conjugacy classes and polynomials.

Not included in the above table is the conjugacy class {α63} which
corresponds to the polynomial x + 1 and the class {0} which corresponds to
the polynomial x. The product of all these polynomials is x26 − x.

The notion of a minimal polynomial of a field element is of importance for
coding. The minimal polynomial mβ(x) of an element β ∈ Fqn over Fq is that

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.1 Notes on Finite Fields and Coding Theory 9

the monic irreducible polynomial of least degree that has β as a zero. From
the above discussion, every element in a conjugacy class has the same minimal
polynomial.

Further notions of finite fields that will be required include that of a
polynomial basis of Fqn over Fq which is one of a form {1,α,α2, . . . ,αn−1}
for some α ∈ Fqn for which the elements are linearly independent over Fq .

A basis of Fqn over Fq of the form {α,αq,αq2
, . . . ,αq

n−1} is called a normal
basis and such bases always exist. In the case that α ∈ Fqn is primitive (of
order qn − 1) it is called a primitive normal basis.

The Trace Function of Finite Fields

Further properties of the trace function that are usually discussed in a first
course on coding will prove useful at several points in the chapters. Let Fqn
be an extension field of order n over Fq . For an element α ∈ Fqn the trace
function of Fqn over Fq is defined as

Trqn|q(α) =
n−1∑
i=0

αq
i

.

The function enjoys many properties, most notably that [8]

(i) Trqn|q(α + β) = Trqn|q(α)+ Trqn|q(β), α,β ∈ Fqn

(ii) Trqn|q(aα) = aTrqn|q(α), a ∈ Fq,α ∈ Fqn

(iii) Trqn|q(a) = na, a ∈ Fq
(iv) Trqn|q is an onto map.

To show property (iv), which the trace map is onto (i.e., codomain is Fq), it
is sufficient to show that there exists an element α of Fqn for which Trqn|q(α) �=
0 since if Trqn|q(α) = b �= 0,b ∈ Fq , then (property ii) Trqn|q(b−1α) = 1 and
hence all elements of Fq are mapped onto. Consider the polynomial equation

xq
n−1 + xqn−2 + · · · + x = 0

that can have at most qn−1 solutions in Fqn . Hence there must exist elements
of β ∈ Fqn for which Trqn|q(β) �= 0. An easy argument shows that in fact
exactly qn−1 elements of Fqn have a trace of a ∈ Fq for each element of Fq .

Notice that it also follows from these observations that

xq
n − x =

∏
a∈Fq

(
xq

n−1 + xqn−2 + · · · + x − a
)

since each element of Fqn is a zero of the LHS and exactly one term of
the RHS.

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

10 1 Introduction

Also, suppose [8] L(·) is a linear function from Fqn to Fq in the sense that
for all a1,a2 ∈ Fq and all α1,α2 ∈ Fqn

L(a1α1 + a2α2) = a1L(α1)+ a2L(α2).

Then L(·) must be of the form

L(α) = Trqn|q(βα)
�= Lβ(α)

for some β. Thus the set of such linear functions is precisely the set

Lβ(·), β ∈ Fqn

and these are distinct functions for distinct β.
A useful property of the trace function ([8], lemma 3.51, [11], lemma 9.3)

is that if u1,u2, . . . ,un is a basis of Fqn over Fq and if

Trqn|q(αui) = 0 for i = 1,2, . . . ,n, α ∈ Fqn,

then α = 0. Equivalently if for α ∈ Fqn

Trqn|q(αu) = 0 ∀u ∈ Fqn, (1.5)

then α = 0. This follows from the trace map being onto. It will prove a useful
property in the sequel. It also follows from the fact that⎡⎢⎢⎢⎢⎢⎣

u1 u
q

1 · · · uqn−1

1

u2 u
q

2 · · · uqn−1

2
...

...
...

...

un u
q
n · · · uqn−1

n

⎤⎥⎥⎥⎥⎥⎦
is nonsingular iff u1,u2, . . . ,un ∈ Fqn are linearly independent over Fq .
A formula for the determinant of this matrix is given in [8].

If μ = {μ1,μ2, . . . ,μn} is a basis of Fqn over Fq , then a basis ν =
{ν1,ν2, . . . ,νn} is called a trace dual basis if

Trqn|q(μiνj) = δi,j =
{

1 if i = j
0 if i �= j

and for a given basis a unique dual basis exists. It is noted that if μ =
{μ1, . . . ,μn} is a dual basis for the basis {ν1, . . . ,νn}, then given

y =
n∑
i=1

ai μi then y =
n∑
i=1

Trqn|q(yνi) μi, ai ∈ Fq . (1.6)

Thus an element y ∈ Fqn can be represented in the basis μ, by the traces
Trqn|q(yνj), j = 1,2, . . . ,n.

