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DECOMPOSABLE FREE LOOP SPACES 

J. AGUADÉ 

In this paper we study the spaces X having the property that the space 
of free loops on X is equivalent in some sense to the product of X by the 
space of based loops on X. We denote by AX the space of all continuous 
maps from S to X, with the compact-open topology. SIX denotes, as usual, 
the loop space of X, i.e., the subspace of AX formed by the maps from 
S to X which map 1 to the base point of X. 

If G is a topological group then every loop on G can be translated to the 
base point of G and the space of free loops AG is homeomorphic to 
G X Q,G. More generally, any //-space has this property up to homotopy. 
Our purpose is to study from a homotopy point of view the spaces X for 
which there is a homotopy equivalence between AX and X X SIX which is 
compatible with the inclusion &X c AX and the evaluation map AX —» X. 
We call these spaces T-spaces, where T stands for translation. We develop 
the theory of T-spaces in a way which is reminiscent of the homotopy 
theory of //-spaces as in Stasheffs monograph ( [12] ). 

/"-spaces are defined in Section 1. In Section 2 we introduce the concept 
of a T-map between T-spaces, which is useful in order to construct 
examples of /"-spaces. In Section 3 we characterize the rational homotopy 
type of T-spaces in the same well-known way as it is done for //-spaces. In 
Section 4 we define /^-spaces for n = 1 as intermediate stages between 
//-spaces and T-spaces. In the last section we study the existence of 
T-structures on spaces with polynomial mod p cohomology and we prove 
that, for any odd prime p, any mod p T-space with polynomial mod p 
cohomology is mod p equivalent to the classifying space of a torus. This 
generalizes a well-known result of Hubbuck ( [7] ). 

Throughout this paper, space means space of the homotopy type of 
a CW complex of finite type. We assume also that spaces have a 
non-degenerate base point. According to a well-known result of Milnor 
( [10] ) if X is a space of this kind, then AX and SIX have the homotopy 
type of CW complexes. 

I want to thank A. Zabrodsky for some conversations on the subject of 
this paper. 

1. T-spaces. Let X be a 0-connected space and let us consider the 
fibration 
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fiX -» AX ^> X 

where p is the evaluation at 1. As in [11], observe that this fibration is the 
pullback of the fibration 

fix -> x1 -> x x x 
by the diagonal map A:X —> X X X 

Definition. We say that X is a T-space if the fibration 

fiX -> AX -> X 

is trivial, in the sense of fibre homotopy type. 

With our definition of space, the couple (AX, Q^X) has the same 
homotopy type as a CWpair, but more is true: 

PROPOSITION 1.1. The inclusion /:fiX—> AX is a cofibration. 

Proof. By a result of Str0m ( [13] ) we have to show that there are 
maps 

$:AX X I -> AX, 

such that: 

i) w|fiX - 0; 

ii) O(to, s) = co if s = 0 or CÛ G fiX; 

iii) O(to, s) e fiX if 5 > w(co). 

Since we assume that the inclusion of the base point into X is a 
cofibration, we have maps 

w : X ^ R + 

<p:X X / - > X 

which satisfy properties analogous to i) ii) iii) above. Moreover, since * is 
closed in X, it follows easily that * = u~l(0). Let us define u: AX —» R + as 
the composition 

Let us consider also the map g:AX —» R + , g = min(w, 1/3). We define 
the map 

$:AX X / -* AX 

by the following rather complicated formula: 
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0>(<O, s)(t) 

I œ(t), ifg(«) = 0, 

<r(<o(0), J - (//g(<o) ) ), 0 ^ / ^ j g ( w ) , g(co) * 0, 
<o( (/ - j g ( w ) ) / ( l - 2sg(cc) ) ), jg(co) ^ t ^ \ - j g ( W ) , g (u ) # 0, 
<K<o(0), J - (1 - / ) /g (w) ), 1 - Jg(«) ^ / ^ 1, g(co) # 0. 

One can check that 3> is well-defined, continuous and has the desired 
properties. 

The homotopy extension property of the pair (AX, &X) can be used to 
give some equivalent definitions of a /"-space. 

PROPOSITION 1.2. The following conditions are equivalent: 
i) X is a T-space; 

ii) 12X is a retract of AX; 
iii) there is a map r.AX —> SIX such that ri ~ id, where i:Q,X —» AX z's ///£ 

inclusion. 
Proof The equivalence between i) and iii) follows from the work of 

Dold on fibre homotopy type ( [5] ). The equivalence between ii) and iii) is 
an immediate consequence of Proposition 1.1. 

