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On the One-Level Density Conjecture for
Quadratic Dirichlet L-Functions

A. E. Özlük and C. Snyder

Abstract. In a previous article, we studied the distribution of “low-lying” zeros of the family of quad-

ratic Dirichlet L-functions assuming the Generalized Riemann Hypothesis for all Dirichlet L-functions.

Even with this very strong assumption, we were limited to using weight functions whose Fourier trans-

forms are supported in the interval (−2, 2). However, it is widely believed that this restriction may be

removed, and this leads to what has become known as the One-Level Density Conjecture for the zeros

of this family of quadratic L-functions. In this note, we make use of Weil’s explicit formula as modified

by Besenfelder to prove an analogue of this conjecture.

1 Introduction

The distribution of zeros near s = 1/2 of certain families of L-functions has been
studied in the work of Katz–Sarnak, see [7, 8]. One of the conjectures appearing
in their work relates the one-level normalized spacings of “low-lying” zeros of cer-
tain families of L-functions, when ordered by their conductors, to classical symmetry

groups associated with each family. In the case of the family of quadratic Dirichlet
L-functions, partial results suggest that the symmetry group should be symplectic.
See [7] for the details. See also [10] for an interesting related unconditional result.

In a previous work [9] we obtain the same distribution results for the low-lying
zeros of the quadratic L-functions as in [7], but our approach depends on using the

“form factor” in contrast to the approach in [7]. We now recall our method. For
positive real numbers x and D, let the so-called “form factor” be defined as

F(x, D) =
1√
x

∑

d

e−πd2/D2 ∑

ρ(χd)

xρ

ρ
,

where d ranges over the integers, χd = (d/ · ), and the sum over ρ(χd) ranges over the
nontrivial zeros of L(s, χd). Assuming the Generalized Riemann Hypothesis (GRH)
for all Dirichlet L-functions, it has been shown that, cf. [9],

1

D
F(Dα, D) =

{

−1 + D−α/2 log D + o(1) if |α| < 1,

o(1) if 1 < |α| < 2.

Given the present state of knowledge about zeros, we cannot extend the above
result beyond α = 2, even assuming GRH. This is due to the following rather coarse
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estimate (based on GRH):

∑

p≤x

( m

p

)

log p ≪ x1/2 log2 x,

for m ≪ x, m any non-square integer. However, there is wide-spread belief that

1

D
F(Dα, D) = o(1)

for all α > 1. This is an equivalent version of the so-called One-Level Density Con-

jecture for the family of quadratic Dirichlet L-functions. Refer to [6, 7] for a more
thorough account of this and related conjectures. An analysis of the proof of the main
theorem in [9] shows that this density conjecture is equivalent to the estimate:

(1)
∑

m6=�

∑

p≤x

log p√
p

( m

p

)

e−πm2D2/p2

= −1

2

x

D
+ o(

√
x),

as D → ∞, for any D = o(x). Here m ranges over nonsquare integers.
(As an aside, we note that modifying (1) by removing some of the weights suggests

the following:

(2)
1

y

∑

m6=�

|m|≤y

∑

p≤x

( m

p

)

log p = −
√

x + o
( x

y

)

,

for y = o(x), as y → ∞.)
The purpose of this note is to give some theoretical evidence in favor of the Density

Conjecture in the version given by (1). We make use of explicit formulas of A. Weil
for Hecke L-functions, as applied in special cases by Besenfelder (who also used the
name Bentz); see [3, 4] and also [1].

2 Results

We start with a special case of Weil’s explicit formula for Hecke L-functions given

by Besenfelder, cf. [3], for Dirichlet L-functions associated with primitive Dirichlet
characters. This has the following special form.

Let χ = χd0
= (d0/ · ) be a primitive quadratic Dirichlet character of modulus

(conductor) |d0|. Let ε0 = ε0(χ) be 1 or 0 according as χ is principal or not; let

δ = δ(χ) be 0 or 1 according as χ is even or odd. Let y be a positive real number and
s complex, let C be Euler’s constant. Then

(3) L(y, χ) = R(y, χ),

where
L(y, χ) = 2

√
πy

∑

ρ(χ)

ey(ρ−1/2)2
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and

R(y, χ) = ε0(χ)4
√

πyey/4 + log
|d0|
π

−C + 2

∫ ∞

0

e−
x2

4y
+( 3

2
−δ)x − 1

1 − e2x
dx

− 2
∑

p,n

p−n/2 log p χ(pn)e−
log2(pn)

4y ,

where the sum over ρ represents the sum over the zeros of the Dirichlet L-function,
L(s, χ), whose real parts lie in the interval (0, 1), and the sum over p, n ranges over
all prime powers pn.

