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Lipschitz Type Characterizations for
Bergman Spaces

Hasi Wulan and Kehe Zhu

Abstract. We obtain new characterizations for Bergman spaces with standard weights in terms of Lip-

schitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As a consequence,

we prove optimal embedding theorems when an analytic function on the unit disk is symmetrically

lifted to the bidisk.

1 Introduction

Let D be the open unit disk in the complex plane C. For any α > −1 we consider the

weighted area measure

dAα(z) = (α + 1)(1 − |z|2)α dA(z),

where dA is the normalized area measure on D. It is easy to see that each dAα is a

probability measure on D.

For p > 0 and α > −1 we denote by A
p
α the space of analytic functions f in D

such that ∫

D

| f (z)|p dAα(z) < ∞.

These are called weighted Bergman spaces with standard weights. See [1] and [6] for

the modern theory of Bergman spaces.

Three different metrics on the unit disk will be used in the paper. First, the usual

Euclidean metric is of course written as |z−w|. Second, the pseudo-hyperbolic metric

on D is given by

ρ(z, w) =

∣∣∣
z − w

1 − zw

∣∣∣ .

And finally, the hyperbolic metric on D is given by

β(z, w) =
1

2
log

1 + ρ(z, w)

1 − ρ(z, w)
.

We mention that the hyperbolic metric is also called the Bergman metric, and some-

times the Poincare metric as well.

The main result of the paper is the following.
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Theorem 1.1 Suppose p > 0, α > −1, and f is analytic in D. Then the following

conditions are equivalent.

(a) f belongs to A
p
α.

(b) There exists a continuous function g in Lp(D, dAα) such that

| f (z) − f (w)| ≤ ρ(z, w)(g(z) + g(w))

for all z and w in D.

(c) There exists a continuous function g in Lp(D, dAα) such that

| f (z) − f (w)| ≤ β(z, w)(g(z) + g(w))

for all z and w in D.

(d) There exists a continuous function g in Lp(D, dAp+α) such that

| f (z) − f (w)| ≤ |z − w|(g(z) + g(w))

for all z and w in D.

Note that the same measure dAα appears in conditions (a), (b), and (c), but con-

dition (d) involves a different measure, dAp+α.

Similar characterizations for Hardy–Sobolev spaces have appeared in the literature

before. See [4, 5] for example. The present paper was motivated by [10]. As another

motivation for our result, we mention that the classical Bloch space B, consisting of

analytic functions f in D such that

sup{(1 − |z|2)| f ′(z)| : z ∈ D} < ∞,

also admits a Lipschitz type characterization. More specifically, an analytic function

f in D belongs to B if and only if there exists a positive constant C such that

| f (z) − f (w)| ≤ Cβ(z, w)

for all z and w in D; see [6] or [14] for example. It is then clear that an analytic

function f in D belongs to B if and only if there exists a continuous function g in

L∞(D) such that

| f (z) − f (w)| ≤ β(z, w)(g(z) + g(w))

for all z and w in D.

Since the Bergman metric is based on the reproducing kernel of the Bergman

space, it is no surprise that our Lipschitz type characterizations for weighted Bergman

spaces appear more natural when the Bergman metric (and its bounded counterpart,

the pseudo-hyperbolic metric) is used. Although a characterization in terms of the

Euclidean metric (condition (d)) is possible, it gives one the impression of something

artificial.
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2 Preliminaries

We collect some preliminary results in this section that involve the hyperbolic and

pseudo-hyperbolic metrics.

For any 0 < r < 1 and z ∈ D we let D(z, r) = {w ∈ D : ρ(w, z) < r} denote

the pseudo-hyperbolic disk centered at z with radius r. It is well known that D(z, r)

is actually a Euclidean disk with Euclidean center and Euclidean radius given by

1 − r2

1 − r2|z|2 z,
1 − |z|2

1 − r2|z|2 r,

respectively; see [3] for example. In particular, if r is fixed, then the area of D(z, r) is

comparable to (1 − |z|2)2.

