
/. Austral. Math. Soc. (Series B) 23 (1981), 103-114

EFFECTS OF IRON ON A TOROIDAL CONDUCTOR
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Abstract

The effects of iron on the uniformity of the field produced by a current-carrying
axisymmetric conductor are considered. Using a perturbation analysis a simple analytic
expression is obtained which describes the field close to the axis of symmetry. A Fourier
series approach is also used to provide an analytical solution to the problem and the
accuracy of the perturbation method is estimated by comparing results.

1. Introduction and governing equations

Calculations of the magnetostatic field associated with iron-free axisymmetric
systems have received much attention in the literature (see, for example, Boom
and Livingston [2] and Garrett [3] where earlier references may be found).
However, in past work little account has been taken of the effects of the
presence of magnetic material on such systems. The introduction of iron has
obvious advantages since it clearly provides more field for the same current and
hence ensures substantial power savings for conventional conductors. Further-
more, placing the iron in a suitable position will improve field uniformity even
for superconducting magnets. In this paper the effects of iron on the uniformity
of the field produced by a current-carrying axisymmetric conductor are consid-
ered. To this end the field uniformity is examined as a function of the inner and
outer radii of the conductor. In Section 2 a simple analytic expression which
describes the field in the neighbourhood of the axis of symmetry is obtained.

The geometry to be considered is shown in Figure 1. A toroidal conductor
region V of rectangular cross-section, having inner radius A, outer radius B and
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104 James Caldwell [21

length (£ — 2T/), is located midway between two semi-infinite regions of iron,
distance L apart, the axis of symmetry of the torus being perpendicular to the
iron boundaries. The region V between the conductor and iron is assumed to be
insulating. For convenience normalized units based on L are used. Thus a =
A/L is used for the inner radius, b = B/L for the outer radius and e = TJ/L for
the distance between the conductor and the iron (see Fig. 1). Cylindrical polar
coordinates (r, <j>, z) are employed where r and z are normalized in terms of L.

r ,v

~ €

Figure 1.

Since the conductor carries a prescribed current density \ ' in the azimuthal
direction, Ampere's law implies

curl B = 0 in V, (1)

curl B = XIQ in V, (ft constant), (2)

where X = X'L2 and 1̂ , is a unit vector in the direction of increasing <>. Also, by
continuity,

divB = 0 i nKandF ' . (3)

Clearly B must lie in meridional planes and so

B = (Br(r, z), 0, B,(r, z)), (4)

where the given axisymmetry has been employed. Equation (4) suggests the
introduction of vector potential A& which satisfies equation (3) identically:

Br(r,z) = -
&4.

a n d

It then follows that

where

curl B = -1

(5)

(6)

(7)
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[3] Effects of iron on a toroidal conductor 105

Equations (1) and (2) then become

V ^ = 0 inK, (8)

and

V2A+ = -\ i n F ' . (9)

Since the walls z = 0, 1 have infinite permeability then

n x B = 0 onz = 0andz = l, (10)

where n is the unit vector normal to the walls, that is,

— = 0 onz = Oandz = 1. (11)
dz

See later for the case of finite permeability. The conditions that A^ remains
bounded imply that

A+-0 onr = 0, (12)

and finally

A^-*0 as/- -»oo. (13)

These equations are solved by a perturbation analysis in Section 2 and by a
Fourier series approach in Section 3, and the accuracy is estimated by compar-
ing the results.

2. Perturbation analysis

If e = 0 then the field would, in fact, be everywhere parallel to the axis;
furthermore, it could be argued that to obtain fields which are approximately
uniform in the neighbourhood of the axis it is necessary that e « l . This suggests
that useful results may be obtained by a perturbation scheme using e as a small
parameter.

Setting e = 0, the governing equations (8) and (9) become

d2to | 1 <fy0 ^o f 0 forr <aandr > b,
dr2 r dr ri \-\ for a < r < b.