Remarks. 1. If X is an //-space, it is easy to see that X is a /"-space (see 
[15], p. 10). If m:X X X —> X is a multiplication with strict unit, one can 
define a homotopy equivalence 

h:X X QJf-> AX 

by 

h(x, <o)(/) = m(jc, <o(0). 

Since /z commutes with the projections over X, the results of Dold ( [5] ) 
imply that h is a fibre homotopy equivalence and so the fibration 

S2X -> AX -> X 

is fibre homotopy trivial. 

2. There are /"-spaces which are not //-spaces. A specific example will be 
constructed in the next section. However, it is not known if there is any 
finite T-space which fails to be an //-space. 

3. Obviously, a necessary condition for being a /"-space is that 

H*(AX) « H*(X X SIX). 

It is not difficult to show that this is not sufficient. For instance, since 
S n is a mod p //-space for all n and for any odd prime p, we have 

//*(AS2" + 1; F ) « H*(S2n + ] X QS2#I"H; F ), p odd. 
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A straightforward computation shows that also 

H*(AS2n + v) « 7 / * ( ^ + 1 X flS2" + 1). 
1 ^ 7 

However, it is proven in [2] that only S , S and S are T-spaces. 
A T-structure on a space X will be a retraction 

r i A X ^ f l X 

We could include the T-structure in the definition of T-space by defining a 
T-space as a couple (X, r). It is clear that a T-space will in general admit 
many different T-structures. The set of homotopy classes of T-structures 
on a space X can be identified to the coset of the group [X X flX, SIX] 
formed by those elements represented by maps 

f:X X SIX -> SIX 

such that / | f lX ^ id. This group can be computed in some cases. For 
example, an Eilenberg-MacLane space K(G, n), n > 1, has up to homo­
topy one T-structure. 

2. T-maps. Let f:X —> Y be a map and assume that X, Y are T-spaces 
with retractions 

rx:AX-+QX, r y : A y ^ f l y , 

respectively. We say that fis a T-map if the following diagram is homo­
topy commutative: 

Since fly is a homotopy associative //-space, the homotopy set 
[AX, S2Y] is a group and we can define the deviation of a map f:X —> Y as 
the element 

«( / ) = imf)rx] M A / ) ] - 1 e [AX, fl7]. 

Then S(/) = 1 if and only if / is a T-map. Since flX is a retract of AX, we 
have an exact sequence of groups 

[Ax/flx, fly] ~ [Ax, fly] -» [flx, fly]. 
Since 8(f) is trivial when restricted to flX, we can consider the deviation 
of / a s an element in the group [AX/AX, fly]. 

T-maps are useful because they can be used to construct T-spaces as in 
the following result. 
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PROPOSITION 1.2. Let f.X -* Y be a T-map and let R be the homotopy 
fibre of f. Then Pr admits a T-structure such that the map p\P< —> X is 
a T-map. 

Proof. We have a commutative diagram 

°£ 

KPf 

There are retractions rx \AX -

rxj = id, r2k = id. 

We want to construct a map 

OXandr 2 :AY OY such that 

R:P, A / t\lf 

such that Ri ~ id. Since fis a T-map, there is a homotopy 

h:AX X 7->QY, 

A (co, 1) = (a/)r,(co), 

/i(co, 0) = r2(A/)(co). 

If co e OX, we have 

/z(co, 1) = A (co, 0) = (Q/Xco). 

We can now use a theorem of James ( [8] ) and assume, without loss of 
generality, that 

/z(co, t) = (Q/Xco) for all (co, 0 e QX X /. 

A point in PÂ r is a couple (co, £2) where 

co e AX, 0 :7 -» AY, 0(0) = *, 0(1) = (A/)(co). 

We define R:PAf-+ PQf by 

#(co, 0) = (r,(co), r2 o 0 * A(co, - ) ). 

(Here * denotes the usual composition of paths 7 
that R is well-defined. We have also 

OY.) One sees easily 

/CJ(CO, 0) = £(yco, £0) = (r,j(co), r2k(u) * AO'co, - ) ) = (co, Q * c) 

where c:7 —» A Y is the constant path 

e(t) = (0/)(co). 

It is clear also that Ri ~ id. Hence, 
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gives a ^-structure on /^and moreover P'.Pf-* A'is a T-map. 

