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We analyse the model problem of rigid, spherical pendula impacting on rubber membranes
at different Reynolds numbers to understand the contact dynamics in deformable bodies
in a viscous fluid. We have investigated the problem both by laboratory and numerical
experiments and a new contact model has been developed to perform the simulations. We
have found that the collision dynamics depends on many parameters, the most important
ones being the impact Stokes number (St) and the ratio of the membrane thickness (e)
to sphere diameter (2R). For e/(2R) = 0.1 the pendulum rebounds for St � 18 and this
threshold increases as the membrane thickness decreases. Also, the membrane surface
affects the dynamics of the impact by delaying the rebound for smaller membranes.
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1. Introduction

In almost all natural phenomena and technological applications, the contact of two
approaching solid surfaces is mediated by the presence of a fluid whose displacement
generates fluid dynamic loads. These, in turn, alter the trajectory of the bodies and,
in some cases, yield a completely different interaction dynamics. When, as for gases,
the fluid density is much smaller than that of the solids, its presence can usually be
neglected and many contact models are available (Rao 2006). On the other hand, when
the interacting objects are immersed in a liquid of comparable density, inertia and viscous
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stresses produce significant hydrodynamic loads and their effect has to be accounted for
(Brenner 1961; Joseph et al. 2001; Pasol et al. 2005).

Concerning the surfaces, in the interaction among solid bodies the deformations are
small and limited to a well-defined region (or set of points) of contact, thus allowing for
relatively simple force and flow descriptions (Johnson 1987; Glowinski et al. 2001; Becker
& Briesen 2008; Kempe, Vowinckel & Fröhlich 2014; Costa et al. 2015; Derksen 2015;
Picano, Breugem & Brandt 2015; Biegert, Vowinckel & Meiburg 2017; Birwa et al. 2018;
Yacoubi, Xu & Wang 2019). Conversely, when the bodies are deformable, the contact
dynamics is more complex but the collision can still be described by simple models
provided their shapes can be represented by a reduced set of parameters, as for small
bubbles or droplets (Heitkams et al. 2017; Spandan et al. 2017).

As discussed by Zenit & Hunt (1999), the impact of two bodies in a viscous fluid implies
a paradox. In fact, Happel & Brenner (1965), relying on the creeping flow approximation,
computed the force exerted by the fluid on a sphere approaching a solid boundary and
they found that the former diverges as the gap tends to zero, thus the body never touches
the wall. Davis, Serayssol & Hinch (1986) extended the model by allowing the wall
deformation induced by the pressure build up, but also in that case the contact does
not occur.

From the experimental side, it has been observed that, when the approach velocity
is large, there is an ‘apparent contact’ although the gap between the sphere and the
boundary reduces to such small dimensions that the continuum assumption could fail in
a gas (Sundararajakumar & Koch 1996), while in a liquid, given the huge pressures, the
fluid in the gap could solidify. Finally, Smart & Leighton (1989) conjectured that surface
roughness could be relevant during the collision and that contact might occur through
microscopic sharp edges.

Despite the considerable progress and the abundance of collision models, describing
the interaction among arbitrarily deformable objects in a viscous fluid is still a challenge
and an effective contact model is missing; the present study aims at progressing in this
direction.

In the field of biofluid dynamics there are plenty of examples of deformable soft tissues
whose contact has a fluid in between and the cell/cell interaction described in Liu et al.
(2019) is just an example among many. The original motivation for this study, however,
comes from cardiovascular flows in which the leaflets of the heart valves open and close
passively as a result of the hemodynamic forces. When a valve closes, its leaflets seal by
coapting along a contact surface that is not known a priori. In some pathological cases,
even after coaptation, the leaflets can still drift together and the contact surface deforms
(figure 1b,c) inducing, for the mitral valve, the systolic anterior motion (Meschini et al.
2020). In figure 1 we show a sequence of snapshots of a hypertrophic left ventricle of
the human heart, in which the valve, initially open, closes and eventually drifts towards
the left because of the low pressure in the outflow tract. In this problem, the motion of the
leaflets must be computed as part of the solution and their contact cannot rely on kinematic
conditions that would alter the overall dynamics. Unfortunately, this application, with the
complex geometry, the multiple structures in relative motion and the pulsatile flow (Viola,
Meschini & Verzicco 2020) results in an extreme computationally expensive problem that
prevents it from being used for a parametric study.

In order to understand the contact dynamics of a deformable body in a viscous fluid,
here, we consider a simpler model problem, which is the impact of a rigid spherical
pendulum on a rectangular deformable membrane clamped at its upper edge. Indeed, while
the geometries are simple and well defined, the collision occurs at unknown positions
because of the flapping and deformation of the membrane.
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(a) (b) (c)

Figure 1. Dynamics of the mitral valve leaflets during three instants of the heart cycle: the posterior leaflet
is represented in red and the anterior leaflet in blue. The thick green line evidences the contact surface of the
two leaflets. The ‘strings’ departing from the distal edges of the leaflets are the cordae tendineae that connect
the leaflets with the papillary muscles of the ventricle. The light grey transparent surface is the endocardium
of the left ventricle while the thin solid black line is the external surface of the ventricle; note the pathologic
thickening below the aortic channel. The dark solid surface represents the modelled inflow and outflow tracts.
The dashed arrow indicates the main flow direction, the curved solid arrow evidences the systolic anterior
motion of the leaflets. The top images give a view from above of the mitral channel while the bottom images
show a side view of the entire system. (a) Early wave of the diastole, the ventricle is expanding and filling;
(b) mid-systole, the ventricle contracts and the blood is pumped through the aortic outflow tract; (c) late systole,
the ventricle keeps contracting and the blood acceleration in the aortic outflow tract produces the low pressure
that ‘sucks’ the mitral leaflets and produces their systolic anterior motion. (Adapted from Meschini, Mittal &
Verzicco (2020).)

By varying independently the properties of pendulum, membrane and fluid, different
impact regimes can be obtained and the contact features analysed.

The present problem has been investigated by direct numerical simulation of
the Navier–Stokes equations coupled with a model for deformable membranes via
fluid/structure interaction (FSI). The simulations have been complemented and validated
by laboratory experiments performed under dynamically similar conditions: both the
membrane dynamics (by high-speed contour tracking) and the flow velocity in a
two-dimensional plane (by particle image velocimetry, PIV) have been measured and
compared with the numerical counterpart.