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.1 Notes on Finite Fields and Coding Theory 11

It can be shown that for a given normal basis, the dual basis is also normal.
A convenient reference for such material is [8, 12].

Elements of Coding Theory

A few comments on BCH, Reed–Solomon (RS), Generalized Reed–Solomon
(GRS), Reed–Muller (RM) and Generalized Reed–Muller (GRM) codes are
noted. Recall that a cyclic code of length n and dimension k and minimum
distance d over Fq , designated as an (n,k,d)q code, is defined by a polynomial
g(x) ∈ Fq [x] of degree (n− k), g(x) | (xn − 1) or alternatively as a principal
ideal 〈g(x)〉 in the factor ring R = Fq [x]/〈xn − 1〉.

Consider a BCH code of length n | (qm − 1) over Fq . Let β be a primitive
n-th root of unity (an element of order exactly n). Let

g(x) = lcm
{
mβ(x),mβ2(x), . . . ,mβ2t (x)

}
be the minimum degree monic polynomial with the sequence β,β2, . . . ,β2t of
2t elements as zeros (among other elements as zeros). Define the BCH code
with length n designed distance 2t + 1 over Fq as the cyclic code C = 〈g(x)〉
or equivalently as the code with null space over Fq of the parity-check matrix

H =

⎡⎢⎢⎢⎣
1 β β2 · · · β(n−1)

1 β2 β4 · · · β2(n−1)

...
...

...
...

...
1 β2t β2(2t) · · · β2t (n−1)

⎤⎥⎥⎥⎦ .

That the minimum distance bound of this code, d = 2t + 1, follows since any
2t × 2t submatrix of H is a Vandermonde matrix and is nonsingular since the
elements of the first row are distinct.

A cyclic Reed–Solomon (n,k,d = n − k + 1)q code can be generated by
choosing a generator polynomial of the form

g(x) =
n−k∏
i=1

(x − αi), α ∈ Fq, α primitive of order n.

That the code has a minimum distance d = n− k + 1 follows easily from the
above discussion.

A standard simple construction of Reed–Solomon codes over a finite field
Fq of length n that will be of use in this volume is as follows. Let u =
{u1,u2, . . . ,un} be a set, referred to as the evaluation set (and viewed as a
set rather than a vector – we use boldface lowercase letters for both sets and

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

12 1 Introduction

vectors) of n ≤ q distinct evaluation elements of Fq . As noted, F<kq [x] is the
set of polynomials over Fq of degree less than k. Then another incarnation of
a Reed–Solomon code can be taken as

RSn,k(u,q) =
{

cf = (f (u1),f (u2), . . . ,f (un)),f ∈ F<kq [x]
}

where cf is the codeword associated with the polynomial f. That this is an
(n,k,d = n− k + 1)q code follows readily from the fact that a polynomial of
degree less than k over Fq can have at most k − 1 zeros. As the code satisfies
the Singleton bound d ≤ n− k + 1 with equality it is referred to as maximum
distance separable (MDS) code and the dual of such a code is also MDS.
Of course the construction is valid for any finite field, e.g., Fq� .

The dual of an RS code is generally not an RS code.
A slight but useful generalization of this code is the Generalized Reed–

Solomon (GRS) code denoted asGRSn,k(u,v,q), where u is the evaluation set
of distinct field nonzero elements as above and v = {v1,v2, . . . ,vn}, vi ∈ F ∗

q

(referred to as the multiplier set) is a set of not necessarily distinct nonzero
elements of Fq . Then GRSn,k(u,v,q) is the (linear) set of codewords:

GRSn,k(u,v,q) =
{

cf = (v1f (u1),v2f (u2), . . . ,vnf (un)), f ∈ F<kq [x]
}

.

Since the minimum distance of this linear set of codewords is n − k + 1
the code is MDS, for the same reason noted above. Clearly an RS code is a
GRSn,k(u,v,q) code with v = (1,1, . . . ,1).

The dual of any MDS code is MDS. It is also true [7, 9, 10] that the dual
of a GRS code is also a GRS code. In particular, given GRSn,k(u,v,q) there
exists a set w ∈ (F∗

q)
n such that

GRS⊥n,k(u,v,q) = GRSn,n−k(u,w,q)
=
{
w1g(u1),w2g(u2), . . . ,wng(un), g ∈ F<n−kq [x]

}
.