The pseudo-hyperbolic metric is bounded by 1. But the hyperbolic metric is un-

bounded. For any R > 0 and z ∈ D we let E(z, R) = {w ∈ D : β(w, z) < R} denote

the hyperbolic disk centered at z with radius R. If 0 < r < 1 and

(2.1) R =
1

2
log

1 + r

1 − r
,

then it is clear that E(z, R) = D(z, r). Consequently, if R is fixed, then the area of

E(z, R) is comparable to (1 − |z|2)2 as well. By the same token, any estimate in terms

of the pseudo-hyperbolic metric can be translated to one in terms of the hyperbolic

metric, and vice versa.

Lemma 2.1 For any fixed r ∈ (0, 1) there exists a positive constant C such that

C−1 ≤ 1 − |z|2
|1 − zw| ≤ C

whenever ρ(z, w) ≤ r. Consequently, there exists a positive constant C such that

C−1 ≤ 1 − |z|2
1 − |w|2 ≤ C

whenever ρ(z, w) ≤ r.

Proof This is well known. See [6] or [14] for example.

Lemma 2.2 For any fixed r ∈ (0, 1) there exists a positive constant C such that

| f (z)|p ≤ C

(1 − |z|2)2

∫

D(z,r)

| f (w)|p dA(w)

for all z ∈ D, all p > 0, and all analytic f in D.

Proof This is well known as well. See [6] or [14] for example.
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Lemma 2.3 For any fixed z ∈ D we have

lim
w→z

β(z, w)

|z − w| = lim
w→z

ρ(z, w)

|z − w| =
1

1 − |z|2 .

Proof This follows from elementary calculations.

Lemma 2.4 For any α > −1 and p > 0 there exists a constant C > 0 such that

∫

D

| f (z)|p dAα(z) ≤ C
[
| f (0)|p +

∫

D

|g(z)|p dAα(z)
]

and

| f (0)|p +

∫

D

|g(z)|p dAα(z) ≤ C

∫

D

| f (z)|p dAα(z)

for all analytic functions f in D, where g(z) = (1 − |z|2) f ′(z) for z ∈ D.

Proof See [6] or [14] for example.

3 The Main Result

We now prove the main result of the paper. The proof is constructive in the sense

that we will actually produce a formula for the function g that appears in various

conditions of Theorem 1.1. We prove Theorem 1.1 as three separate results.

Theorem 3.1 Suppose p > 0, α > −1, and f is analytic in D. Then f ∈ A
p
α if and

only if there exists a continuous function g ∈ Lp(D, dAα) such that

(3.1) | f (z) − f (w)| ≤ ρ(z, w)(g(z) + g(w))

for all z and w in D.

Proof First assume that condition (3.1) holds. Then

∣∣∣
f (z) − f (w)

z − w

∣∣∣ ≤ ρ(z, w)

|z − w| (g(z) + g(w))

for all z 6= w in D. Fix any z ∈ D, let w → z, and use Lemma 2.3. We obtain

(1 − |z|2)| f ′(z)| ≤ 2g(z), z ∈ D.

Since g ∈ Lp(D, dAα), an application of Lemma 2.4 shows that f ∈ A
p
α.

Next assume that f ∈ A
p
α. We are going to produce a continuous function g that

satisfies condition (3.1). To this end we fix a radius r ∈ (0, 1) and consider any two

points z and w in D with ρ(z, w) < r. By the fundamental theorem of calculus,

f (z) − f (w) = (z − w)

∫ 1

0

f ′
(

tz + (1 − t)w
)

dt.
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Since z and w are points in the convex set D(z, r), we see that tz + (1 − t)w ∈ D(z, r)

for all t ∈ [0, 1]. It follows that

| f (z) − f (w)| ≤ |z − w| sup{| f ′(u)| : u ∈ D(z, r)}.