Let us consider the special case in which Y = K(k, n) where k is a 
field and n > 1. Then, a map / : X —> y is given by a cohomology class 
x e H"(X; k) and the deviation of / i s a class 

fi(x) e Hn~\AX, SIX; k). 

If X is a simply connected //-space then the deviation of a map 
f:X —> K(k, n) can be computed in a rather explicit way. Let 
m:X X X -^> X be the multiplication of X. It induces a homomorphism 

m*:H*(X; k) -> //*(X; £) ® //*(X; A:) 

such that 

m*(z) = 1 0 z + z 0 1 + 2 cy(z) 0 dy(z), deg cp dj > 0. 

Using m we can define a homotopy equivalence 

/z:X X SIX-> SIX 

h(x, «)(/) = m(x, co(t) ). 

Let r:AX —» 12X be a /"-structure on X; not necessarily the one which 
comes from the //-structure of X. The composition 

rh:X X SIX^ SIX 

gives a homomorphism 

(rh)*:H*(QX; k) -> //*(X; £) 0 / /* («*; fc) 

and one sees immediately that 

(rh)*(y) = 1 0>> + 2 a,(y) 0 bt(y\ deg ^ > 0. 

If the T-structure that we take on Xis obtained from the //-structure, then 
(rh)* is just the canonical map y \—> I 0 y. Let 

u:Hl(X; k) -> Hi~\aX; k) 

be the suspension. 

PROPOSITION 2.2. In the situation above we have 

h*8(x) = 2 0/(<O(JC) ) 0 bt(œ(x) ) - 2 Cj(x) 0 w(^.(x) ). 

Proof. The only point which needs to be discussed is the computation of 
the composition 

h Kf r' 
XX SIX -» AX -4 A^(£, n) -> QA^A:, w) 
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where rf can be defined in the following way. We take a model for K(k, n) 
which is a topological group. Then we have a map 

a:K(k, n) X K(k, n) -> K(k, n) 

a(x, y) = yx~~ 

and we define 

r'(o>)(0 = «KO), £0(0 ). 

r' is a /"-structure on AT(/c, n). The following diagram is commutative 

g 
X X S1 X SIX • 2 ( A r X S2X) •Ar(A:, w) 

I I 
A X e 

X X X X X \a 

1 X w 
Y / x / I 

X X X •Ar(fc, w) X *:(*;, «) 

where g is the adjoint of r'(Af)h and erS1 X ŒX —» X is the evalua­
tion map. The proposition follows if we notice that a is classified by 
1 0 1 — 4 0 1 , where 

i e //"(X, A:, n); k) 

is the fundamental class. 

Example. Let / ^ ( Z , 2) -> /^(Z2, 12) be classified by 

i6 e Hn(K(Z, 2); F2). 

We have 

m*(,6) = t
6 ® l + t

4 ® (
2 + i 2 ® ( 4 + l ® ( 6 . 

On the other side, K(Zy 2) has a unique /"-structure r and 

(Wi)*(.y) = 1 0 y for all .y e H*(iïK(Z, 2); F2). 

Since o>(t ) = co(i ) = 0, we see that the deviation is zero and so the fibre iy 
of fis a T- space. Since i6 is not primitive in H*(K(Z, 2); F2), Pris not an 
//-space and we have an example of a simply connected /"-space which is 
not an //-space. 

3. Postnikov systems and rational /"-spaces. It is well-known that the 
Postnikov invariants of an //-space are //-maps. In this section we will 
prove a similar result for /"-spaces and /"-maps and we will determine the 
rational homotopy type of /"-spaces. 
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Let X be a simply connected space. A Postnikov system for X consists of 
a sequence of fibrations 

Pn + \ Pn 
. . . —> A„ + 1 +»An —> An_x —* 

and cohomology classes 

k" e H"+\X„_i; vnX), 

together with mapsjn:X —> Xn such that 

i)/V« = V« — i ; 
ii) 7 7 ^ = 0 for / > n\ 

\\\) j^TTiX ~ irtXn for / < « H- 1; 
iv) /?w is induced by 

X, 

kn:X, n-\ K(irnX9 n + 1). 

Assume we have a Postnikov system for X. 

PROPOSITION 3.1. If X is a T-space and n = \, then there exists a 
T-structure on Xn such that jn:X —* Xn is a T-map. 