Note that, as A^ = \l>0(r), equation (11) is automatically satisfied. Appealing to

equations (12) and (13) the required solution of (14) is

Ir for r < a,

Xr2 n c

—-—V mr H— for a < r < b,

- for r > b,
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where /, m, n and p are arbitrary constants to be determined by the continuity of
A^ and dA^/dr at r = a and r = b. The solution gives

«//„ = X(b - a)r/2 for r < a. (16)

The differential system posed by equations (8), (9), (11), (12) and (13) is solved
by writing

A* = to + * (17)

and introducing a system of image coils in the usual way.
It then follows that the solution is

X rb

~~4^
x cos 9 dx dO dz'

a 0 t n t » [(z - Z'- nf + r2 + x2 - 2xr cos 0]1/2

which will give the field near the axis if evaluated for small r. Thus

| *2 dx d 2 ' + O ( > )

1 , / 1 +si
r l n \1
2 \ 1 - s i

, 3 ,
dz' + O(r3),

where <j> = tan \x/(z — z' — «)). It is important to note that this formula is
correct to O(r3), which suggests it will be accurate in the neighbourhood of the
axis. Finally, the above formula can be simplified by assuming that e is small, as
it will be in practice. It then follows that

x-b

* = - ^ 2
1 / I + sin <j> \ .

-=• lnl : —- — sin
2 V 1 - sin <(> J

where, in this case, <j> = tan \x/(z — n)). Hence

•* = -^[F{b,z)- F(a, z)]

where

(19)

( 2 0 >

and

s i n <j> =
[(z-nf + c2)^

Note again that equation (19) is correct to 0(e3), which suggests that it will be

accurate.
This means that

=U(b ~ a)r + -^[F(b,z) - F(a, z)] + O(e2), (21)
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where the first term on the right hand side corresponds to uniform field and the
second term gives a measure of the contribution from other fields which are
non-uniform.

It then follows from equation (21) that

Bz = -r\-r{rA^ = \{b - a) - e\[ F(b, z) - F{a, z)]. (22)

Note that, as e -» 0, Bz —» \(b — a) = Bo, say. A precise measure of the devia-
tion from uniform field is then given by

From equation (20)

°° i / 2 , 2\l/2 ,
F(C 2) = 2 f/(«) + /(-«)1 + T In V j ^ ^ , (23)

— i 2 ( z 2 + c 2 ) 1 / 2 - c ( z 2 +c 2 ) 1 / 2

where

1 \(z-n)2+c2]l/2 + c cf(n\ _ _ i« _k_ ^ (i£\

Clearly the series 2/(«) and 2 / ( -« ) are slowly convergent. Because of this
slow convergence it is not sufficient to consider a model consisting of 2 or 3
images.

In the neighbourhood of the axis of symmetry, the field Bz can now be
obtained from a simple analytic expression obtained by substituting this expres-
sion for F(c, z) in equation (22). Hence it is possible to investigate the effects of
the variation of the coil geometry on the field uniformity.

The summations 2^_i/(«) and 2^_ i/(-«) have been carried out directly for
the cases N = 100 and iV = 200. As a result, values of F\c, z) have been
computed for c = 0.8(0.1)1.8 and z = 0.4 and 0.5 and are presented in Table 1.
The results for N = 100 and 200 differ by at most 0.005%.

As has been noted earlier the above analysis applies for infinite permeability
\i. The case of finite permeability may be treated in a similar manner but with
each term of the series for F(c, z) containing as a factor a power of the image
factor (fi — l)/(jtt + 1). By comparing the new summations with the original
values it is found that, for /x > 100, the values in Table 1 are affected only in the
sixth decimal place. This conclusion could have useful application.
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TABLE 1

Computed values of F(c, z) for c = 0.8(0.1)1.8, z = 0.4, 0.5 and N •
100,200.

c

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

N = 100

0.967987
1.116314
1.360408
1.558879
1.758021
1.957538
2.157261
2.357097
2.556995
2.756925
2.956871

0.4)

N = 200

0.968000
1.163154
1.360433
1.558912
1.758064
1.957592
2.157329
2.347181
2.557096
2.757046
2.957015

F(c

N = 100

0.920359
1.114389
1.311027
1.509142
1.708086
1.907492
2.107154
2.306956
2.506836
2.706755
2.906696

0.5)

N = 200

0.920372
1.114407
1.311052
1.509175
1.708128
1.907546
2.107221
2.307040
2.506937
2.706877
2.906840