By Lemma 2.1, there exists a positive constant C that only depends on r such that

| f (z) − f (w)| ≤ ρ(z, w)h(z), where

h(z) = C sup{(1 − |u|2)| f ′(u)| : u ∈ D(z, r)}, z ∈ D.

Obviously, we also have | f (z) − f (w)| ≤ ρ(z, w)(h(z) + h(w)), if ρ(z, w) < r.

If ρ(z, w) ≥ r, then clearly | f (z) − f (w)| ≤ ρ(z,w)
r

(| f (z)| + | f (w)|). If we define

g(z) =
| f (z)|

r
+ h(z), z ∈ D,

then we have | f (z) − f (w)| ≤ ρ(z, w)(g(z) + g(w)) for all z and w in D.

It is clear that the function g above is continuous on D. It remains for us to show

that g ∈ Lp(D, dAα). Since f is already in Lp(D, dAα), it suffices for us to show that

h ∈ Lp(D, dAα).

Recall that if r and R are related as in (2.1), then D(z, r) = E(z, R). So we can

choose r ′ ∈ (0, 1) so that D(z, r ′) = E(z, 2R) for all z ∈ D. By the triangle inequality

for the Bergman metric β we have E(u, R) ⊂ E(z, 2R) whenever u ∈ E(z, R). Equiv-

alently, we have D(u, r) ⊂ D(z, r ′) whenever u ∈ D(z, r). It follows from this and

Lemma 2.2 that there exists a constant C > 0 that depends only on r such that

h(z)p ≤ C

(1 − |z|2)2−p

∫

D(z,r ′)

| f ′(w)|p dA(w)

for all z ∈ D. If we use χz to denote the characteristic function of the set D(z, r ′),

then clearly χz(w) = χw(z), and

h(z)p ≤ C

(1 − |z|2)2−p

∫

D

| f ′(w)|pχz(w) dA(w)

for all z ∈ D. Writing C1 = (α + 1)C/π and using Fubini’s theorem, we obtain
∫

D

h(z)p dAα(z) ≤ C1

∫

D

(1 − |z|2)p+α−2 dA(z)

∫

D

| f ′(w)|pχz(w) dA(w)

= C1

∫

D

| f ′(w)|p dA(w)

∫

D

(1 − |z|2)p+α−2χw(z) dA(z)

= C1

∫

D

| f ′(w)|p dA(w)

∫

D(w,r ′)

(1 − |z|2)p+α−2 dA(z).

Combining this with Lemma 2.1 and the fact that the area of D(w, r ′) is comparable

to (1 − |w|2)2, we obtain another positive constant C2, which depends only on α
and r, such that

∫

D

h(z)p dAα(z) ≤ C2

∫

D

| f ′(w)|p(1 − |w|2)p+α dA(w).

https://doi.org/10.4153/CMB-2009-060-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-060-6


618 H. Wulan and K. Zhu

In view of Lemma 2.4, this shows that h ∈ Lp(D, dAα) and completes the proof of

Theorem 3.1.

Theorem 3.2 Suppose p > 0, α > −1, and f is analytic in D. Then f ∈ A
p
α if and

only if there exists a continuous function g ∈ Lp(D, dAα) such that

(3.2) | f (z) − f (w)| ≤ β(z, w)(g(z) + g(w))

for all z and w in D.

Proof If condition (3.2) is satisfied, we divide both sides of (3.2) by |z−w| and, with

the help of Lemma 2.3, take the limit as w → z. The result is

(1 − |z|2)| f ′(z)| ≤ 2g(z), z ∈ D.

This along with Lemma 2.4 shows that f ∈ A
p
α.

If f ∈ A
p
α, then by Theorem 3.1 there exists a continuous function g ∈ Lp(D, dAα)

such that condition (3.1) holds. Since ρ(z, w) ≤ β(z, w) for all z and w in D, the same

function g also satisfies condition (3.2). This completes the proof of Theorem 3.2.

Theorem 3.3 Suppose p > 0, α > −1, and f is analytic in D. Then f ∈ A
p
α if and

only if there exists a continuous function g ∈ Lp(D, dAp+α) such that

(3.3) | f (z) − f (w)| ≤ |z − w|(g(z) + g(w))

for all z and w in D.