The main features of the collision can be summarised as follows: as the sphere
approaches the membrane, the fluid in between is squeezed out by the pressure build-up
that, in turn, deforms locally the structure and pushes away the whole membrane. In
contrast, when the pendulum retreats from the membrane, the fluid is sucked towards the
gap inducing a low pressure region that pulls the membrane towards the swinging sphere.
Depending on the membrane inertia and stiffness, on the pendulum energy and on the fluid
properties, the contact between the bodies may or may not occur and the dynamics of the
interaction can change radically.

It has been found that the main parameter of the collision is the impact Stokes number
St (defined later) which in turn depends in the Reynolds number of the sphere and
on the density ratio of sphere and fluid. For a given ratio of membrane thickness to
sphere diameter, the rebound occurs only for St beyond a threshold value bigger than the
analogous quantity for the impact on a solid wall. In addition, the threshold St increases as
the membrane thickness decreases while it does not appreciably changes if the membrane
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Figure 2. Sketch of the problem with the main geometrical parameters.

surface decreases, at least up to 25 % of its value; the main effect of the surface reduction
is a delay of the rebound. The paper has the following structure: in the next section we
introduce the problem and its basic parameters while in § 3 we describe the experimental
set-up and the numerical method. In § 4 the main findings of the investigation are presented
and discussed and the conclusions and further perspectives are given in § 5. At the end of
the paper we give the details of a novel contact model that has been derived to carry out
the numerical simulations.

2. The problem

We consider a rigid spherical pendulum of radius R, density ρp and length L displaced
by an angle α0 with respect to the vertical equilibrium point, O, which is also the origin
of the axes, as shown in figure 2. The pendulum is totally immersed in a fluid of density
ρf and dynamic viscosity μf . Since the pendulum consists of a finite size (not pointwise)
mass and considering buoyancy and added mass effects, for small angles α0, its oscillation
period is

T = 2π

√
ρp + Caρf

ρp − ρf

L2 + r2
g

gL
, (2.1)

with g the magnitude of the gravity vector, rg the radius of gyration and Ca the added mass
coefficient of the suspended object (respectively, r2

g = 2R2/5 and Ca = 0.5 for a sphere).
The period of (2.1) is obtained from the equilibrium to rotation of the sphere with respect
to point O. The moment is given by gravity and buoyancy forces while the moment of
inertia accounts for the added mass.

Note that in the limit of ρp � ρf (negligible fluid effects) and L � R (pointwise
mass) the expression (2.1) reduces to that of the ideal pendulum (T = 2π

√
L/g) which

is independent of the material properties, shape and size of the swinging mass.
A rectangular elastic, deformable membrane of width b, height d and thickness e is

hung vertically so that it is parallel to the x–y-plane and tangent to the pendulum in its
equilibrium position. The membrane thickness e is much smaller than b and d, its elastic
properties are homogeneous and isotropic with a Young’s modulus E and a Poisson ratio
νP.
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(a) (b)

Figure 3. (a) Experimental visualisation of the pendulum approaching the membrane before the collision
(instantaneous snapshot); (b) detail of the flow field around the impact region.

The geometry of the system is such that the pendulum/membrane impact (if any) occurs
at the midpoint of the width b but at a distance h = d/3 from the lower edge of the
membrane (figure 2).

3. Methods

3.1. Laboratory experiments
The experiments have been performed in a rectangular glass tank of dimensions Lx =
20 cm, Ly = 20 cm and Lz = 30 cm filled with water or with glycerol/water mixtures so
that, at the working temperature of 20 ◦C, the kinematic viscosity of the fluid could be
varied in the range 1.00 × 10−6 � ν � 1.12 × 10−3 m2 s−1.

The pendulum was obtained by suspending a sphere by two identical thin, polypropylene
suture threads of 0.2 mm of diameter and, to prevent the mass oscillation outside the
y–z-plane, the two wires were arranged at an angle of 30◦ in the x–y-plane.

The spheres had a diameter of 1 or 2 cm and were made of steel (ρp = 7800 kg m−3,
aluminium (ρp = 2700 kg m−3) or glass (ρp = 2400 kg m−3). Regardless of the sphere
size, the distance between the centre of rotation C and the centre of mass was always
L = 12 cm.

The membranes were made by a transparent silicone rubber of density ρm =
1040 kg m−3, Young’s modulus E = 1.5 MPa and Poisson ratio νP = 0.4. They were
all rectangular of edges b = 12 cm and d = 9 cm and with a variable thickness of e = 1.0,
1.5, 2.0, 2.4 or 3.0 mm.

In every run, the sphere was displaced by an angle of α0 = 30◦ in the y–z-plane and
maintained at rest using a magnet; after a few minutes (2–3) any residual fluid motion in
the tank was dissipated and the experiment could be started by suddenly removing the
magnet.

The dynamics of the pendulum/membrane interaction was recorded by a high-speed
camera at 500–5000 f.p.s. with a full resolution of 1024 × 1280 pixels (0.03 mm per pixel)
and subsequently post-processed. When the flow field was illuminated by a diffused white
led light it was possible to visualise the whole flow field (figure 3a) and extract the features
of the membrane motion by applying the high-speed tracking technique, described in
Falchi, Querzoli & Romano (2006) to a regular array of markers (black bullets) drawn
on the membrane; apparent motion due to perspective was preliminary corrected using a
predetermined calibration. On the other hand, if the fluid was seeded with pine pollen
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particles (of 10 μm in diameter) and illuminated by a thin laser sheet (mostly in the
y–z-plane from below to minimise the interference of shadows) it was possible to measure
the two-dimensional velocity field in the plane; in this case, the camera was focussed on
reduced portions of the flow field in order to resolve the seeding particles (figure 3b).
The PIV algorithm is a variant of that described in Falchi et al. (2006) that allows us to
compute the two-dimensional instantaneous velocity field using an interrogation windows
of 17 × 17 pixels, with a 50 % overlap; the uncertainty in the particle displacement
measurement was ≈0.1 pixel.

3.2. Numerical simulations
The computational model consists of a flow solver for incompressible viscous flows
coupled to a structural solver for rigid as well as deformable bodies.

The fluid motion is described by the Navier–Stokes equations with the immersed
boundary (IB) forcing f (Spandan et al. 2017), which, in non-dimensional form, read

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + g + f , (3.1)

∇ · u = 0, (3.2)

where u is the velocity vector, p the pressure and g the gravity vector anti-parallel to the
y-direction.

The Reynolds number Re = ρf 2RU/μf is computed using the sphere diameter and the
maximum velocity of the pendulum that, following (2.1), is U = α0L2π/T . Accordingly,
all the quantities have been made non-dimensional using the fluid properties, the sphere
diameter and the velocity scale U.