We have the following facts.

Lemma 1 For all y > 0,

∣

∣

∣

∣

∑

p,n
n≥3

p−n/2 log p χ(pn)e−
log2(pn)

4y

∣

∣

∣

∣

≤ −3
ζ ′

ζ
(

3

2
) < ∞.

Proof See [4, Lemma 3].

Lemma 2 For 1 ≪ y

∣

∣

∣

∣

∫ ∞

0

e−
x2

4y
+( 3

2
−δ)x − 1

1 − e2x
dx

∣

∣

∣

∣

≤ 5.

Proof Use the argument in the proof [4, Lemma 7].

We now need to replace equation (3) by an equality which holds for Dirichlet char-

acters which are no longer assumed to be primitive. To this end, let χ = χd = (d/ · )
be a quadratic character modulo |d| and let χ ′

= χd0
= (d0/ · ) be the primitive

character which induces χ. Hence d0 is a fundamental discriminant and d = d0 f 2

for some positive integer f . Define L(y, χ) as above and the same for R(y, χ) but

where we keep the conductor |d0| in the term log(|d0|/π). Since L(s, χ) and L(s, χ ′)
differ by trivial Euler factors, we see that

L(y, χ) = L(y, χ ′).

On the other side, notice that

R(y, χ ′) − R(y, χ) = 2
∑

p,n

p−n/2 log p(χ(pn) − χ ′(pn))e−
log2(pn)

4y

≪
∑

p|d

( log p√
p

+
log p

p

)

≪
∑

p|d
1,

by Lemma 1. Hence we have proved:
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Lemma 3 For any quadratic character χ of modulus d, not necessarily primitive,

L(y, χ) = R(y, χ) + O
(

∑

p|d
1
)

,

where the implied constant is independent of all χ and y.

Lemma 4 Let χ be a quadratic character modulo |d|. Then

∑

p

log p

p
χ(p2)e−

log2(p)
4y =

√
πy + O

(

∑

p|d
1
)

,

as y → ∞.

Proof Since χ is a quadratic character, χ(p2) = 1 except when p|d. The result
follows by [4, Lemma 5].

We now wish to average the explicit formula over all quadratic characters. But, as
usual, we pick a smooth averaging function, for example,

1

D

∑

d

e−πd2/D2

,

where D is any positive real number and the sum is over all integers d. (Anytime an
arbitrary d yields something undefined, we set the value equal to 0.)

Then we have the following proposition:

Proposition 5

1

D

∑

d

e−πd2/D2 ∑

ρ(χd)

ey(ρ−1/2)2

=
2

D
ey/4

∑

d=�

e−πd2/D2 − 1

2D

∑

d 6=0

e−πd2/D2

+
1

2D
√

πy

∑

d 6=0

e−πd2/D2

log |d0|

− 1

D
√

πy

∑

p

log p√
p

e−
log2 p

4y

∑

d

e−πd2/D2
( d

p

)

+ O
( log log D

√
y

)

,

as D, y → ∞. Here,
∑

d=�
means the sum over the non-zero square integers and d0 is

the fundamental discriminant corresponding to d.
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Proof Much of this equality is easily seen. First, we have divided by 2
√

πy; the sum
over squares follows since ε0(χd) = 1 if and only if d is a perfect square. The second

term on the right-hand side follows from Lemma 4.
We are left with the O-term. It suffices to show

1

D

∑

d 6=0

e−πd2/D2 ∑

p|d
1 ≪ log log D.

To this end, we use Riemann–Stieltjes integration along with the asymptotic formula
∑

d≤D

∑

p|d 1 ∼ D log log D (see, [2]) as follows:

∑

d 6=0

e−πd2/D2 ∑

p|d
1 = 2

∫ ∞

2−
e−πu2/D2

d
(

∑

d≤u

∑

p|d
1
)

= 2
(

∑

d≤u

∑

p|d
1
)

e−πu2/D2
]∞

2−

+
4π

D2

∫ ∞

2

(

∑

d≤u

∑

p|d
1
)

e−πu2/D2

u du

≪ 1

D2

∫ ∞

2

(u log log u)e−πu2/D2

u du

= D

∫ ∞

2/D

log log(Dv)e−πv2

v2 dv

≪ D log log D,

as desired.