Proof If condition (3.3) holds, we divide both sides of (3.3) by |z − w| and take the

limit as w → z. The result is | f ′(z)| ≤ 2g(z), so that

(1 − |z|2)| f ′(z)| ≤ 2(1 − |z|2)g(z)

for all z ∈ D. Since g ∈ Lp(D, dAp+α), we see that the function (1−|z|2) f ′(z) belongs

to Lp(D, dAα), which, according to Lemma 2.4, means that f ∈ A
p
α.

If f ∈ A
p
α, then by Theorem 3.1 there exists a continuous function h in Lp(D, dAα)

such that

| f (z) − f (w)| ≤ ρ(z, w)(h(z) + h(w))

for all z and w in D. Rewrite this as

| f (z) − f (w)| ≤ |z − w|
[

h(z)

|1 − zw| +
h(w)

|1 − zw|

]
,

and apply the triangle inequalities

|1 − zw| ≥ 1 − |z|, |1 − zw| ≥ 1 − |w|.

We obtain

| f (z) − f (w)| ≤ |z − w|(g(z) + g(w)), z, w ∈ D,

where

g(z) =
h(z)

1 − |z| ≤
2h(z)

1 − |z|2 .

Since h ∈ Lp(D, dAα), we have g ∈ Lp(D, dAp+α). This completes the proof of

Theorem 3.3.
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4 Lifting Functions from the Disk to the Bidisk

Let D
2

= D × D denote the bidisk in C
2 and let H(D

2) denote the space of all holo-

morphic functions in D
2. Similarly, H(D) is the space of all analytic functions in D.

For p > 0 and α > −1 we define A
p
α(D

2) as the space of functions f ∈ H(D
2) such

that ∫

D

∫

D

| f (z, w)|p dAα(z) dAα(w) < ∞.

These are also called weighted Bergman spaces.

In this section we present an application of our main theorem to the problem

of lifting analytic functions from the unit disk to the bidisk. Thus we consider the

symmetric lifting operator

L : H(D) → H(D
2)

defined by

L( f )(z, w) =
f (z) − f (w)

z − w
.

We will also need the associated diagonal operator ∆ : H(D
2) → H(D) which is

defined by ∆( f )(z) = f (z, z). The action of the diagonal operator on Hardy and

Bergman spaces of the polydisk has been studied by several authors, (see [2,9,12,13]).

The diagonal operator was also used in [7] and [8] to study the reproducing kernel for

certain weighted Bergman spaces in the bidisk. We begin with the following property

of the diagonal operator.

Lemma 4.1 Suppose p > 0 and α > −1. Then the operator ∆ maps A
p
α(D

2) bound-

edly onto A
p
2(α+1)(D).

Proof See [12] or [13].

The following standard estimate will be needed in the proof of our lifting theo-

rems.

Lemma 4.2 Suppose s > −1, t is real, and

I(z) =

∫

D

(1 − |w|2)s dA(z)

|1 − zw|2+s+t
, z ∈ D.

Then I(z) is bounded in D whenever t < 0, and I(z) is bounded by (1−|z|2)−t whenever

t > 0.

Proof See [6] or [14].

We now obtain the first lifting theorem.

Theorem 4.3 Suppose α > −1 and 0 < p < α + 2. Then the symmetric lifting

operator L maps A
p
α(D) boundedly into A

p
α(D

2). Moreover, this is no longer true when

p > α + 2.
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Proof Given f ∈ A
p
α(D), we apply Theorem 3.1 to find a function g ∈ Lp(D, dAα)

such that condition (3.1) holds. Then there exists a constant C = Cp such that

(4.1)
∣∣L( f )(z, w)

∣∣ p ≤ C
[ g(z)p

|1 − zw|p +
g(w)p

|1 − zw|p
]
.