(1.7)
In other words, for any f (x) ∈ F<kq [x] and g(x) ∈ F<n−kq [x] for a given
evaluation set u = {u1, . . . ,un} and multiplier set v = {v1, . . . ,vn} there is
a multiplier set w = {w1, . . . , wn} such that the associated codewords cf ∈
GRSn,k(u,v,q) and cg ∈ GRSn,n−k(u,w,q) are such that

(cf ,cg) = v1f (u1)w1g(u1)+ · · · + vnf (un)wng(un) = 0.

Indeed the multiplier set vector w can be computed as

wi =
(
vi
∏
j �=i
(ui − uj)

)−1

. (1.8)

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.1 Notes on Finite Fields and Coding Theory 13

To see this, for a given evaluation set u (distinct elements), denote

e(x) =
n∏
i=1

(x − ui) and ei(x) = e(x)/(x − ui) =
∏
k �=i
(x − uk),

a monic polynomial of degree (n− 1). It is clear that

ei(uj)

ei(ui)
=
{

1 if j = i
0 if j �= i.

It follows that for any polynomial h(x) ∈ Fq [x] of degree less than n that takes
on values h(ui) on the evaluation set u = {u1,u2, . . . ,un} can be expressed as

h(x) =
n∑
i=1

h(ui)
ei(x)

ei(ui)
.

To verify Equation 1.7 consider applying this interpolation formula
to f (x)g(x) where f (x) is a codeword polynomial f (x) ∈ F<kq [x]

(in GRSn,k(u,v,q)) and g(x) ∈ F<n−kq [x] (in GRSn,k(u,v,q)⊥ =
GRSn,n−k(u,w,q)) where it is claimed that the two multiplier sets v =
{v1,v2, . . . ,vn} and w = {w1,w2, . . . ,wn} are related as in Equation 1.8.

Using the above interpolation formula on the product f (x)g(x) (of degree
at most (n− 2)) gives

f (x)g(x) =
n∑
k=1

f (uk)g(uk)
ek(x)

ek(uk)
.

The coefficient of xn−1 on the left side is 0 while on the right side is 1 (as ek(x)
is monic of degree (n− 1)) and hence

0 =
n∑
k=1

1

ek(uk)
f (uk)g(uk) =

n∑
k=1

(vkf (uk))

(
v−1
k

ek(uk)
g(uk)

)
=

n∑
k=1

(vkf (uk))(wkg(uk)) (by Equation 1.8)

= (cf,cg) = 0.

It is noted in particular that

RS⊥n,k(u,q) = GRSn,n−k(u,w,q)

for the multiplier set wi =
∏
j �=i (ui − uj).

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

14 1 Introduction

Reed–Muller Codes

Reed–Muller (RM) codes are discussed in some depth in most books on coding
(e.g., [3, 4]) with perhaps the most comprehensive being [2] which considers
their relationship to Euclidean geometries and combinatorial designs. The
properties of RM codes are most easily developed for the binary field but the
general case will be considered here – the Generalized Reed–Muller (GRM)
codes (generalized in a different sense than the GRS codes). The codes are
of most interest in this work for the construction of locally decodable codes
(Chapter 8) and their relationship to multiplicity codes introduced there.

Considerm variables x1,x2, . . . ,xm and the ring Fq [x1,x2, . . . ,xm] = Fq [x]
of multivariate polynomials over Fq (see also Appendix B). The set of all
monomials of the m variables and their degree is of the form{

xi = xi11 x
i2
2 · ximm , i ∼ (i1,i2, . . . ,im), degree =

∑
j

ij

}
. (1.9)

A multivariate polynomial f (x) ∈ Fq [x] is the sum of monomials over Fq and
the degree of f is largest of the degrees of any of its monomials. Notice that
over the finite field Fq,x

q
i = xi and so only degrees of any variable less than q

are of interest.
In the discussion of these codes we will have the need for two simple

enumerations: (i) the number of monomials on m variables of degree exactly
d and (ii) the number of monomials of degree at most d. These problems are
equivalent to the problems of the number of partitions of the integer d into at
most m parts and the number of partitions of all integers at most d into at most
m parts. These problems are easily addressed as “balls in cells” problems as
follows.