The membrane deformation is solved using a method based on the interaction potential
approach (Tanaka, Wada & Nakamura 2012). Here, the structure is discretised using
triangular elements with a uniform distribution of the mass on their vertices. The nodes
are connected by elastic edges and two triangles sharing an edge have a linear bending
stiffness. When the resulting network deforms owing to external forces, internal potential
energy is stored into the system and an elastic potential field W can be computed
(de Tullio & Pascazio 2016). The internal forces of the structure are then expressed, for
the ith node, through F int

i = −∇W while the external forces F ext
i are obtained by the

local surface integrals of pressure and viscous stresses and the volume integral of the body
forces. The solution of the second Newton’s law for each node miẍi = F int

i + F ext
i , with mi

the node-associated mass, yields its acceleration and, by successive integrations, velocity
ẋi and position xi from which the updated structure configuration is obtained.

The dynamics of a rigid sphere is affected solely by the resultant of the external
forces obtained by integration over the wet surface (and not by their local values as for
the deformable bodies). Just the x-component of the moment about C is used since the
pendulum is allowed only to swing around that point in the y–z-plane.

The numerical schemes for the flow and structure solvers and IB method are extensively
described in van der Poel et al. (2015), de Tullio & Pascazio (2016) and Spandan et al.
(2017); here, we give some additional details on the FSI algorithm and on the contact
model between sphere and membrane.

The coupling of the flow and structure solvers can be ‘loose’ or ‘strong’ depending
whether they are solved sequentially or simultaneously, respectively. The former approach
is computationally inexpensive but can become unstable when the inertia of the structure
is low while the latter is robust but it results in either expensive large monolithic systems
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Algorithm 1: FSI algorithm.
1) At the time step n, using the latest flow, pendulum and membrane configurations,
a predicted flow field for the new time step is calculated (up, pp).
2) Using up, pp the local forces for the membrane and the resultant moment for the
pendulum are integrated and a predicted structure configuration (xip, αp) is obtained.
3) Starting again from the flow field at the time step n, but using the predicted
configuration, a new corrected flow is evaluated (uc, pc).
4) Using the corrected flow, the hydrodynamic loads are recomputed and the structure
configuration updated (xic,αc).
if max |xic − xip| < ε then

xn+1
i = xip, αn+1 = αp, un+1 = uc and pn+1 = pc

the procedure can be restarted from 1) for a new time step
else {max |xic − xip| � ε }

the corrected variables become the new prediction and the steps 2)–4) are repeated
until the condition max |xic − xip| < ε is satisfied and a new time step can be
integrated.

end if

or iterative methods. Meschini et al. (2018) used the compromise of a loose coupling
approach with a substepping algorithm for the structure that remained stable even when
dealing with the heart valve leaflets with vanishing inertia. Unfortunately, preliminary
numerical tests have shown that for the present problem, during the impulsive collision
phase, the above procedure often became unstable, especially for the thinnest membranes,
and only the uncompromised strong coupling could be reliably used for all cases.

The FSI procedure for the present simulations is summarised in algorithm 1. In every
simulation the tolerance was fixed to ε = 10−7 and the number of iterations within
each time step depended on the time discretisation and problem parameters. A typical
simulation was run on a computational domain of 16R × 8R × 16R, on a mesh of 193 ×
129 × 193 nodes and advanced with a time step �t = 10−4R/U; during the collision phase
an average of 4–6 iterations were necessary to bring the error below the tolerance with
larger values for thinner membranes and higher Reynolds numbers. If the error was not
reduced below the tolerance after 20 iterations the simulation was terminated and run
again with a smaller time step.

As the Reynolds number increases so does the number of grid nodes and the FSI
iterations while the time step size decreases thus for a given computational resource there
is a threshold affordable Reynolds number. For example, a flow at Re = 1000 requires
a minimum mesh of 513 × 385 × 513 a time step �t ≈ 10−5R/U and more than 10
iterations during the collision phase. Such a computation is at the edge of our capabilities
since it saturates the 24-processor shared-memory system employed for this study. The
simulation of higher Reynolds number cases would require the porting of the code on
large distributed-memory architectures using MPI directives.

As the sphere approaches the membrane the gap in between shrinks and eventually
the underlying computational grid becomes inadequate to resolve the flow. Although
this problem is common to all computational methods, in the present case it occurs
already when the surfaces get closer than two grid spacings (2Δ) because each structural
Lagrangian element ‘interpolates’ information from a cloud of 33 fluid nodes (de Tullio
& Pascazio 2016) and when the distance from another marker decreases below 2Δ the
interpolations interfere with each other (Kempe et al. 2014).
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(a) (b)

(c) (d )

Figure 4. (a,b) Instantaneous experimental visualisations of the pendulum (a) approaching the membrane
and (b) retreating. Here, Re = 4200, ρp/ρf = 8 and e/(2R) = 0.1. (c,d) Numerical results of (false) colour
contours of the vertical (y) velocity component overlaid with velocity vectors in the symmetry y–z-plane and
in the reference frame of the membrane stagnation point (only every other grid point is shown for clarity). The
colours range from blue to red for −0.8 � uy � +0.8. Here, Re = 20, ρp/ρf = 8 and e/(2R) = 0.05. The thin
solid line is added to evidence the membrane profile in the y–z-plane.

Despite the abundance of available collision models, none turned out to be completely
successful for the present problem owing to the large deformations and displacements of
the membrane. For this reason we have tried to derive a new one taking inspiration from
experimental visualisations and from low Re numerical simulations at spatial resolutions
high enough to capture the interaction without any model (note that for some parameters
range sphere and membrane never come in contact).

From figure 4 we can see that, when the sphere approaches the membrane, the squeezing
of the fluid in the gap produces a pressure build-up that deforms the membrane with a
curvature of the same sign as the sphere (figure 4a,c). In contrast, for a receding sphere,
the gap widens and fluid is sucked towards the stagnation point by a low pressure that
bends the membrane with opposite curvature (figure 4b,d).