3. Fourier series approach

The differential system posed by equations (8), (9), (11), (12) and (13) may be
solved by examining Fourier type solutions. In order to introduce symmetry it is
more convenient to locate the iron boundaries at z = -1 and +1 instead of at
z = 0 and 1. This means that equation (11) is replaced by

= 0 onz = ±1 . (25)

Because of the given symmetry the solutions are periodic (with period 2) of
Fourier cosine form, namely

c o s

Assuming equation (26), we obtain the following complementary functions:
(a) fo(r) = r and -r

and
O) fn(r) = Ix{.mrr) and Kx(mrr) for n ¥* 0,

where / , and Kx are the modified Bessel functions. Thus we have
00

2 anlx{mrr) cos nmz for r < a

and

A. = aor

yl^ = — + 2 dnKx{rrnr) cos /J7rz for r > b,

(27)

(28)
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171 Effects of iron on a toroidal conductor 109

which satisfy the conditions of boundedness. The complementary function for
a < r < b is

oo

A* = V + coA + 2 {bj^mr) + cmKx(mn)}ao& n-rrz. (29)
n = l

To obtain the particular integral we must first Fourier analyse the square wave
given by

-X for 0 < z < 1 - 2e,
0 for 1 - 2e < z < 1,

and

g(z + 2) = g(z).

Note that e is replaced by 2e to maintain the consistency with the geometry in
Figure 1 now that we are using period 2. This leads to

g(z) = X(2e - 1) + — S ^ ~ sin 2/iire cos mz. (30)

For the n = 0 case we require the particular integral of

_ I
~ \

which is

o ^ - M 2 E -

For n ¥= Owe have

[\ d d 1 , 2 \ D , , 2X(-1)" . .
rr— n\ \Pn(r) = —^—— sm 2nire,

\r dr dr r2 ) " w irn

which reduces to

\ d d 1

if we let x = mrr and

/*„(/•) = — - — ~ sin

We now obtain the particular integral of (31) by variation of parameters, that is

where we assume

A\x)lx(x) + B'{x)Kx(x) = 0,
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and by substitution

A'{x)I{{x) + B\x)K[{x) = 1.

Thus we have

and

Now the Wronskian Ix(x)K[{x) - K^x)I[{x) = -l/x (refer to Watson [5]),
which gives

A(x) = JXxKt(x) dx, B(x) = -JXxIl(x) dx,
and hence

/>„(*) = Ix{x)j'tKx(t) dt - K,{x)jXtIx{t) dt.

This means that from equation (32)

Pn(r) = \ / sin In-nz l^nmr) j tKx{t) dt - K^n-nr) \ //,(/) dt .
77 n I •'mra •' mra '

(33)

Thus the complete set of solutions is as follows:
0 0

(a) A^ = aor + 2 anl\{niir) cos mrz forr<a, (34)

c °°
(b) A^ = V + — + 2 {bnlx(rnrr) + cnKx(mrr)}cos n-nz

r \
n-\

2 ^2A (-1) .
1 2 Sln- \)r2 ^ 2 A " (-1)"

— 1 - 2 , —T"
3 ir3 n-\ ir

{ p mrr - mrr \

I^n-ur) \ tKx(t) dt - Kx(mrr) \ //,(/) dt) for a < r < b, (35)
J mra ^ mra Iand

d °°
(c) A = — + 2 dnK\i.n'nr) c o s "w f o r r > b. (36)

r n = l

To solve for an, bn, cn and </„ we match A^ and 3/4^/dr at r = a and b and
compare coefficients of cos nnz for « = 0, 1, . . . . For the n = 0 case the
following equations clearly apply:

= V + (co/a)

= bob + (co/Z>) + (X(2e -
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(91 Effects of iron on a toroidal conductor 111

and

-djb2 = b0- (co/b
2) + (2A(2e - l)b)/3,

and hence

^m.-ix.-*). (37)

For n^Owe have

anl[(mra) = bnl[(mra) + cnK'x(nma),

d.K^mrb) = bnlx{mrb) + cnKx{rnrb)

m n
sin 2/wref/,

lt(t) dt),

and

dnK[(mrb) = bJUmrb) + cnK\(n-nb)

• n
s i n 2«we(/,'(/i7r6) fm'>tK1(t) dt

J

-Ki(nTTb)f'"ll'tIl(t)dt).