For the first problem, place d balls in a row and add a furtherm balls. There
are d +m− 1 spaces between the d +m balls. Choose m− 1 of these spaces
in which to place markers (in

(
d+m−1
m−1

)
ways). Add markers to the left of the

row and to the right of the row. Place the balls between two markers into a
“bin” – there are m such bins. Subtract a ball from each bin. If the number of
balls in bin j is ij, then the process determines a partition of d in the sense
that i1 + i2 + · · · + im = d and all such partitions arise in this manner. Thus
the number of monomials on m variables of degree equal to d is given by(

d +m− 1

m− 1

)
= ∣∣{i1 + i2 + · · · + im = d, ij ∈ Z≥0}

∣∣. (1.10)

To determine the number of monomials on (at most) m variables of total
degree at most d , consider the setup as above except now add another ball
to the row to have d + m + 1 balls and choose m of the spaces between

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.1 Notes on Finite Fields and Coding Theory 15

the balls in
(
d+m
m

)
ways in which to place markers corresponding to m + 1

bins. As before subtract a ball from each bin. The contents of the last cell are
regarded as superfluous and discarded to take into account the “at most” part
of the enumeration. The contents of the first m cells correspond to a partition
and the number of monomials on m variables of total degree at most d is(

d +m
m

)
= ∣∣{i1 + i2 + · · · + im ≤ d, ij ∈ Z≥0}

∣∣. (1.11)

Note that it follows that

d∑
j=1

(
j +m− 1

m− 1

)
=
(
d +m
m

)
,

(i.e., the number of monomials of degree at most d is the number of monomials
of degree exactly j for j = 1,2, . . . ,d) as is easily shown by induction.

Consider the code of length qm denoted GRMq(d,m) generated by mono-
mials of degree at most d onm variables for d < q−1, i.e., let f (x) ∈ Fq [x] be
anm-variate polynomial of degree at most d ≤ q−1 (the degree of polynomial
is the largest degree of its monomials and no variable is of degree greater than
q − 1). The corresponding codeword is denoted

cf =
(
f (a), a ∈ Fmq , f ∈ Fq [x], f of degree at most d

)
,

i.e., a codeword of length qm with coordinate positions labeled with all
elements of Fmq and coordinate labeled a ∈ Fmq with a value of f (a). It is
straightforward to show that the codewords corresponding to the monomials
are linearly independent over Fq and hence the code has length and dimension

code length n = qm and code dimension k =
(
m+ d
d

)
.

To determine a bound on the minimum distance of the code the theorem
([8], theorem 6.13) is used that states the maximum number of zeros of a
multivariate polynomial of m variables of degree d over Fq is at most dqm−1.
Thus the maximum fraction of a codeword that can have zero coordinates is
d/q and hence the normalized minimum distance of the code (code distance
divided by length) is bounded by

1 − d/q, d < q − 1.

(Recall d here is the maximum degree of the monomials used, not code
distance.) The normalized (sometimes referred to as fractional or relative)
distance of a code will be designated as � = 1 − d/q. (Many works use δ to
denote this, used for the erasure probability on the BEC here.) Thus, e.g., for

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

16 1 Introduction

m = 2 (bivariate polynomials) this subclass of GRM codes has the parameters(
q2,
(
d+2
d

)
,q2 − dq

)
q
. Note that the rate of the code is(
d + 2

2

)/
q2 ≈ d2/2q2 = (1 −�)2/2.

Thus the code can have rate at most 1/2.
For a more complete analysis of the GRM codes the reader should consult

([2], section 5.4). Properties of GRS and GRM codes will be of interest in
several of the chapters.

1.2 Notes on Information Theory

The probability distribution of the discrete random variable X, Pr(X = x),
will be denoted PX(x) or as P(x) when the random variable is understood.
Similarly a joint discrete random variable X × Y (or XY) is denoted Pr(X =
x,Y = y) = PXY (x,y). The conditional probability distribution is denoted
Pr(Y = y | X = x) = P(y | x). A probability density function (pdf) for a
continuous random variable will be designated similarly as pX(x) or a similar
lowercase function.

Certain notions from information theory are required. The entropy of a
discrete ensemble {P(xi),i = 1,2, . . . } is given by

H(X) = −
∑
i

P (xi) logP(xi)

and unless otherwise specified all logs will be to the base 2. It represents the
amount of uncertainty in the outcome of a realization of the random variable.

A special case will be important for later use, that of a binary ensemble
{p,(1 − p)} which has an entropy of

H2(p) = −p log2 p − (1 − p) log2(1 − p) (1.12)

referred to as the binary entropy function. It is convenient to introduce the
q-ary entropy function here, defined as

Hq(x)=
{
x logq(q − 1)− x logq x − (1 − x) logq(1 − x), 0 < x ≤ θ = (q − 1)/q
0, x = 0

(1.13)

an extension of the binary entropy function. Notice that Hq(p) is the entropy
associated with the q-ary discrete symmetric channel and also the entropy of
the probability ensemble {1−p,p/(q− 1), . . . ,p/(q− 1)} (total of q values).
The binary entropy function of Equation 1.12 is obtained with q = 2.