Proof Let r.AX —> SIX be the ^-structure of X and let us consider 
the diagram 

AX, 

Nn V ^ 

AX V Q Y 

\ 
\ 

(%yvi 
H^f iX 

where /W:Q^„ —> AA^ is the inclusion. It is obvious that the proposition 
will follow from the existence of the extension r'. The obstructions to this 
extension problem are classes in 

H\kX„ A I V fiX„; 7rtXn\ i S n. 

Let us consider the diagram 

Nn AX. 

1 V* 

AXVfiX- IV Oft, • A * v a Y . -ax 
The map of pairs (Ay„, 1 V 0/w) maps the obstructions to the existence of r' 
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to the obstructions to the existence of r" which are zero because 
r" = (fi/„)r makes the diagram commutative. Hence, the proof is complete 
if we show that 

(A/„, 1 V ttjnY:Hl(AXrv A I V M W ; ^Xn) 

-> Hj(AX, AX V fiX; ^X,,) 

is an isomorphism for / < n and a monomorphism for i = n. This is a 
straightforward consequence of the fact thaty^X —» A^ is an (« + 1)-
equi valence. 

T H E O R E M 3.2. If X is a T-space, then the spaces of any Postnikov system 
for X are T-spaces and the Postnikov invariants are T-maps. 

Proof. Let us consider a stage of some Postnikov system for X: 

Jn k"+] 

XJJL> Xn +»K(G,n + 2). 

The above proposit ion shows that Xn is a /"-space and j„ is a T-map. We 
only need to show that the deviation of /c'7 + 1 is zero. Since j n is a T-map, 
the class 

(A/„, S2jn)*8(kn + ]) e H" + ](AX, VX; G) 

is the deviation of knArXjn which is obviously trivial. Hence, it suffices to 
show that 

(A/„, mn)*:Hn + \KXn9 QXn; G) -> H" + ](AX, SIX; G) 

is a monomorphism. Since yw is a T-map, this is equivalent to show­
ing that 

(jn X fi/„, Qjn)*:Hn + \Xn X a*w , QXn; G) 

-> Hn^\X X 12X, fiX; G) 

is a monomorphism. This follows easily from the fact thaty^rA"—» A^ is an 
(« -f Inequivalence and X and A^ are simply connected, by using the 
naturali ty of the Kunne th sequences of 

(Xn X QXn, QX„) = (Xn, *) X (QXn9 0) and 

(X X fiA^ fijif) = (X, *) X (fiX, 0), 

respectively. 

We want now to determine the rational homotopy type of the T-spaces. 
This problem is completely solved in the case of / / -spaces: a rational 
/ / - space is a product of Eilenberg-MacLane spaces. We will prove that in 
the rational category any T-space is an / / -space. This result was also 
obtained in [14] by Vigué-Poirrier using Sullivan's minimal models. F rom 
now on, we assume that X is a simply connected space whose rational 
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homotopy groups are finite dimensional Q-vector spaces. 
We say that X is a rational T-space if the rationalisation of X is 

a T-space. 

THEOREM 3.3. X is a rational T-space if and only if X has the same 
rational homotopy type as a product of Eilenberg-MacLane spaces. 

Proof. We assume that all spaces are localized at zero. Since a product of 
Eilenberg-MacLane spaces is an //-space and also a T-space, we only need 
to prove the converse. Let X be a T-space and let us consider a Postnikov 
system for X. We know from Theorem 3.2 that Xn, n i^ 1 is a /"-space and 
kl\ n ^ 2 are T-maps. We prove by induction that each space Xn is a 
product of Eilenberg-MacLane spaces. This is obviously true for Xx and 
X2 and the next proposition provides the inductive step. 

PROPOSITION 3.4. Let X be a rational space and an H-space with TTJX = 0, 
/ > N > 1, and let 

f:X-+K(V,N + 2) 

be a map, where V is a finite dimensional Q-vector space. Iff is a T-map with 
respect to some T-structure of X then the fibre of f is a rational H-space. 

Proof. We have 

H*(X; V) « H*(X; Q) ® V 

^(Q[x]9...9xn]®E(yl9...9ym))®V. 

Let x e HN^2(X; V) be the class corresponding to the map / . We 
will show that x = 0 and so the fibre of / is homotopy equivalent 
to X X K(V, N + 1). Since we assume TTtX = 0 for / > N, x can be 
written as 

X = Zx ® Vj + . . . + Zt ® Vt, 

where zi Œ H*(X; Q), / = 1, . . . , / are decomposable and vl9 . . . , vt is a 
basis of F as a Q-vector space. 