In the reference frame of the membrane stagnation point the flow field in the gap
can be assumed axisymmetric and dominated by the meridional velocity component uφ

(figure 5a). The gap thickness can be approximated by the relation h(φ) ≈ C(1 − ε cos φ)

with C = R′ − R, ε = s/C and R′ the local radius of curvature of the membrane. Note that
the same expression can be used also to describe the gap for a receding sphere (figure 5b)
provided C = R′ + R + h0 and ε = (R′ + R)/C. Following a similar approach as in Zenit
& Hunt (1999) a depth integrated equation for the meridional velocity component is
derived from which the pressure at any φ is computed once the pressure at the colatitude
φ∗ is known. The complete derivation is given in appendix A, here we report only
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h0

RR’
R

R’

s

h(φ)
h(φ)

φ∗
φ φ

(a) (b)

Figure 5. Idealised sketch of the fluid gap between the sphere or radius R and the deformed membrane of
local radius of curvature R′; (a) sphere approaching the membrane, (b) receding sphere.

the result

p̄(φ) = p̄(φ∗)
1 − ε cos φ∗

1 − ε cos φ

+ R2

1 − ε cos φ

{
ε̈

2
[cos φ − cos φ∗] + ε̇2

4

[
sin2 φ∗

1 − ε cos φ∗ − sin2 φ

1 − ε cos φ

]}

+ 12R2ε̇

ReC2(1 − ε cos φ)
[F(φ∗) − F(φ)],

with F(φ) = 1
(1 + ε)2 ln

[
1 + cos φ

1 − ε cos φ

]
− 1

ε(1 + ε)

1
1 − ε cos φ

, (3.3)

which is valid for h(φ) 	 R (with R = 0.5 for the present scaling).
Equation (3.3) gives the distribution of the pressure p̄ mediated across the gap width

h as function of the colatitude φ whose value depends in a complex way on the gap
width dynamics through ε, ε̇ and ε̈. This gives a result that is different from the ‘simple’
lubrication model as will be shown in appendix A in more detail.

In figure 6 we show the pressure distribution on the membrane for the same case as
in figure 4(c,d) together with the profile in y–z-plane for the approaching (figure 6a,c)
and receding (figure 6b,d) dynamics. In this case, thanks to the low Reynolds number
(Re = 20) and the fine spatial resolution of the simulation, it was possible to check the
prediction of (3.3) by choosing configurations where the sphere/membrane distance never
decreased below 2Δ and comparing the pressures. It can be seen that the model yields a
good representation of the local pressures although it performs better for the approaching
phase than for the receding one: a possible reason is that in the latter case the flow is not
completely symmetric and does not fulfil all the hypotheses of the model.

Once more we wish to stress that when the sphere approaches the membrane the fluid
is squeezed out of the gap owing to the pressure build up and the interaction results in
a repulsive force. In contrast, in the receding phase, the fluid is sucked into the gap and
the pressure decreases locally thus producing an attractive force between the bodies; this
clearly shows that, for the problem of collision in a fluid, all the models based on purely
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Figure 6. False colour contours of pressure distribution on the membrane (a,b) and pressure profiles along
its symmetry y–z-plane (c,d) for the same case as figure 4(c,d) obtained by numerical simulation. The colours
range from blue to red for −20 � p � 10. In panels (c,d), the symbols are the numerical pressure sampled on
the membrane surface while the red solid line is the prediction of (3.3).

repulsive forces are not physically consistent since they miss the change of sign of the
interaction.

The inversion of the fluid displacement in the gap, before and after the impact, has
been verified also experimentally as shown in figure 7. In order to make the measurement
easier, we have considered the interaction of the pendulum with a rigid (glass) surface and
sampled the velocity at a fixed point with a small offset with respect to the symmetry axis
(point A of figure 7a). It is interesting to note that, despite the relatively high frame rate
(5000 f.p.s.), the velocity inversion still occurs within one time step (200 μs) across the
instant of impact.

The results of figure 6 were used to show the good agreement of the model of (3.3)
with the numerical simulation at Re = 20 when the spatial resolution was high enough
to capture the dynamics of the first sphere/membrane interaction. A similar quality of
agreement is found also for higher Reynolds numbers and figure 8(a) reports the result at
Re = 100 obtained in the same way as the profiles of figure 6.

The model, however, is really useful when the gap becomes smaller than 2Δ and the
numerical simulation cannot capture the correct pressure profile. An example is given
in figure 8(b) in which it is evident that the computed values and the model deviate
significantly in the region around y = 0 where the gap width is the thinnest and decreases
below 2Δ.

Additional evidence is provided in figure 9 showing the pressure at the point φ = 0
as a function of the (minimum) gap width. Clearly, until the gap is thicker than 2Δ, the
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Figure 7. (a) Experimental PIV measurement of the pendulum interaction with a solid (glass) boundary for a
case at Re = 1000 and ρp/ρf = 8. The view is from the side. (b) Time evolution of the y velocity component
at point A next to the boundary.
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Figure 8. Pressure profiles along its symmetry y–z-plane for a case at Re = 100, ρp/ρf = 8 and e/(2R) = 0.1;
(a) t = 4.4, (b) t = 4.9. The symbols are the numerical pressure sampled on the membrane surface while the
red solid line is the prediction of (3.3).

numerical simulation yields a pressure similar to that of (3.3). However, as h(0) decreases
below the threshold, the resolution becomes insufficient and pressure in the gap has to be
modelled.

As an aside, we note that (3.3), despite the complex dependence on various parameters,
still gives p̄(0) ∼ h(0)−2, thus the pressure scaling is not different from other available
models. Nevertheless, as shown in appendix A, (3.3) is derived from the exact integration
of the balance of momentum with a few symmetry hypotheses therefore it gives reliable
pressure predictions without the use of any user-defined parameter.

On the other hand, the use of (3.3) is very delicate and its prediction is quite sensitive to
numerical errors. More in details, during a simulation, for every time step, the distance
of the sphere surface from the membrane along the vertical section in the symmetry
y–z-plane, is evaluated and if a region has a distance smaller than 2Δ the model is activated
by replacing the local pressure forces with those of the model. The point of minimum
distance is tagged as φ = 0 and the local radius of curvature of the membrane is estimated.
The first point where the gap is 2Δ yields φ∗ with pressure p̄(φ∗). All the geometrical
parameters are easily evaluated and ε̇, ε̈ are computed from the relative velocity of the
sphere with respect to the membrane stagnation point (φ = 0).

The derivation of the equation (3.3), further details, technicalities and warnings on the
application of this model are given in appendix A.
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Figure 9. (a) Maximum gap averaged pressure p̄(0) versus minimum gap width h(0) for the case at Re = 100,
ρp/ρf = 8 and e/(2R) = 0.1. The circles are the results of the numerical simulation while the red solid line
is the prediction of (3.3). (b) The same as panel (a) but in log–log scale; the red solid line is the prediction of
(3.3), the black line is the relation p̄(0) ∼ h(0)−2 added for comparison.