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.2 Notes on Information Theory 17

Similarly the entropy of a joint ensemble
{
P(xi,yi),i= 1,2, . . . } is

given by

H(X,Y) = −
∑
xi,yi

P (xi,yi) logP(xi,yi)

and the conditional entropy of X given Y is given by

H(X | Y) = −
∑
xi,yi

P (xi,yi) logP(xi | yi) = H(X,Y)−H(Y)

which has the interpretation of being the expected amount of uncertainty
remaining about X after observing Y , sometimes referred to as equivocation.

The mutual information between ensembles X and Y is given by

I (X;Y) =
∑
xi,yi

P (xi,yj) log
P(xi,yj)

P (xi)P (yj)
(1.14)

and measures the amount of information knowledge that one of the variables
gives on the other. The notation {X;Y } is viewed as a joint ensemble. It will
often be the case that X will represent the input to a discrete memoryless
channel (to be discussed) and Y the output of the channel and this notion
of mutual information has played a pivotal role in the development of
communication systems over the past several decades.

Similarly for three ensembles it follows that

I (X;Y,Z) =
∑
i,j,k

P (xi,yj,zk) log
P(xi,yj,zk)

P (xi)P (yj,zk)
.

The conditional information of the ensemble {X;Y } given Z is

I (X;Y | Z) =
∑
i,j,k

P (xi,yj,zk) log
P(xi,yj | zk)

P (xi | zk)P (yj | zk)

or alternatively

I (X;Y | Z) =
∑
i,j,k

P (xi,yj,zk) log
P(xi,yj,zk)P (zk)

P (xi,zk)P (yj,zk)
.

The process of conditioning observations of X,Y on a third random variable Z
may increase or decrease the mutual information between X and Z but it can
be shown the conditional information is always positive. There are numerous
relationships between these information-theoretic quantities. Thus

I (X;Y) = H(X)−H(X | Y) = H(X)+H(Y)−H(X,Y).
Our interest in these notions is to define the notion of capacity of certain
channels.

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

18 1 Introduction

A discrete memoryless channel (DMC) is a set of finite inputs X and a
discrete set of outputsY such that at each instance of time, the channel accepts
an input x ∈ X and with probability W(y | x) outputs y ∈ Y and each use of
the channel is independent of other uses and∑

y∈Y
W(y | x) = 1 for each x ∈ X.

Thus if a vector x = (x1,x2, . . . ,xn), xi ∈ X is transmitted in n uses of the
channel, the probability of receiving the vector y = (y1,y2, . . . ,yn) is given by

P(y | x) =
n∏
i=1

W(yi | xi).

At times the DMC might be designated simply by the set of transition
probabilitiesW = {W(yi | xi)}.

For the remainder of this chapter it will be assumed the channel input is
binary and referred to as a binary-input DMC or BDMC where X = {0,1}
and that Y is finite. Important examples of such channels include the binary
symmetric channel (BSC), the binary erasure channel (BEC) and a general
BDMC, as shown in Figure 1.1 (a) and (b) while (c) represents the more
general case.

Often, rather than a general BDMC, the additional constraint of symmetry is
imposed, i.e., a binary-input discrete memoryless symmetric channel by which
is meant a binary-inputX = {0,1} channel with a channel transition probability
{W(y | x),x ∈ X,y ∈ Y} which satisfies a symmetry condition, noted later.

The notion of mutual information introduced above is applied to a DMC
with theX ensemble representing the channel input and the output ensembleY
to the output. The function I (X;Y) then represents the amount of information
the output gives about the input. In the communication context it would be
desirable to maximize this function. Since the channel, represented by the
channel transition matrix W(y | x), is fixed, the only variable that can be
adjusted is the set of input probabilities P(xi),xi ∈ X. Thus the maximum

1

0

1

0

E

1 − δ

1 − δ

δ

δ

BEC, C = 1 − δ

1

0

1

0
1 − p

1 − p

p

p

BSC, C = 1 −H(p)

X = {0,1}...
...

BDMC W(y | x)

Y

Figure 1.1 Binary-input DMCs

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.2 Notes on Information Theory 19

amount of information that on average can be transmitted through the channel
in each channel use is found by determining the set of input probabilities that
maximizes the mutual information between the channel input and output.