We shall use the following results to simplify Proposition 5.

Lemma 6
∑

d

e−πd2/D2

= D + O(e−D2

),

as D → ∞.

Proof We use the transformation formula for theta functions to obtain

∑

d

e−πd2/D2

= D
∑

m

e−πm2D2

= D + 2D

∞
∑

m=1

e−πm2D2

= D + O(De−πD2

),

as desired.

Lemma 7
∑

d 6=0

e−πd2/D2

log |d0| = D log D + O(D),

as D → ∞.
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Proof We may rewrite
∑

d 6=0

e−πd2/D2

log |d0|

as

2

∫ ∞

1−
e−πu2/D2

dα(u),

where
α(u) = α1(u) + α2(u) + α3(u),

with

α1(u) =

∑

m,n≥1

m2n≤u
n≡1(2)

µ2(n) log n, corresponding to d0 ≡ 1(4),

α2(u) =

∑

m,n≥1

4m2n≤u
n≡1(2)

µ2(n) log 4n, corresponding to d0 ≡ 4(8),

α3(u) = 2
∑

m,n≥1

8m2n≤u
n≡1(2)

µ2(n) log 8n, corresponding to d0 ≡ 0(8),

with µ the Möbius function.
First, we claim that

α(x) = x log x + O(x).

From
∑

n≤x

µ2(n) =
1

ζ(2)
x + O(x1/2),

(see [2]), it is easy to show that

∑

n≤x
n≡1(2)

µ2(n) =
2

3ζ(2)
x + O(x1/2).

But then it follows easily by partial summation that

∑

n≤x
n≡1(2)

µ2(n) log n =
2

3ζ(2)
x log x + O(x1/2 log x).

But then for m2 ≤ x, we have

∑

n≤x/m2

n≡1(2)

µ2(n) log n =
2

3ζ(2)

x

m2
log

( x

m2

)

+ O
(

(x/m2)1/2 log(x/m2)
)

.
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Thus,

α1(x) =

∑

m≤√
x

∑

n≤x/m2

n≡1(2)

µ2(n) log n

=
2

3ζ(2)
x

∑

m≤√
x

1

m2
log

( x

m2

)

+ O
(

x1/2
∑

m≤√
x

1

m
log

( x

m2

))

.

But notice that

2

3ζ(2)
x

∑

m≤√
x

1

m2
log

( x

m2

)

=
2

3ζ(2)
x log x

∑

m≤√
x

1

m2
− 2

3ζ(2)
x

∑

m≤√
x

1

m2
log(m2)

=
2

3ζ(2)
x log x

∞
∑

m=1

1

m2
+ O(x) =

2

3
x log x + O(x).

On the other hand, it is clear that

x1/2
∑

m≤√
x

1

m
log

( x

m2

)

≪ x.

Hence

α1(x) =
2

3
x log x + O(x).

Moreover, it is not hard to see that

α2(x) = α
( x

4

)

+ O(x),

and

α3(x) = 2α
( x

8

)

+ O(x).

From this is follows that
α(x) = x log x + O(x),

as claimed.
Now,

2

∫ ∞

1−
e−πu2/D2

dα(u) = 2e−πu2/D2

α(u)
]∞

1−
+

4π

D2

∫ ∞

1

e−πu2/D2

uα(u) du

=
4π

D2

∫ ∞

1

e−πu2/D2

u2 log u du + O
( 1

D2

∫ ∞

1

e−πu2/D2

u2 du
)

.

First, we have

4π

D2

∫ ∞

1

e−πu2/D2

u2 log u du = 4πD

∫ ∞

1/D

e−πv2

v2 log(Dv) dv

= 4πD log D

∫ ∞

0

e−πv2

v2 dv + O(D)

= D log D + O(D).
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Second,
1

D2

∫ ∞

1

e−πu2/D2

u2 du ≪ D.

All of the above establish the lemma.