A final modelling component is the force generated by the physical contact of the
objects in those cases in which the pressure build up during the approaching is not
enough to prevent the impact. An important observation for the present problem is that the
membrane, not only deforms but it also flaps about the upper horizontal edge, therefore
the contact with the sphere is usually absorbed by large displacements rather than by
deformations with intense internal stresses. Nevertheless, the contact forces between
the two structures need to be computed to determine their dynamics and we use the
discrete version of the impulse theorem. In fact, being that the sphere is rigid and the
membrane deformable, if, after one time step Δt, the ith Lagrangian marker of the latter
has penetrated the pendulum by a distance δδδ with a velocity ẋi, it is moved back by −δδδ and
is assigned the velocity of the sphere us at that point. The velocity variation in a time �t
for a marker of mass mi entails a force F c

i = mi(us − ẋi)/�t which is added to the external
forces F ext

i . Finally, according to Newton’s third law of motion, −F c
i is applied at the same

point to the surface of the sphere and it contributes to the moment of the resultant about
the centre of rotation.

We wish to stress that the real contact between sphere and membrane occurs only when
one or more nodes of the latter fall within the volume of the former (i.e. when the distance
of a node from the sphere centre is smaller than its radius) and the discrete impulse theorem
is applied.

On the other hand, when the membrane/sphere gap decreases below 2Δ we use (3.3)
to compute the pressure forces even if the pendulum will never physically touch the
membrane.

Perhaps (3.3) could be more correctly referred to as ‘proximity model’ and its activation
depends also on the grid resolution; the real contact model is instead only the above
discrete impulse theorem as it is used only when the physical contact occurs.

4. Results

Looking at the sketch of figure 2 it appears that this problem has a huge parameter space
and investigating all the possibilities within a single research project is unfeasible. This
is true even after fixing the geometry of the pendulum, the material properties of the
membrane and its geometry and for this reason we have chosen to explore only some of the
relevant parameters. In particular, we have relied on quick laboratory flow visualisations
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to get a clue on the main flow features and afterwards performed some series of numerical
simulations changing only one parameter at a time.

4.1. Rigid versus deformable surfaces
In order to stress the differences between the collisions with rigid and deformable surfaces,
we start by presenting two cases at low and high Reynolds numbers for the same pendulum
impacting on a suspended thin rubber membrane (e/(2R) = 0.1) and on a solid block
(e/(2R) = 10) of the same rubber that can elastically deform without net translation. In
figure 10 we show the simulations at Re = 1000 and ρp/ρf = 8 yielding an impact Stokes
number of St = Reρp/(9ρf ) � 890 which is far beyond the threshold value (Stc ≈ 10) for
the rebound from a wall (Zenit & Hunt 1999; Joseph et al. 2001). At this Reynolds number,
the sphere dynamics is unaffected by the presence of the boundary until the vertical
equilibrium position is reached (t = 4 in figure 10a,b); after this point, however, the impact
with the solid boundary produces a rebound with an impulsive (within a few time steps
(≈O(10–20)) velocity inversion (t = 4.2 in figure 10c). In contrast, the membrane absorbs
the pendulum momentum by deforming (figure 10d) and flapping thus delaying the contact
up to t � 4.4 and showing only a much weaker rebound.

More quantitative information can be obtained from the time evolution of the sphere
centre reported in figure 13(a,b). The impact with the solid block produces multiple
rebounds that can be simply quantified by the restitution coefficient, i.e. the ratio of the
velocity magnitudes after (Ua) and before (Ub) the impact; in this case we obtain from
the numerical simulation r = Ua/Ub = 0.75–0.8 which is slightly smaller than the values
reported by Joseph et al. (2001) for glass or other rigid materials but consistent with the
fact that the rubber block deforms locally and absorbs some energy.

The interaction with the membrane shows a completely different behaviour that involves
the fluid on both sides. In fact, the impact of the pendulum induces a localised jet on the
other side of the structure in the same direction as the sphere wake (figure 10f,h). The
negative z-velocity of the flow drags the membrane to the left and in turn the sphere thus
preventing its translation in the positive z direction.

The reliability of these numerical results has been verified by comparing some quantities
with the analogous counterparts measured in a dynamically similar experiment. In
figure 11 we report the deformed configuration of lower edge of the membrane at different
phases of the collision showing satisfactory agreement.

Figure 12 shows the time evolution of the pendulum centroid determined by fitting a
circumference to the contour of the sphere identified by digitally thresholding the image:
it agrees reasonably well with the numerical simulation and this gives us confidence on
the validity of the computer simulations. This is a very useful indication as Re ≈ 1000 is
a sort of ‘overlapping region’ of numerics and experiments since the former cannot be run
beyond that threshold because of computational cost while the latter do not access easily
the low Reynolds number regime.

Accordingly, the flow at Re = 10 has been investigated only numerically and the results,
shown in figure 13(c,d), are very different from those at Re = 1000. The impact with
the solid block shows no rebound and, with St � 9, this is consistent with the findings
of Joseph et al. (2001) who obtained a similar result regardless of the materials of the
sphere and the wall. Also the interaction with the membrane is different from that of
figure 10 since the dynamics is dominated by viscosity and the momentum of the pendulum
is too weak to produce a contact with the structure (see figure 14c). Nevertheless, the
membrane deformation causes the sphere to overshoot its equilibrium position until the

914 A19-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.939


R. Verzicco and G. Querzoli

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 10. Comparison of the numerical results for the pendulum interaction with a solid block e/(2R) =
10 (a,c,e,g) and a membrane e/(2R) = 0.1 (b,d, f,h) for a case at Re = 1000 and ρp/ρf = 8; (a,b) t = 4.0,
(c,d) t = 4.2, (e, f ) t = 5.0, (g,h) t = 6.0. Snapshots in the y–z-plane; the contours represent the uz velocity
component with the colours blue to red for −1 � uz � 1. Also the velocity vectors are overlaid and only one
in every three grid points are reported for clarity. The insets of the panels (b,d,f,h) show the structures from
below.
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Figure 11. (a) Experimental visualisation of the pendulum interaction with a membrane e/(2R) = 0.1 for a
case at Re = 1000 and ρp/ρf = 8. The view is from below as for the insets of figure 10. The membrane lower
edge is highlighted by a red solid line. (b) Comparison of numerical (symbols) and experimental (lines) lower
edge deformation of the membrane at different times: black, t = 4; red, t = 5; blue, t = 6; orange, t = 7; green,
t = 8; magenta, t = 9; yellow, t = 10; cyan, t = 11. The profiles are shifted in the z-direction by 0.5 for every
time unit for clarity.
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(b)(a)

Figure 12. (a) Experimental visualisation of the pendulum interaction with a membrane e/(2R) = 0.1 for a
case at Re = 1000 and ρp/ρf = 8. The view is from the side as for figure 10. The pendulum boundary is
highlighted by a red solid line and its centre by a red circle. (b) Comparison of numerical (symbols) and
experimental (line) time evolution of the z-coordinate of the pendulum centre.

pressure build up induces a smooth velocity transition from negative to positive values
without oscillations.