It is intuitive to define the channel capacity of a DMC as the maximum rate
at which it is possible to transmit information through the channel, per channel
use, with an arbitrarily low error probability:

channel capacity = C �= max
P(x),x∈X

I (X,Y) = I (W)

= max
P(x),x∈X

∑
x∈X,y∈YW(y |x)P (x) log

W(y | x)P (x)
P (x)(P (y)

where P(y) =∑x∈XW(y|x)P (x). For general channels, determining channel
capacity can be a challenging optimization problem. When the channels exhibit
a certain symmetry, however, the optimization is achieved with equally likely
inputs:

Definition 1.2 ([6]) A DMC is symmetric if the set of outputs can be
partitioned into subsets in such a way that for each subset, the matrix of
transition probabilities (with rows as inputs and columns as outputs) has the
property each row is a permutation of each other row and each column of
a partition (if more than one) is a permutation of each other column in the
partition.

A consequence of this definition is that for a symmetric DMC, it can be
shown that the channel capacity is achieved with equally probable inputs ([6],
theorem 4.5.2). It is simple to show that both the BSC and BEC channels
are symmetric by this definition. The capacities of the BSC (with crossover
probability p) and BEC (with erasure probability δ) are

CBSC = 1 + p log2 p + (1 − p) log2(1 − p) and CBEC = 1 − δ. (1.15)

This first relation is often written

CBSC = 1 −H2(p)

and H2(p) is the binary entropy function of Equation 1.12.
For channels with continuous inputs and/or outputs the mutual information

between channel input and output is given by

I (X,Y) =
∫
x

∫
y

p(x,y) log

(
p(x,y)

p(x)p(y)

)
dxdy

for probability density functions p(·,·) and p(·).
Versions of the Gaussian channel where Gaussian-distributed noise is added

to the signal in transmission are among the few such channels that offer

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

20 1 Introduction

+
X ∈ {±1} Y = X +N

N ∼ N(0,σ 2)

Figure 1.2 The binary-input additive white Gaussian noise channel

tractable solutions and are designated additive white Gaussian noise (AWGN)
channels. The term “white” here refers to a flat power spectral density function
of the noise with frequency. The binary-input AWGN (BIAWGN) channel,
where one of two continuous-time signals is chosen for transmission during
a given time interval (0,T) and experiences AWGN in transmission, can be
represented as in Figure 1.2:

Yi = Xi +Ni, and Xi ∈ {±1}, BIAWGN,

where Ni is a Gaussian random variable with zero mean and variance σ 2,
denotedNi ∼ N(0,σ 2). The joint distribution of (X,Y) is a mixture of discrete
and continuous and with P(X = +1) = P(X = −1) = 1/2 (which achieves
capacity on this channel) and with p(x) ∼ N(0,σ 2). The pdf p(y) of the
channel output is

p(y) = 1

2
· 1√

2πσ 2
e
− (y+1)2

2σ 2 + 1

2
· 1√

2πσ 2
e
− (y−1)2

2σ 2

= 1√
8πσ 2

(
exp

(
− (y+1)2

2σ 2

)
+ exp

(
− (y−1)2

2σ 2

)) (1.16)

and maximizing the expression for mutual information of the channel (equally
likely inputs) reduces to

CBIAWGN = −
∫
y

p(y) log2 p(y)dy − 1

2
log2(2πeσ

2). (1.17)

The general shape of these capacity functions is shown in Figure 1.3 where
SNR denotes signal-to-noise ratio.

Another Gaussian channel of fundamental importance in practice is that of
the band-limited AWGN channel (BLAWGN). In this model a band-limited
signal x(t),t ∈ (0,T) with signal power ≤ S is transmitted on a channel
band-limited toW Hz, i.e., (−W,W) and white Gaussian noise with two-sided
power spectral density level No/2 is added to the signal in transmission. This
channel can be discretized via orthogonal basis signals and the celebrated and
much-used formula for the capacity of it is

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.3 An Overview of the Chapters 21

(a)
0 0.5 1.0

p0

0.5

1.0

CBSC

(b)
SNR ∼ 1/σ 2

CBIAWGN

0

1.0

Figure 1.3 Shape of capacity curves for (a) BSC and (b) BIAWGN

CBLAWGN = W log2(1 + S/NoW) bits per second. (1.18)

The importance of the notion of capacity and perhaps the crowning
achievement of information theory is the following coding theorem, informally
stated, that says k information bits can be encoded into n coded bits, code rate
R = k/n, such that the bit error probability Pe of the decoded coded bits at the
output of a DMC of capacity C can be upper bounded by

Pe ≤ e−nE(R), R < C (1.19)

where E(R), the error rate function, is > 0 for all R < C. The result implies
that for any code rate R < C there will exist a code of some length n capable
of transmitting information with negligible error probability. Thus reliable
communication is possible even though the channel is noisy as long as one
does not transmit at too high a rate.