Let 

r.X X QX^ttX 

be the composition of the T-structure of X and the homotopy equivalence 
X X &X ~ AX provided by any //-structure on X such that the generators 
Xj, . . . , xn9 y},. . . ,ym are primitive. Since fis a T-map, 8(f) = 0. On the 
other side, it is clear that co(x) = 0 in //*(ÏÏX; V). Using Proposition 2.2 to 
compute 8(f), we obtain 

(*) 2 aéj ® co(^) ® vf. = 0 

where a-, &•• are such that 
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m*{zt) = zt 0 1 + 1 0 zt + 2 ay ® bij9 deg aij9 bi} > 0. 

But it is clear that since zi9 i = 1, . . . , t, is decomposable, the equation (*) 
can only hold if Zj = . . . = zt = 0. 

4. ^-spaces. We have seen that any //-space is a /"-space and also that 
the converse is not true. The relationship between //-spaces and T-spaces 
resembles in some way the relationship between loop spaces and //-spaces. 
In order to get a better understanding of the distinction between 
//-spaces and loop spaces, Stasheff introduced a sequence of intermediate 
properties which led to the definition of y^-spaces (see [12], p. 50). In this 
section we do a similar construction for /"-spaces. 

For any X, the space QX has the homotopy type of an associative 
//-space and so we can consider X as filtered by the projective spaces 
of fiX 

2ŒX = (ttX)Pl -> (ttX)P2 - » . . . - > (aX)Pm - > . . . - > * . 

These spaces are defined in the following way: If Y is an //-space, then we 
set YP = 2 7 . The projective plane of 7, YP2 is defined as the mapping 
cone of the Hopf fibration Y * Y —» 2 Y. If Y is associative, this fibration 
can be extended inductively to fibrations 

Y * J1. . * Y—> YPn'x 

and we define YP" as the mapping cone of this map. In the limit, we 
obtain BY, the classifying space of the associative //-space Y. We refer to 
[12] for more details on this construction. 

Let 

im:(QX)Pm^>X and 7m:2fiX -> (QX)Pm 

be the canonical maps. 

Definition. We say that X is a Z^7-space, oo i^ n = 1, if 

/, V 1 
S M V l J — • X 

can be extended up to homotopy to (£lX)Pm X X. 
The most immediate consequences of this definition are contained in 

the following proposition. 

PROPOSITION 4.1. i) Any H-space is a T^-space; 
ii) any T^-space is an H-space\ 

hi) any Tx-space is a T-space\ 
iv) any T-space is a Tx-space\ 
v) any Tn-space is a Tm-space, n = m\ 

vi) if G is a discrete group, then BG is a T-space if and only if G is 
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abelian; 
vii) / / X is a T-space, then all Whitehead products vanish on X; 

viii) if X is a T-space, then QX is a homotopy commutative H-space; 
ix) the fundamental group of a T-space is abelian. 

Proof, i) and v) are trivial, vii) follows easily from iv). vi) and ix) follow 
from vii). viii) follows from a result of James-Thomas ( [9] ) who proved 
that a loop space 7 is homotopy commutative if and only if the map 
2 7 V 2 7 -» BY can be extended t o 2 7 X 2 7 iii) follows from the fact 
that if 

f.XttX X X^ X 

is an extension of ix V 1, then the adjoint to the map 

f 
S] X SIX X X -> 2fiX X X A X 

is a fibre homotopy equivalence between the fibration 

SIX -> A * -> X 

and the trivial fibration. 
Let us prove ii). If X is a 7^-space, then we have a homotopy 

commutative diagram 

m 
X X X • X 

I ^^ 
I ^ ^ i, V 1 

Let f.X —» X be the map given by / ( x ) = m(x, *). Then yi'j ~ ix. By 
passing to the adjoint maps, we see that Of ~ \ and so / i s a homotopy 
equivalence. If g is a homotopy inverse of / , then m = m(g X l ) i s a 
multiplication on X with two-sided homotopy unit. 

It remains only to prove iv). If X is a T-space, we have a map 

h:Sl X X X SIX -> X 

such that 

h(\, JC, w) = x; h(t, *, co) = co(t). 

However, h(t, x, *) could be different from *. We will modify h to obtain 
a map with this property. For each x e X, let X̂  be the path on X 
given by 

Xx(t) = h(t, x, *). 