4.2. Reynolds number effect
Evidently, the interaction dynamics is strongly dependent on the flow Reynolds number
and for this reason we have performed a series of numerical simulations and experiments
in which this parameter has been varied in the range 10 � Re � 4200. We have already
seen that at the lowest end of Re the flow is viscosity dominated and that at the point of
velocity inversion (figure 14b), which is also of minimum distance, there is no contact
(figure 14c).

The transition occurs at Re = 20 (St � 18) when the pendulum velocity oscillates
between positive and negative values because of the dynamic interaction with the
membrane (figure 14b). Although at the first velocity inversion sphere and membrane do
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Figure 13. Time evolution of the pendulum centre z-coordinate (a) and z-velocity (b) for the same cases as
figure 10: numerical results. Solid line show the impact with a solid block, red dashed line show the interaction
with the membrane. (c,d) The same as (a,b) except for Re = 10.
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Figure 14. Time evolution of the pendulum centre z-coordinate (a) and z-velocity (b) for a membrane of
thickness e/(2R) = 0.1, a pendulum with ρp/ρf = 8 and Re = 10 (black solid line), Re = 20 (red dashed)
and Re = 100 (blue dotted). (c) Detail of the configuration at Re = 10 at the instant of minimum distance
(black bullet of panel (b)). (d) The same as panel (c) but for Re = 20 at the point of velocity inversion (red
bullet of panel (b)), (e) the same as panel (c) but for Re = 20 at the instant of minimum distance (filled red
square of panel (b)). The colour map represents the numerical uz velocity component with the colours blue
to red for −0.1 � uz � 0.1. Also the velocity vectors are overlaid and only one in every two grid points are
reported for clarity.
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Figure 15. Numerical results for the time evolution of the pendulum centre z-coordinate (a) and z-velocity (b)
for a membrane with e/(2R) = 0.1: ρp/ρf = 8. Solid line for Re = 20 and ρp/ρf = 8; red dashed, Re = 10
and ρp/ρf = 16; blue dotted, Re = 40 and ρp/ρf = 4; and green chain-dotted, Re = 50 and ρp/ρf = 2.7.

not touch (figure 14d) the successive flapping of the membrane and residual flow motion
causes an incipient contact (figure 14e).

For this configuration we have performed seven numerical simulations in the range
20 � Re � 1000 and approximately twenty experimental runs for 100 � Re � 4200. The
main observations are that for Reynolds numbers bigger than 20 the contact always
occurs already at the first approach and, as shown in figure 14(a,b), already for Re � 100
the collision dynamics becomes similar to that at Re = 1000 of figure 13 thus showing
weak dependence on the Reynolds number. The latter finding has been confirmed up to
Re = 4200 by laboratory experiments.

In the previous analysis we have varied the momentum of the pendulum by changing
the Reynolds number; a more effective way, however, is to act on the density of the
swinging mass that proportionally changes the impact Stokes number St = Reρp/(9ρf ).
In the laboratory experiments, using spheres of steel, aluminium and glass, we have
qualitatively verified that, for a given membrane, if the Stokes number is the same, the
collision dynamics looks similar. Our experimental apparatus, however, cannot access
the lowest Reynolds (or Stokes) number regime, therefore we have used the numerical
simulation to verify the previous condition for the occurrence of the contact.

In a first simulation we have decreased the Reynolds number to Re = 10 but used
a ratio ρp/ρf = 16 (tantalum/water) while in another the combination it was Re = 40
and ρp/ρf = 4 (titanium/water). Finally, a third simulation at Re = 50 and ρp/ρf = 2.7
(aluminium/water) has been performed and all the results compared with the reference
case at Re = 20 and ρp/ρf = 8. The results of figure 15 confirm that, apart from minor
differences, the overall dynamics is very similar and all the configurations (not shown here
in the sake of brevity) show the incipient contact as for the reference case.

4.3. Effect of membrane thickness
All the results of the previous sections have been obtained for a fixed membrane thickness
e/(2R) = 0.1 although this parameter must be relevant for the dynamics since the bending
stiffness (or flexural rigidity) of a thin structure is B = Ee3/[12(1 − ν2

P)] and the above
thickness can give a high enough B for the membrane to exhibit a plate behaviour.

For a Poisson ratio νP = 0.4 and a membrane thickness e/(2R) = 0.1 it results
B/E = 0.0012 while, when e is halved, the ratio B/E decreases by a factor eight.
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(b)(a)

(c) (d )

Figure 16. Experimental flow visualisations of the impact of a pendulum at Re = 4200, ρp/ρf = 8 end
e/(2R) = 0.05: (a) t = 4.5; (b) t = 6; (c) t = 8; and (d) t = 10.5.

Indeed, in figure 16, the experimental flow visualisation at Re = 4200, ρp/ρf = 8 for
a membrane of thickness e/(2R) = 0.05 is reported at four instants of the interaction,
showing a quite different dynamics from that of figure 4(a,b). As expected, the thinner
membrane develops larger displacements and deformations that propagate through all the
structure.

Even if numerical simulations cannot afford this high Reynolds number regime, some
cases have been computed at Re = 50, showing a consistent dynamics. In particular, as
shown in figures 17 and 18, the thinnest membrane (e/(2R) = 0.03) does not oppose
enough reaction to the pendulum to reverse its swing and the simulation stopped at t = 8
since the membrane reached the left boundary of the computational domain. Another
noticeable effect of the reduced membrane thickness is that a physical contact with the
sphere never occurs despite the value of the impact Stokes number of St � 45. The
contact instead is obtained for e/(2R) = 0.05 although at later times with respect to the
e/(2R) = 0.1 case and with larger deformations of the membrane.

On the other hand, for a thicker membrane (e/(2R) = 0.15) the behaviour is not very
different from the reference case except for a slightly stronger sphere rebound. This result is
consistent with the cubic dependence of the bending stiffness on the membrane thickness;
in fact, as e/(2R) increases, the membrane tends to behave like a plate and, as shown by
Sondergaard, Chaney & Brennen (1990), the restitution coefficient of the impact increases
as well thus yielding a stronger rebound.