The information-theoretic results discussed here have driven research into
finding efficient codes, encoding and decoding algorithms for the channels
noted over many decades. The references [5, 15] present a more comprehensive
discussion of these and related issues.

1.3 An Overview of the Chapters

A brief description of the following chapters is given.
The chapter on coding for erasures is focused on the search for erasure-

correcting algorithms that achieve linear decoding complexity. It starts with a
discussion of Tornado codes. Although these codes did not figure prominently
in subsequent work, they led to the notion of codes from random graphs with
irregular edge distributions that led to very efficient decoding algorithms. In
turn these can be viewed as leading to the notion of fountain codes which

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

22 1 Introduction

are not erasure-correcting codes. Rather they are codes that can efficiently
recreate a file from several random combinations of subfiles. Such codes led
to the important concept of Raptor codes which have been incorporated into
numerous standards for the download of large files from servers in a multicast
network while not requiring requests for retransmissions of portions of a file
that a receiver may be missing, a crucial feature in practice.

Certain aspects of low-density parity-check (LDPC) codes are then dis-
cussed. These codes, which derive from the work of Gallager from the early
1960s, have more recently assumed great importance for applications as
diverse as coding for flash memories as well as a wide variety of communi-
cation systems. Numerous books have been written on various aspects of the
construction and analysis of these codes. This chapter focuses largely on the
paper of [13] which proved crucial for more recent progress for the analytical
techniques it introduced.

The chapter on polar codes arose out of the seminal paper [1]. In a deep
study of information-theoretic and analytical technique it produced the first
codes that provably achieved rates approaching capacity. From a binary-input
channel with capacity C ≤ 1, through iterative transformations, it derived
a channel with N = 2n inputs and outputs and produced a series of NC
sub-channels that are capable of transmitting data with arbitrarily small error
probability, thus achieving capacity. The chapter discusses the central notions
to assist with a deeper reading of the paper.

The chapter on network coding is devoted to the somewhat surprising idea
that allowing nodes (servers) in a packet network to process and combine
packets as they traverse the network can substantially improve throughput of
the network. This raises the question of the capacity of such a network and
how to code the packets in order to achieve the capacity. This chapter looks at
a few of the techniques that have been developed for multicast channels.

With the wide availability of the high-speed internet, access to information
stored on widely distributed databases became more commonplace. Huge
amounts of information stored in distributed databases made up of standard
computing and storage elements became ubiquitous. Such elements fail with
some regularity and methods to efficiently restore the contents of a failed
server are required. Many of these early distributed storage systems simply
replicated data on several servers and this turned out to be an inefficient
method of achieving restoration of a failed server, both in terms of storage
and transmission costs. Coding the stored information greatly improved
the efficiency with which a failed server could be restored and Chapter 6
reviews the coding techniques involved. The concepts involved are closely
related to locally repairable codes considered in Chapter 7 where an erased

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

1.3 An Overview of the Chapters 23

coordinate in a codeword can be restored by contacting a few other coordinate
positions.

Chapter 8 considers coding techniques which allow a small amount of
information to be recovered from errors in a codeword without decoding
the entire codeword, termed locally decodable codes. Such codes might find
application where very long codewords are used and users make frequent
requests for modest amounts of information. The research led to numerous
other variations such as locally testable codes where one examines a small
portion of data and is asked to determine if it is a portion of a codeword of
some code, with some probability.

Private information retrieval considers techniques for users to access infor-
mation on servers in such a manner that the servers are unaware of which infor-
mation is being sought. The most common scenario is one where the servers
contain the same information and users query information from individual
servers and perform computations on the responses to arrive at the desired
information. More recent contributions have shown how coded information
stored on the servers can achieve the same ends with greatly improved storage
efficiency. Observations on this problem are given in Chapter 9.

The notion of a batch code addresses the problem of storing information
on servers in such a way that no matter which information is being sought no
single server has to download more than a specified amount of information.
It is a technique to ensure load balancing between servers. Some techniques to
achieve this are discussed in Chapter 10.

Properties of expander graphs find wide application in several areas of
computer science and mathematics and the notion has been applied to the
construction of error-correcting codes with efficient decoding algorithms.
Chapter 11 introduces this topic of considerable current interest.

Algebraic coding theory is based on the notion of packing spheres in a
space of n-tuples over a finite field Fq according to the Hamming metric.
Rank-metric codes consider the vector space of matrices of a given shape
over a finite field with a different metric, namely the distance between two
such matrices is given by the rank of the difference of the matrices which
can be shown to be a metric on such a space. A somewhat related (although
quite distinct) notion is to consider a set of subspaces of a vector space over
a finite field with a metric defined between such subspaces based on their size
and intersection. Such codes of subspaces have been shown to be of value in
the network coding problem. The rank-metric codes and subspace codes are
introduced in Chapter 12.