It follows that

∫

D

∫

D

|L( f )(z, w)|p dAα(z) dAα(w) ≤ 2C

∫

D

g(z)p dAα(z)

∫

D

dAα(w)

|1 − zw|p .

When p < 2 + α, an application of Lemma 4.2 shows that there exists another con-

stant C > 0 such that

∫

D

∫

D

|L( f )(z, w)|p dAα(z) dAα(w) ≤ C

∫

D

g(z)p dAα(z).

This shows that L maps A
p
α(D) into A

p
α(D

2). A standard argument based on the closed

graph theorem then shows that the operator L : A
p
α(D) → A

p
α(D

2) must be bounded.

On the other hand, let us suppose that L : A
p
α(D) → A

p
α(D

2) is bounded. Then by

Lemma 4.1, the operator D = ∆ ◦ L maps A
p
α(D) boundedly into A

p
2(α+1)(D). It is

easy to see that D f = f ′. Therefore, f ∈ A
p
α(D) would imply that

∫

D

∣∣ (1 − |z|2) f ′(z)
∣∣ p

dA2(α+1)−p(z) < ∞,

which, according to Lemma 2.4, is a condition that is strictly stronger than f ∈
A

p
α(D) when p > 2+α. So our lifting theorem cannot possibly hold for p > 2+α.

We mention that the case p = 2 + α is not covered by the above result. When

α = 0, we can show by Taylor expansion that the operator L does not map A2(D)

into A2(D
2) (these are the unweighted Bergman spaces). In fact, if f (z) =

∑
∞

k=0 akzk

is a function in A2(D), then

∫

D

| f (z)|2 dA(z) =

∞∑

k=0

|ak|2
k + 1

.

On the other hand,

L( f )(z, w) =

∞∑

k=0

ak
zk − wk

z − w
=

∞∑

k=1

ak

∑

i+ j=k−1

ziw j ,

and for k 6= m, the homogeneous polynomials

∑

i+ j=k−1

ziw j ,
∑

i+ j=m−1

ziw j ,
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are orthogonal with respect to the measure dA(z)dA(w) on D
2. So the integral

I =

∫

D

∫

D

|L( f )(z, w)|2 dA(z) dA(w)

can be computed as follows.

I =

∞∑

k=1

|ak|2
∫

D

∫

D

∣∣∣
∑

i+ j=k−1

ziw j
∣∣∣

2

dA(z) dA(w)

=

∞∑

k=1

|ak|2
∑

i+ j=k−1

1

(i + 1)( j + 1)
=

∞∑

k=1

|ak|2
k + 1

∑

i+ j=k−1

[ 1

i + 1
+

1

j + 1

]

= 2

∞∑

k=1

|ak|2
k + 1

k−1∑

j=0

1

j + 1
∼

∞∑

k=1

|ak|2
k + 1

log(k + 1) ∼
∫

D

| f (z)|2 log
1

1 − |z|2 dA(z).

This shows that the integral I is not necessarily finite, so the symmetric lifting opera-

tor L does not map A2(D) into A2(D
2).

The following result tells us what happens when p > α + 2.

Theorem 4.4 Suppose α > −1, p > α+ 2, and β is determined by 2(β + 1) = p +α.
Then the symmetric lifting operator L maps A

p
α(D) boundedly into A

p
β(D

2).

Proof Given f ∈ A
p
α(D), we once again appeal to Theorem 3.1 to obtain a function

g ∈ Lp(D, dAα) such that condition (4.1) holds. We then have

∫

D

∫

D

∣∣L( f )(z, w)
∣∣ p

dAβ(z) dAβ(w) ≤ 2C

∫

D

g(z)p dAβ(z)

∫

D

dAβ(w)

|1 − zw|p .

Since p + α = 2(β + 1) and p > α + 2, we must have β > −1 and β > α. We write

the inner integral above as

(β + 1)

∫

D

(1 − |w|2)β dA(w)

|1 − zw|2+β+(β−α)

and apply Lemma 4.2 to find another positive constant C such that

∫

D

∫

D

∣∣L( f )(z, w)
∣∣ p

dAβ(z) dAβ(w) ≤ C

∫

D

g(z)p dAα(z).