It is worthwhile also to note that the smaller the bending stiffness of the membrane the
more it tends to wrinkle during the deformation and this makes less accurate the contact
model of these simulations that eventually becomes unusable. In fact, we have found that
for decreasing e/(2R) also the time step of the simulations needed to be refined and we
have not been able to complete any simulation for e/(2R) < 0.03.
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(b)(a)

(c) (d )

Figure 17. Numerical results for the configuration at the point of minimum sphere/membrane distance:
(a) e/(2R) = 0.03, t = 7.8; (b) e/(2R) = 0.05, t = 7.4; (c) e/(2R) = 0.1, t = 4.5; and (d) e/(2R) = 0.15,
t = 4.5. Instantaneous snapshots in the y–z-plane: the contours represent the uz velocity component with the
colours blue to red for −0.4 � uz � 0.4. Also the velocity vectors are overlaid and only one in every three grid
points are reported for clarity.
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Figure 18. Numerical results for the time evolution of the pendulum centre z-coordinate (a) and
z-velocity (b) at Re = 50 and ρp/ρf = 8. Solid line for e/(2R) = 0.1, (red dashed e/(2R) = 0.15, blue dotted
e/(2R) = 0.05), (green chain-dotted e/(2R) = 0.03).

4.4. Effect of membrane surface
Before concluding this paper we want to briefly show that the collision dynamics is
affected also by the surface extension of the membrane whose dimensions, up to now,
have been kept constant as in the experiment (b/(2R) = 6 and d/(2R) = 4.5). For this
test we have halved the length of the edges (b/(2R) = 3 and d/(2R) = 2.25) while the
thickness has been maintained to e/(2R) = 0.1. In the sake of conciseness we do not
report the flow field, however, from trajectory and velocity of the sphere (figure 19), it is
evident that a smaller membrane opposes less resistance to the pendulum whose rebound
is delayed in time. This can be explained considering that, when the membrane is pushed
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Figure 19. Numerical results for the time evolution of the pendulum centre z-coordinate (a) and z-velocity (b)
at Re = 20, ρp/ρf = 8 and e/(2R) = 0.1: solid line for the full-size membrane, red dashed line for the half-size
membrane.

by the pendulum, the fluid on the other side exerts its inertia that adds to that of the
membrane (added mass effect). A reduced surface displaces a smaller volume of fluid
and the pendulum decreases its velocity more gradually. Despite the different timing
of the interaction, the incipient contact still occurs at Re = 20 and St � 18, although
more simulations would be necessary to confirm these results also for other parameter
combinations yielding the same impact Stokes number.

5. Closing remarks

Motivated by the contact dynamics of the heart valve leaflets, we have focussed on the
collision of a rigid sphere with a deformable membrane in a viscous fluid. Although this
problem is incomparably simpler than the original intended application still it has a very
rich dynamics and a huge parameter space.

We have resorted to laboratory experiments and numerical simulations to perform
a series of runs in which only one governing parameter was varied at a time and its
effect investigated. Our findings suggest that, similarly to the sphere impact with a rigid
boundary, also in this case the collision dynamics mainly depends on the impact Stokes
number St = Reρp/(9ρf ) and, for a membrane thickness of e/(2R) = 0.1 the sphere
rebound occurs only for St � 18. This value, however, increases as the membrane becomes
thinner and at e/(2R) = 0.05 the threshold becomes St ≈ 45.

Concerning the key question, as to whether or not the sphere really touches physically
the membrane for interactions with the Stokes number beyond the threshold, we cannot
give a definitive answer. In fact, in our experiments, even when reducing the visualisation
area, the membrane/sphere distance always decreased below our resolution capability.
Similar limitations affected the numerical simulation that has to deal with finite time and
spatial resolution in addition to ‘proximity’ and collision models.

On the other hand, (3.3) depends in a complex way on several quantities and the only
scaling behaviour that was observed is p̄(0) ∼ h(0)−2 (see figure 9b). In this respect the
model scales as other collision relations and cannot help solving the collision paradox
(Zenit & Hunt 1999).

Additional analysis would be needed to explore in a more systematic way the
dependence of this critical Stokes number on the membrane properties and this would
involve also variables that have not been explored in this study. In fact, we have always
used the material properties of the silicon rubber (ρm = 1040 kg m−3, E = 1.5 MPa
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and νP = 0.4) although their values are certainly important for the problem since they
determine the celerity and amplitude of the Lamb waves on the membrane.

A hint in this direction already comes from figure 17 in which, evidently, the thinner
membranes have a smaller wave velocity and the impact perturbation takes more time to
travel along the structure (note that the panels of the figure are sampled at different times)
thus implying that the interaction remains more localised. Similar outcomes are expected
from the Young’s modulus E and density ρm and more analysis would be needed to assess
their effect.

Equally relevant is the size of the membrane considering the reflection of the Lamb
waves at the boundaries; in this paper we have analysed only one size variation and more
work would be needed also in this direction.

A ‘side product’ of this study is a novel collision model for the numerical simulation
of deformable structures in a viscous fluid. Although computationally expensive and
‘delicate’ (in the sense of its stability) the model has shown to perform satisfactorily for a
wide range of computational parameters. Also in this case, however, more work could be
done to extend it to the sphere surface with a tangential velocity component which is the
case when the approaching body is rotating about its centre.
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Appendix A. Derivation of the pressure in the gap

We consider in figure 5(a) the gap between the sphere and the membrane parametrised
as h(φ) ≈ C(1 − ε cos φ) with C = R′ − R and ε = s/C. The time variation of the gap
ḣ = −Cε̇ cos φ produces a meridional velocity that we assume axisymmetric about the
polar axis uφ(φ, r). This velocity is then averaged across the gap width to obtain

ū(φ) = 1
h(φ)

∫ R+h(φ)

R
uφ(φ, r) dr. (A1)

Assuming that R′ − R 	 1 and h(φ) 	 R, the fluid volume in the gap between the sphere
and the membrane is

V(φ) = 2πR2
∫ φ

0
sin(ϕ)h(ϕ) dϕ = 2πR2C

[
(1 − cos φ) + ε

4
(cos 2φ − 1)

]
, (A2)

and the corresponding area of the fluid boundary

A(φ) = 2πRh(φ) sin φ. (A3)

From the mass (volume) conservation we have A(φ)ū(φ) = −V̇(φ) that, with the above
definitions, yields

ū(φ) = R
4

1 − cos 2φ

sin φ

ε̇

1 − ε cos φ
≡ R

2
ε̇ sin φ

1 − ε cos φ
. (A4)
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The gap averaged momentum equation for the axisymmetric meridional component in
spherical coordinates reads

R
∂hū
∂t

+ ∂hū ū
∂φ

= −∂hp̄
∂φ

− R(τR + τR′), (A5)

with τR and τR′ the tangential viscous stresses at the sphere and membrane surfaces,
respectively. In the above equation, we can substitute the expression (A4) for ū and solve
for the pressure gradient to obtain

∂hp̄
∂φ

= −R2Cε̈

2
sin φ − ∂

∂φ

(
R2C

4
ε̇2 sin2 φ

1 − ε cos φ

)
− R(τR + τR′). (A6)