A problem that was introduced in the early days of information theory was
the notion of list decoding where, rather than the decoding algorithm producing

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

24 1 Introduction

a unique closest codeword to the received word, it was acceptable to produce a
list of closest words. Decoding was then viewed as successful if the transmitted
codeword was on the list. The work of Sudan [14] introduced innovative
techniques for this problem which influenced many aspects of coding theory.
This new approach led to numerous other applications and results to achieve
capacity on such a channel. These are overviewed in Chapter 13.

Shift register sequences have found important applications in numerous
synchronization and ranging systems as well as code-division multiple access
(CDMA) communication systems. Chapter 14 discusses their basic properties.

The advent of quantum computing is likely to have a dramatic effect
on many storage, computing and transmission technologies. While still in
its infancy it has already altered the practice of cryptography in that the
US government has mandated that future deployment of crypto algorithms
should be quantum-resistant, giving rise to the subject of “postquantum
cryptography.” A brief discussion of this area is given in Chapter 15. While
experts in quantum computing may differ in their estimates of the time frame
in which it will become significant, there seems little doubt that it will have a
major impact.

An aspect of current quantum computing systems is their inherent instabil-
ity as the quantum states interact with their environment causing errors in the
computation. The systems currently implemented or planned will likely rely
on some form of quantum error-correcting codes to achieve sufficient system
stability for their efficient operation. The subject is introduced in Chapter 16.

The final chapter considers a variety of other coding scenarios in an effort
to display the width of the areas embraced by the term “coding” and to further
illustrate the scope of coding research that has been ongoing for the past few
decades beyond the few topics covered in the chapters.

The two appendices cover some useful background material on finite
geometries and multivariable polynomials over finite fields.

References

[1] Arıkan, E. 2009. Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels. IEEE Trans.
Inform. Theory, 55(7), 3051–3073.

[2] Assmus, Jr., E.F., and Key, J.D. 1992. Designs and their codes. Cambridge Tracts
in Mathematics, vol. 103. Cambridge University Press, Cambridge.

[3] Blahut, R.E. 1983. Theory and practice of error control codes. Advanced Book
Program. Addison-Wesley, Reading, MA.

[4] Blake, I.F., and Mullin, R.C. 1975. The mathematical theory of coding. Academic
Press, New York/London.

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

References 25

[5] Forney, G.D., and Ungerboeck, G. 1998. Modulation and coding for linear
Gaussian channels. IEEE Trans. Inform. Theory, 44(6), 2384–2415.

[6] Gallager, R.G. 1968. Information theory and reliable communication. John Wiley
& Sons, New York.

[7] Huffman, W.C., and Pless, V. 2003. Fundamentals of error-correcting codes.
Cambridge University Press, Cambridge.

[8] Lidl, R., and Niederreiter, H. 1997. Finite fields, 2nd ed. Encyclopedia of Mathe-
matics and Its Applications, vol. 20. Cambridge University Press, Cambridge.

[9] Ling, S., and Xing, C. 2004. Coding theory. Cambridge University Press,
Cambridge.

[10] MacWilliams, F.J., and Sloane, N.J.A. 1977. The theory of error-correcting
codes: I and II. North-Holland Mathematical Library, vol. 16. North-Holland,
Amsterdam/New York/Oxford.

[11] McEliece, R.J. 1987. Finite fields for computer scientists and engineers. The
Kluwer International Series in Engineering and Computer Science, vol. 23.
Kluwer Academic, Boston, MA.

[12] Menezes, A.J., Blake, I.F., Gao, X.H., Mullin, R.C., Vanstone, S.A., and
Yaghoobian, T. 1993. Applications of finite fields. The Kluwer International Series
in Engineering and Computer Science, vol. 199. Kluwer Academic, Boston, MA.

[13] Richardson, T.J., and Urbanke, R.L. 2001. The capacity of low-density parity-
check codes under message-passing decoding. IEEE Trans. Inform. Theory, 47(2),
599–618.

[14] Sudan, M. 1997. Decoding of Reed Solomon codes beyond the error-correction
bound. J. Complexity, 13(1), 180–193.

[15] Ungerboeck, G. 1982. Channel coding with multilevel/phase signals. IEEE Trans.
Inform. Theory, 28(1), 55–67.

https://doi.org/10.1017/9781009283403.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.002