This along with the closed graph theorem proves the desired result.

Once again, with the help of Lemmas 4.1 and 2.4, we can check that the lifting

effect of L guaranteed by Theorem 4.4 is best possible.
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5 Generalization to the Unit Ball

In this section we explain how to generalize our main result to the context of the unit

ball in C
n. Thus we let Bn = {z ∈ C

n : |z| < 1} denote the open unit ball in C
n. For

α > −1 let dvα(z) = cα(1− |z|2)α dv(z), where dv is normalized volume measure on

Bn and cα is a positive normalizing constant so that vα(Bn) = 1.

For p > 0 and α > −1 let

Ap
α(Bn) = Lp(Bn, dvα) ∩ H(Bn)

denote the weighted Bergman spaces, where H(Bn) is the space of all holomorphic

functions in Bn. See [14] for basic properties of these spaces.

For any a ∈ Bn there exists a biholomorphic map ϕa on Bn such that ϕa(0) = a

and ϕ−1
a = ϕa. These are sometimes called symmetrices (or involutive automor-

phisms) of Bn. Explicit formulas are available for ϕa, (see [11] or [14]).

It is well known that the Bergman metric on Bn induces the following distance:

β(z, w) =
1

2
log

1 + |ϕz(w)|
1 − |ϕz(w)| .

It follows that ρ(z, w) = |ϕz(w)| is also a distance function on Bn. We shall also call

ρ the pseudo-hyperbolic metric on Bn. The Euclidean metric on Bn is still denoted

by |z − w|.

Theorem 5.1 Suppose p > 0, α > −1, and f ∈ H(Bn). Then the following condi-

tions are equivalent.

(a) f belongs to A
p
α(Bn).

(b) There exists a continuous function g ∈ Lp(Bn, dvα) such that

| f (z) − f (w)| ≤ ρ(z, w)(g(z) + g(w))

for all z and w in Bn.

(c) There exists a continuous function g ∈ Lp(Bn, dvα) such that

| f (z) − f (w)| ≤ β(z, w)(g(z) + g(w))

for all z and w in Bn.

(d) There exists a continuous function g ∈ Lp(Bn, dvp+α) such that

| f (z) − f (w)| ≤ |z − w|(g(z) + g(w))

for all z and w in Bn.

The proof follows the same ideas used in the proofs of Theorems 3.1, 3.2, and 3.3.

Lemma 2.1 holds for the ball without any change, (see [14]).

The only change needed in Lemma 2.2 is the exponent of 1 − |z|2. In the context

of Bn, it should be (1−|z|2)n+1 instead of (1−|z|2)2, (see [14]). Similarly, the volume

of D(z, r) (or E(z, R)) is comparable to (1 − |z|2)n+1 whenever r (or R) is fixed.
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Lemmas 2.3 and 2.4 need to be modified substantially before they can be used.

These are the contents of the next two lemmas. But first, we recall three useful nota-

tions of differentiation in Bn.

Given f ∈ H(Bn), we write

R f (z) =

n∑

k=1

zk
∂ f

∂zk

(z),

and call it the radial derivative of f at z. In fact, R f (z) is the directional derivative of

f at z in the radial direction (that is, the direction in z):

R f (z) = lim
t→1

f (tz) − f (z)

t
,

where t is a scalar.

The complex gradient of f at z is defined by

|∇ f (z)| =

[ n∑

k=1

∣∣∣
∂ f

∂zk

(z)
∣∣∣

2] 1/2

.

And the invariant complex gradient of f at z is given by

|∇̃ f (z)| = |∇( f ◦ ϕz)(0)|, z ∈ Bn.

We can now state the analogs of Lemmas 2.3 and 2.4 that will suit our needs.