Lemma 8
∑

d=�

e−πd2/D2

= I
√

D − 1

2
+ O(e−D2/3

),

as D → ∞, where I = (1/4)π−1/4
Γ(1/4).

Proof By the Poisson summation formula we have

∑

n

e−πn4/y4

=

∑

n

∫ ∞

−∞
e−2πinue−πu4/y4

du =

∑

n

y

∫ ∞

−∞
e−2πinyue−πu4

du

= y

∫ ∞

−∞
e−πu4

du +
∑

n 6=0

y

∫ ∞

−∞
e−2πinyue−πu4

du

= (1/2)π−1/4
Γ(1/4)y +

∑

n 6=0

y

∫ ∞

−∞
e−2πinyue−πu4

du.

Thus,
∑

n 6=0

e−πn4/y4

= 2I y − 1 +
∑

n 6=0

y

∫ ∞

−∞
e−2πinyue−πu4

du.

Next, consider
∫ ∞

−∞
e−π f (u,x) du

where f (u, x) = u4 + 2ixu. Now let u = z + a where a is chosen so that ∂ f
∂u

(a, x) = 0.

Then a calculation shows that we may choose

a = −eπi/6(x/2)1/3
= −

√
3 + i

2
· (x/2)1/3

and a further calculation yields

f (u, x) = b0x4/3 − c0x4/3i + b2x2/3z2 − b3x1/3z3 + z4 + c2x2/3iz2 − c3x1/3iz3,

where the b j and c j are positive real numbers, namely,

b0 = 3 × 2−7/3, c0 = 33/2 × 2−7/3, b2 = 3 × 2−2/3, b3 = 31/2 × 22/3,

c2 = 33/2 × 2−3/2, c3 = 22/3.
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Next we may write z = u + c + di where c = (
√

3/2)(x/2)1/3 and d = (1/2)(x/2)1/3.
But then

∫ ∞

−∞
e−π f (u,x) du = e−πb0x4/3

eπc0x4/3i

∫ ∞

−∞
e−π[(b2+c2i)x2/3z2−(b3+c3i)x1/3z3+z4] du

= e−πb0x4/3

eπc0x4/3i

∫ ∞+di

−∞+di

e−π[(b2+c2i)x2/3z2−(b3+c3i)x1/3z3+z4] dz.

Now let b > 0 and define the contour of integration γb, given as the path over the
rectangle from −b to b, then b to b + di, then b + di to −b + di, and then back to −b.
Notice that if g(z, x) = (b2 + c2i)x2/3z2 − (b3 + c3i)x1/3z3 + z4, then

∫

γb

e−πg(z,x) dz = 0

by the residue theorem, since the integrand is entire. On the other hand,

∫ ±b+di

±b

e−πg(z,x) dz = o(1),

as b → ∞; for

∫ ±b+di

±b

e−πg(z,x) dz = i

∫ d

0

e−πg(±b+ti,x) dt = i

∫ d

0

e−πb4(1+o(b)) dt = o(1).

Therefore,
∫ ∞

−∞
e−π f (u,x) du = e−πb0x4/3

eπc0x4/3i

∫ ∞

−∞
e−πg(z,x) dz.

We need only consider the size of

∫ ∞

−∞
e−πh(z,x) dz,

where h is the real part of g. A calculation shows

h(z, x) = z2(z − α)2,

with α =
√

3(x/2)1/3. But then

∫ ∞

−∞
e−πh(z,x) dz =

∫ ∞

−∞
e−πz2(z−α)2

dz

≪
∫ ∞

−∞
e−πz2

dz +

∫

|z−α|≤1

e−πz2(z−α)2

dz = O(1).

Therefore,
∫ ∞

−∞
e−π f (u,x)du = O

(

e−3π·2−7/3x4/3
)

= O(e−1.5x4/3

).
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But now

∑

n 6=0

y

∫ ∞

−∞
e−2πinyue−πu4

du ≪
∞
∑

n=1

ye−1.5n4/3 y4/3

≪ ye−1.5y4/3 ≪ e−y4/3

,

as y → ∞.
Letting y = D1/2 yields our result.

Using Lemmas 6, 7, 8 in Proposition 5, we obtain the following proposition.