Eliminating dn and using the Wronskian gives

b
tKMdt, (38)

•n n

where

'"Tbf'"TbtKl(t) dt = ̂ -[b{Ki(rnrb)L0(nirb) - L^r

-a{Ki(rma)L0(rma) - Lx(rvna)KQ(nma)}] (39)

(refer to McLachlan [4]), and Lo and L, are the modified Struve functions of
order 0 and 1, respectively.

Similarly, cn = 0 and an = bn. Thus, for r < a, we have the solution

X(2e - l)(a - b)r X ^ (-1)" sin 2tme
A = - i f '- 2 -—"—l /,(mrr)cos mrzCn(a, b), (40)

2 w « = i n2

where

rb) - Lx(n<irb)K0(n-nb)}
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4. Comparison of results

[10]

The differential system has been solved by using both the perturbation and
Fourier series methods in an attempt to establish the accuracy of the methods.
Using the notation in Fig. 1, results have been obtained for the following sets of
parameters:

( l ) e = 0.l,a= \,b = 1.3:

(2)6 = 0.2, a = \,b = 1.3;
(3)e = 0.05, a = 0.9, b = 1.1.

TABLE 2

Comparison of the perturbation and Fourier series results for the case
e = 0.1, a = \,b = 1.3 (z =±).

r

0
1

16-loo

3
16
1
4

A (Pert.)

0

0.7511

1.5022

2.2533

3.0044

A (Fourier)

0

0.7495

1.4991

2.2486

2.9978

Percentage
error
in A (Pert.)

0

0.21

0.21

0.21

0.22

TABLE 3

Comparison of the perturbation and Fourier series results for the case
e = 0.2, a= 1 , 6 = 1.3 (z = i).

r

0
1

16-|00

3
16
1
4

A (Pert.)

0

0.5647

1.1294

1.6941

2.2588

A (Fourier)

0

0.5616

1.1231

1.6845

2.2463

Percentage
error in
A (Pert.)

0

0.55

0.56

0.57

0.56
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TABLE 4

Comparison of the perturbation and Fourier series results for the case
e = 0.05, a = 0.9, * = 1.1 (z = i ) .

113

r

0
1
16
1
8
3
16
1
4

A (Pert.)

0

0.5633

1.1266

1.6899

2.2532

A (Fourier)

0

0.5623

1.1246

1.6869

2.2493

Percentage error
in A (Pert.)

0

0.18

0.18

0.18

0.17

In using the Fourier series approach the required values of Ii(x), Kx(x), L0(x)
and Lx(x) were obtained from Abramowitz and Stegun [1]. For the three cases
listed above results correct to four decimal places were obtained by taking the
first five terms in the series in equation (40). Later terms decrease rapidly in
magnitude and do not affect the fourth decimal place. These results can be
compared to the perturbation solution given by equation (21) where A has been
taken as 100 and the function values F(z, z) and F(b, z) are obtained from
Table 1. In fact, a comparison has been carried out for the case z = 0.5 (which
corresponds to z = 0 in equation (40)) when the radius r = 0 (-ĵ )̂  (see Tables
2, 3 and 4).

Clearly the agreement is good and this gives us confidence in the perturbation
approach. As pointed out in the tables, the maximum error in the perturbation
results is well below 1% for all three cases considered.

In the perturbation method the known solution ^0 of the zero air gap case
with infinite permeability (i is used as a starting value and corrections are made
to take into account the effect of finite air gap and finite permeability. In this
way a good solution is obtained even for an approximate estimation of the
correction. The method clearly has some merit particularly for large permeabil-
ity (i and could be applied to other field problems. For the particular problem
considered it is rather fortuituous that an analytical solution in terms of
modified Bessel and Struve functions is possible. This will not always be so but
is important here as a check in that it convinces us of the merit of the
perturbation approach which provides us with a simple analytic expression from
which the field close to the axis of symmetry can be found with comparatively
little computing effort. As mentioned earlier the perturbation method has wider
application.
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