Define 
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/T. cl h\S[ X X X ttX-> X 

h( , x9 <o) = h( , x, u)*\x
 ] 

(composition of paths). Then h, restricted to the "fat wedge" Sl V X V SIX 
is homotopic to the map 

g:Sl V l V f i l V l 

such that 

g(/, x,*) = x 

g(l , *, <o) = x 

g(f, *, co) = (o(/). 

Using the homotopy extension property, we can assume that h = g on 
5 ' U t ? Î2X Hence A factorizes through X X 2S2X and so X is 
a 7] -space. 

We ask now if the conditions of being a 7^-space or a 7^-space, n ¥= m, 
are really different. 

Example. Let /? > 3 be a prime and let X be the homotopy fibre of 
the map 

K(Z, 2) -» A:(Zp, 2AI), (H > 9) 

classified by 

in G H2n(K(Z, 2); F,). 

We want to know if X is a 7^-space, for some ra = 1. Let Y = ŒX which is 
homotopy equivalent to 

S1 X K(Zp, 2w - 2). 

Let us consider the diagram 

2 F V X -

yp"1 

/, v l 
- • x 

x x 
where g is classified by 

g +K(Z,2). -*»K(Zp9 In) 

(3c ® 1 + 1 ® x) e H\YPm X X) « / / 2 (2 Y V X\ 

where x ^ H (X) classifies 77 and 

y*/*) = z?oo. 

https://doi.org/10.4153/CJM-1987-047-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-047-9


LOOP SPACES 951 

It is easy to see that X is a 7^-space if and only if there exists a lifting / 
making the diagram commutative. The obstruction to the existence of / i s 
a class in 

Hln(YPm X X, 2 7 V X\ ¥p) 

which maps to 

(3c ® 1 4- 1 ® xf G H2n(YPm X X, Fp). 

Let us recall that YPm is obtained from 2 7 by a sequence of 
cofibrations 

7 * . !. * 7 -> y p ' " 1 —> yp ' . 

Since 

/ /2 , ?~1(7 * . !. * 7; F^) = 0 for i < n9 

we conclude that 

(Jm V l ) * : 7 / 2 , 2 - 1 ( ^ m X * ; F,) -> / / 2 A 7 _ 1 ( 2 7 V X; Fp) 

is onto if m < AÏ. This shows that for m < « X is a 7^-space if and 
only if 

(3c ® 1 + 1 ® xf = 0 in H2n(YPm X X; Fp). 

The map 77 induces maps between the projective spaces of 7 and Sx. 
This shows that 

3cr+1 = 0 in 7/*(7P r; F,). 

On the other side, one can consider the maps 

, k „ , ah 

where A: is the adjoint of the inclusion of the bottom cell and h is a lifting 
of the canonical map 

CPn~x -> K(Z, 2). 

By a result of Stasheff ( [12], p. 34), k is an .4,7_ rmap and so it induces a 
map between the projective r-spaces of S and CPn~ , for r < n. We 
obtain maps 

CPr -> (ÇïCPn~l)Pr -> y p r 

for r < w. Hence, 3cr ^ 0 in H*(YPr; Fp) for r < w. 
Let us consider now the case n = 3p. We have 

(3c 0 1 + 1 ® xf 
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= x3p 0 1 + 33c2/7 ® xp + 33c' ® x2/7 + 1 ® JC3/? 

and the discussion above shows that X is a 7J__j-space but not a 
^-space. 

PROPOSITION 4.2. For any prime p > 3 //zere z\s « s^ace X such that X is 
a T x-space but not a T -space. 

5. /"-structures on spaces with polynomial cohomology. Throughout this 
section, p is an odd prime and X is a simply connected space such that 

H*(X; ¥p) « Fp[xl9 . . . , xnl deg xx â . . . ^ deg xw. 

According to a result of Hubbuck ( [7] ), X is not an i/-space unless 
deg xx = . . . = deg xAZ = 2. We will generalize this to T-spaces by 
proving that X cannot be a T-space unless the same condition on the 
degrees of the generators holds. The proof uses only primary cohom­
ology operations and is based on the work of Adams-Wilkerson on co­
homology algebras ( [1] ). 