Proposition 9

1

D

∑

d

e−πd2/D2 ∑

ρ(χd)

ey(ρ−1/2)2

=
2I

D1/2
ey/4 − ey/4

D
− 1

2
+

1

2D

+
log D

2
√

πy
− 1

D
√

πy

∑

p

log p√
p

e−
log2 p

4y

∑

d

e−πd2/D2
( d

p

)

+ O
(

e−D2/3

ey/4 +
log log D

√
y

)

,

as D, y → ∞.

Next, let

A = − 1

D
√

πy

∑

p

log p√
p

e−
log2 p

4y

∑

d

e−πd2/D2
( d

p

)

.

Then by the transformation formula for theta functions:

∑

d

e−πd2/D2
( d

p

)

=
D

p1/2

∑

m

e−πm2D2/p2
( m

p

)

,

we have

A = − 1
√

πy

∑

p

log p

p
e−

log2 p
4y

∑

m

e−πm2D2/p2
( m

p

)

.

Now, decompose A as
A = A1 + A2 + A3 + O,

where

A1 =
1

2
√

πy

∑

p

log p

p
e−

log2 p
4y ,

A2 = − I√
πyD

∑

p

log p√
p

e−
log2 p

4y ,

A3 = − 1
√

πy

∑

p

log p

p
e−

log2 p
4y

∑

m6=�

e−πm2D2/p2
( m

p

)

,
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and finally, where

O = O

(

1
√

y

∑

p

log p

p
e−

log2 p
4y

(

e−(p/D)2/3

+
∑

m6=0
p|m

e−πm2D2/p2
)

)

.

Concerning A1, A2, and O, we have the following lemmas.

Lemma 10

A1 =
1

2
+ O

( 1
√

y

)

,

as y, D → ∞.

Proof The result follows from [4, Lemma 5].

Lemma 11 Assuming the Riemann Hypothesis (R.H.),

A2 = − 2I√
D

ey/4 + O
(

√

y

D

)

,

as D, y → ∞ and I is as in Lemma 8.

Proof Write

A2 = − I√
πyD

∫ ∞

1

e−
log2 u

4y dβ(u),

where β(u) =
∑

p≤u p−1/2 log p. Then under R.H. β(u) = 2
√

u+E(u), with E(u) ≪
log2 u. But then

A2 = − I√
πyD

∫ ∞

1

e−
log2 u

4y
du√

u

− I√
πyD

∫ ∞

1

E(u)e−
log2 u

4y

(

− log u

2yu

)

du + O
( 1√

yD

)

.

Now by a change of variables z = (log u)/(2
√

y) and then v = z −√
y/2,

− I√
πyD

∫ ∞

1

e−
log2 u

4y
du√

u
= − I√

πyD

∫ ∞

0

e−z2+
√

yz2
√

y dz

= − 2I√
πD

ey/4

∫ ∞

0

e−(z−√
y/2)2

dz

= − 2I√
πD

ey/4

∫ ∞

−√
y/2

e−v2

dv

= − 2I√
πD

ey/4
(

∫ ∞

−∞
e−v2

dv −
∫ ∞

√
y/2

e−v2

dv
)

= − 2I√
D

ey/4 +
2I√
πD

ey/4

∫ ∞

√
y/2

e−v2

dv.
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Then, using the estimate
∫ ∞

x

e−u2

du ≤ e−x2

2x
,

we obtain
2I√
πD

ey/4

∫ ∞

√
y/2

e−v2

dv ≪ 1√
yD

.

Finally, (again, assuming R.H.) letting z = (log u)/(2
√

y)

I√
πyD

∫ ∞

1

E(u)e−
log2 u

4y
log u

y

du

u
≪ 1

y3/2D1/2

∫ ∞

1

e−
log2 u

4y log3 u
du

u
≪

√
y√
D

.

This establishes the lemma

Now, we come to the O-term.

Lemma 12 As above, let

O = O

(

1
√

y

∑

p≥D

log p

p
e−

log2 p
4y

(

e−(p/D)2/3

+
∑

m6=0
p|m

e−πm2D2/p2
)

)

.

Then

O ≪ 1,

as y, D → ∞.

Proof Write O = O1 + O2 with

O1 ≪
1
√

y

∑

p

log p

p
e−

log2 p
4y

∑

n 6=0

e−πn2D2

and

O2 ≪
1
√

y

∑

p

log p

p
e−

log2 p
4y e−(p/D)2/3

.