For the meridional viscous stresses we further assume that the radial profile of the
meridional velocity is parabolic in the gap and that, with h 	 R, this results in τR � τR′ .
A parabolic velocity profile with mean ū between two boundaries at distance h yields

τR + τR′ � 2τR = 12Rε̇

ReC
cos φ(1 − cos φ)

sin φ(1 − ε cos φ)2 . (A7)

After having integrated the viscous terms we pose

F(φ) = 1
(1 + ε)2 ln

1 + cos φ

1 − ε cos φ
− 1

ε(1 + ε)

1
1 − ε cos φ

, (A8)

so that (A6) can be finally integrated between φ∗ and the generic φ to obtain

p̄(φ) = p̄(φ∗)
1 − ε cos φ∗

1 − ε cos φ

+ R2

1 − ε cos φ

{
ε̈

2
[cos φ − cos φ∗] + ε̇2

4

[
sin2 φ∗

1 − ε cos φ∗ − sin2 φ

1 − ε cos φ

]}

+ 12R2ε̇

ReC2(1 − ε cos φ)
[F(φ∗) − F(φ)]. (A9)

We wish to point out that this result relies on several simplifying assumptions that are
only approximately verified by the real problem: the most important is the flow symmetry
in the gap that, therefore, yields a dependence only on φ. This is quite verified at low
Reynolds numbers and during the approaching phase of the dynamics while deviations
are observed during the receding phase (figure 6b,d) or for increasing Re. The problem is
exacerbated for vanishing membrane thickness since it tends to wrinkle during the motion
and further deviates from the symmetry condition.

Evaluating locally angles and distances is very sensitive to numerical errors which
reflect in inaccurate pressure values. In the present simulations we have computed all
the geometrical parameters of the model relying only on the vertical section of the y–z
symmetry plane and used the same quantities for each azimuthal section around the
polar axis φ = 0. The model pressure therefore is axisymmetric even if the instantaneous
geometry is not, thus adding to the approximations.

Another important point is that the model (A9) diverges for ε → 1 yielding an infinite
pressure at the axis φ = 0. To prevent the simulation from blowing up, the maximum
epsilon is limited to ε � 0.99 that, however, is only an arbitrary value; nevertheless, during
a numerical calculation only few points (≈30) and for a limited duration in time (≈50 time
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steps) have to be corrected and, if it happens more frequently it is an indication that either
the space or time resolutions are not adequate for the run parameters of that case.

It might be worthwhile to note that, in the derivation of (A9), we have disregarded the
presence of the disjoining pressure Π which arises from the attractive interaction of two
surfaces at a distance h. However, according to the classical theory this pressure can be
estimated as Π = H/(6πh3), with H the Hamaker constant (in the paper by Dai & Leal
(2008) a more refined formula including the surface curvature is given). An estimate of
the Hamaker constant for water/silica interfaces (Valmacco et al. 2016) yields a range
7 × 10−23 � H � 2.4 × 10−21 J which implies a gap width of the order of h ≈ 1.7 ×
10−8 m (approximately 8 × 10−7 sphere diameters) to have Π ≈ 1 Pa. Comparatively,
the results of figure 6(c,d) show pressure peaks, from (A9), of thousands of Pascal (tens
of non-dimensional units) already for the case of figure 4(c,d) for which the gap never
becomes thinner than 2Δ (≈1 mm). This comparison clearly shows that the disjoining
pressure can be safely neglected for this problem.

One of the referees has correctly noted that the wall viscous stresses of (A7) assume
a parabolic velocity in the form uφ(φ, r) = [6ū(φ)/h(φ)2](r − R)[R − r + h(φ)] and this
profile does not account for the stretching the membrane. A more correct parametrisation
should be uφ(φ, r) = [W(φ)/h(φ)2](r − R)[R − r + h(φ)] + [V(φ)/h(φ)](r − R) with
V(φ) = V0 tan(φ/2) the wall velocity for a rimless spherical cap and W(φ) such that the
gap averaged uφ(φ, r) still gives ū(φ).

This new velocity distribution can be used in (A1, A6) to obtain a new solution in the
form

p̄(φ) = p̄(φ∗)
1 − ε cos φ∗

1 − ε cos φ

+ R2

1 − ε cos φ

{
ε̈

2
[cos φ − cos φ∗] + ε̇2

4

[
sin2 φ∗

1 − ε cos φ∗ − sin2 φ

1 − ε cos φ

]}

+ 3R
ReC2(1 − ε cos φ)

{
4Rε̇[F(φ∗) − F(φ)]

+ 2V0

1 + ε

[
ln
(

1 + cos φ

1 − ε cos φ

)
− ln

(
1 + cos φ∗

1 − ε cos φ∗

)]}
. (A10)

Estimating V0 entails further hypotheses and here we have assumed that a membrane
segment of initial length � = R sin φ∗ is deformed into an arch of length �′ = Rφ∗ by
the sphere that decelerates from the initial impact velocity αU (with α � 1, U being the
maximum pendulum velocity used to define the Reynolds number) up to rest in a time
interval δt. This yields V0 ≈ (�′ − �)/δt = αU(φ∗ − sin φ∗)/[2(1 − cos φ∗)] that, using
the value α = 1, gives the result of figure 20. As shown in figure 20, it does not differ
appreciably from the prediction of (A9) even if the value α = 1 is definitely too high since
it implies the same impact velocity as if the pendulum were freely swinging without the
presence of the membrane and the friction of the surrounding fluid. Finally we wish to
point out that the above models are not just a lubrication approximation; in fact within the
same assumptions the lubrication equation yields (Pinkus & Sternlicht 1961)

p̄(φ) = p̄(φ∗) + 6R2ε̇

ReC2ε

[
1

(1 − ε cos φ)2 − 1
(1 − ε cos φ∗)2

]
, (A11)

which completely misses the contributions of unsteady and convective terms.
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Figure 20. Pressure profiles along the symmetry y–z-plane of the membrane for a case at Re = 20, ρp/ρf = 8
and e/(2R) = 0.1 (the same case as in figure 6c). The symbols are the numerical pressure sampled on the
membrane surface, the red line the prediction of (A9), the blue line the prediction of (A10) while the green line
is the result of the lubrication model of (A11).

The pressure distribution predicted by the lubrication model is also shown in figure 20
(green line) and it is interesting to note that, despite the simpler approximation, it captures
in a reasonable way the shape of the pressure distribution and overestimates the peak
pressure only by slightly more than 25 %. On the other hand, using (A11) is easier than
(A9) or (A10) since the first has a simpler form and does not need ε̈ that is difficult to
evaluate and very sensitive to numerical errors.
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