Let Qr%s, r > 0, s ^ 0 be the element of the mod p Steenrod algebra 
which in the Milnor base is written as 

p{0,...,(U0,...} 

where the s comes in the rth place. We put Qr = QVy , following .the 
notation of [1]. We also consider the operation Q (not a Steenrod 
operation!) defined by Q°x = dx for all x of degree 2d. These operations 
have the following properties: 

i) deg Qrs = 2s(pr - 1); 
ii) the Cartan formula for Qr,s is 

Qr'\xy) = 2 (QrJ(x) ){Qrj{y) ); 
i+j=s 

iii) if deg x — 2(s -f- 1) then 

Qr+kQr's(x) = (Qk(x) ) p \ r > 0 , J ^ 0, fc ^ 0. 

i) and ii) are elementary and iii) is proved in [1]. 

PROPOSITION 5.1. If X is a T-space and r is big enough, then 

Qr'\x,) e Fp[xu..., xn_x, xp
n], / = 1 , . . . , / ! , s â l. 

Proof. Let r be such that 

2 ( / - 1) > deg xx + . . . + deg xn. 

This implies that the operations Qr's, s ^ 1 vanish on 

H*(QX; *p) ** EMxJ, . . . Mxn)). 

Let x be equal to xt for some /'. We have 
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We want to prove in = 0(p). Since X is a T-space, there is a homotopy 
equivalence X X SIX ~ AX. If <p is the adjoint of this map, it is easy to 
see that the homomorphism induced by <p on H*(X; F ) should be as 
follows 

<p*(Xj) = Xj ® 1 + 1 ® uo)(xj) + 2 ^ 0 ubtj 

where u is the generator of H*(Sl; ¥ ) and deg a- > 0. Since xn has 
maximal degree, the term of <p*Qr,s(x) containing uo)(xn) is 

(*) a \..., iain$... ^ K - - 1 ) ® uv(xn). 
On the other hand, <p* commutes with Çr"s. Hence, 

<ç*Qrs(x) = Qrs<p*(x) 

- QrS(x ® 1 + 1 ® JC + 2 fly ® M*/) 

= ôr"v(^) 0 1 + 2 £ r > , ) ® no,-. 

This shows that the term (*) vanishes and the proposition follows. 

According to [3], we say that an unstable algebra A over the mod p 
Steenrod algebra satisfies the Q-condition if 

Ap = n Ker Qr 

where ^ = {xp\x ^ A). The importance of this condition comes from the 
fact that the g-condition characterizes the polynomial algebras which are 
isomorphic as algebras over the Steenrod algebra to some subalgebra of 
invariants of H*(BTn; F ) under the action of some subgroup of GLn(¥ ) . 
Here Tn is the «-dimensional torus. This is one of the main results of [1]. 
On the other hand, it is important to notice that, though it is easy to 
provide examples of polynomial algebras which are algebras over the 
Steenrod algebra and which do not satisfy the g-condition, no example is 
known of such an algebra which is realizable as the cohomology algebra of 
some space. It has been proved ( [6] ) that such examples cannot exist, 
because the g-condition, at least for polynomial algebras, is a conse­
quence of the realizability as a cohomology ring. The following theorem 
generalizes a result of Hubbuck ( [7], see also [4] ). 

A mod p !T-space is a space such that its localisation at p is a 
T-space. 

THEOREM 5.2. Let X be a simply connected mod p T-space. If 

H*(X;¥p)^¥p[xu...,xn] 

then X is mod/? equivalent to BTn. 
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Proof. We will prove that deg xx = . . . deg xn = 2. Assume deg xn > 2 
and let r be as large as required by Proposition 5.1. Since H*(X\ F ) 
satisfies the ^-condition, [1] shows that the derivations Q , . . . , Qn~ are 
linearly independent on F^JC,, . . . , xn]. This implies 

det(Ql(x))l=0 ,„_, * 0. 

Hence, 

d e t C C Ô ' ^ o / x ^ o „_, * 0. 

Let s- be such that deg JC- = 2(sj + 1). Then 

(0 , ' (^ ) / = er+''er,-i'(xy) = er+,'(^), 
where^- = Ô^'C*/)- We have: 

de t (G r + / (^ )^o , . . . ,» - i * 0 . 
y = i « 

Notice now that 

y} e Fp[xl,...,xn_x,x
p
n], j = l , . . . , w . 

This leads immediately to a contradiction because the derivations 
£>', Qr+\ . . . , Qr+"~] are linearly dependent o n F ^ j c , , . . . , xfj. 
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