But now

O1 ≪
1
√

y

∑

p

log p

p
e−

log2 p
4y e−D2 ≪ 1.

Moreover,

O2 ≪
1
√

y

∑

p

log p

p
e−

log2 p
4y ≪ 1,

as desired.
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From all of this we have established the following theorem:

Theorem 13 Assuming R.H.

1

D

∑

d

e−πd2/D2 ∑

ρ(χd)

ey(ρ−1/2)2

= − 1
√

πy

∑

p

log p

p
e−

log2 p
4y

∑

m6=�

e−πm2D2/p2
( m

p

)

− ey/4

D
+

log D

2
√

πy

+ O

(

e−D2/3

ey/4 + 1 +

√
y√
D

+
log log D

√
y

)

,

as D, y → ∞.

We are interested in obtaining an asymptotic expression for the first term on the
right-hand side of the equation in the theorem above. To this end, we have the fol-

lowing result:

Proposition 14 Assuming GRH,

1

D

∑

d

e−πd2/D2
∑

ρ(χd)

ey(ρ−1/2)2 ≪ log D,

as y, D → ∞.

Proof Using Riemann–Stieltjes integration, we have

1

D

∑

d

e−πd2/D2 ∑

ρ(χd)

ey(ρ−1/2)2

=
1

D

∑

d

e−πd2/D2

∫ ∞

0

e−yu2

dN(u, χd),

where N(T, χ) is the number of nontrivial zeros of L(s, χ) with imaginary part be-

tween −T and T. But

N(T, χ) =
T

π
log

qT

2π
− T

π
+ O(log T + log q),

for T ≥ 2, where q is the conductor of χ, and

N(1, χ) ≪ log q,
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856 A. E. Özlük and C. Snyder

where the implicit constants are independent of χ (see [5]). Hence,

1

D

∑

d

e−πd2/D2

∫ ∞

1

e−yu2

dN(u, χd)

≪ 1

D

∑

d

e−πd2/D2

e−yu2

N(u, χd)

]∞

1

+
2y

D

∑

d

e−πd2/D2

∫ ∞

1

N(u, χd)e−u2 yu du

≪ y

D

∑

d

e−πd2/D2

∫ ∞

1

u2 log |d0u|e−u2 y du

≪ y

D

∑

d

e−πd2/D2

log |d0|
∫ ∞

1

u2 log |u|e−u2 y du

≪ y

D

∑

d

e−πd2/D2

log |d0|
∫ ∞

1

v2

y
log(

|v|
√

y
)e−v2 dv

√
y

≪ log y

D
√

y

∑

d

e−πd2/D2

log |d0| ≪
log y
√

y
log D,

by Lemma 7.

But,

1

D

∑

d

e−πd2/D2 ∑

ρ(χd)
|γ|<1

e−yγ2 ≪ 1

D

∑

d

e−πd2/D2

log |d0| ≪ log D.

By this proposition and the previous theorem, we obtain:

Theorem 15 Assuming GRH,

1
√

πy

∑

m6=�

∑

p

log p

p
e−

log2 p
4y e−πm2D2/p2

( m

p

)

= − ey/4

D
+O

(

e−D2/3

ey/4+

√
y√
D

+log D
)

,

as y, D → ∞.

3 Conclusion

First notice that the difference between equation (1) and Theorem 15 is the intro-
duction of a certain smooth weight function. Of course, the method of proof given
above depends crucially on the particular shape of the weight.

We now compare the result in Theorem 15 to equation (2). One thing to notice
immediately is that both statements have a negative main term which shows in some
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rough sense that there is a preponderance of primes which are quadratic non-residues
modulo non-square integers.

Next, multiply equation (2) by y and then replace y by x/D to obtain:

∑

m6=�

|m|≤x/D

∑

p≤x

( m

p

)

log p = −x3/2

D
+ o(x).

On the other hand, replacing the sum over non-square m by squares yields:

∑

m=�
|m|≤x/D

∑

p≤x

log p ∼ x3/2

√
D

.

Hence, in absolute value the main terms of the two expressions differ by a factor of√
D.

On the other hand, replacing the sum over non-square m in Theorem 15 by
squares yields,

1
√

πy

∑

m=�

∑

p

log p

p
e−

log2 p
4y e−πm2D2/p2 ∼ ey/4

√
D

,

showing the same relation as above.
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