Lemma 5.2 Suppose z ∈ Bn and w = tz, where t is a scalar. Then

lim
w→z

ρ(w, z)

|z − w| = lim
w→z

β(z, w)

|z − w| =
1

1 − |z|2 .

Proof This follows from the explicit formulas for ϕa given in [11] and [14].

Lemma 5.3 Suppose p > 0, α > −1, and f ∈ H(Bn). Then the following conditions

are equivalent.

(a) The function f is in A
p
α(Bn).

(b) The function (1 − |z|2)R f (z) is in Lp(Bn, dvα).

(c) The function (1 − |z|2)|∇ f (z)| is in Lp(Bn, dvα).

(d) The function |∇̃ f (z)| is in Lp(Bn, dvα).

Proof See [14].

We can now outline the proof of Theorem 5.1.

First assume that there exists a continuous function g ∈ Lp(Bn, dvα) such that

(5.1) | f (z) − f (w)| ≤ ρ(z, w)(g(z) + g(w))
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for all z and w in Bn. We then fix z in Bn and let w = tz, where t is a scalar. Then

| f (z) − f (w)|
|z − w| ≤ ρ(z, w)

|z − w| (g(z) + g(w))

for all z 6= w in Bn. Let w approach z in the radial direction and apply Lemma 5.2.

We obtain (1 − |z|2)|R f (z)| ≤ 2g(z) for all z ∈ Bn. According to Lemma 5.3, this is

the same as f ∈ A
p
α(Bn).

On the other hand, for any holomorphic function f in Bn and any z ∈ Bn, we

have

f (z) − f (0) =

∫ 1

0

[ n∑

k=1

zk
∂ f

∂zk

(tz)
]

dt.

It follows that for ρ(z, 0) < r, where r ∈ (0, 1) is any fixed radius in the pseudo-

hyperbolic metric, we have

| f (z) − f (0)| ≤ |z| | sup{|∇ f (w)| : w ∈ D(0, r)}.

It is easy to see that in the relatively compact set D(0, r) the Euclidean metric is com-

parable to the pseudo-hyperbolic metric (as well as the Bergman metric β). It is

also easy to see that |∇ f (w)| is comparable to |∇̃ f (w)| in the relatively compact set

D(0, r). So we can find a constant C > 0, that depends on r but not on f , such that

| f (z) − f (0)| ≤ Cρ(z, 0) sup{|∇̃ f (w)| : w ∈ D(0, r)}

for all z ∈ D(0, r). Replace f by f ◦ ϕw, then replace z by ϕw(z), and use the Möbius

invariance of the pseudo-hyperbolic metric and the invariant gradient. We obtain

| f (z) − f (w)| ≤ Cρ(z, w) sup{|∇̃ f (u)| : u ∈ D(z, r)}

for all z and w in Bn with ρ(z, w) < r. Let

g(z) =
| f (z)|

r
+ C sup{|∇̃ f (u)| : u ∈ D(z, r)}.

Then it is clear that condition (5.1) is satisfied, and as in the proof of Theorem 3.1,

g ∈ Lp(Bn, dvα).

So conditions (a) and (b) are equivalent in Theorem 5.1.

If condition (b) holds in Theorem 5.1, then condition (c) holds for the same func-

tion g, because ρ ≤ β. If condition (c) holds, then an application of Lemma 5.2

shows that (1 − |z|2)|R f (z)| ≤ 2g(z) for all z ∈ Bn, which, according to Lemma 5.3,

implies condition (a). Therefore, conditions (a), (b), and (c) are all equivalent.

Now let us assume that condition (d) holds, so there exists a continuous function

g in Lp(Bn, dvp+α) such that

(5.2) | f (z) − f (w)| ≤ |z − w|(g(z) + g(w))
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for all z and w in Bn. Rewrite this as

| f (z) − f (w)|
|z − w| ≤ g(z) + g(w)

and let w approach z in the direction of a complex coordinate axis. We obtain

∣∣∣
∂ f

∂zk

(z)
∣∣∣ ≤ 2g(z), 1 ≤ k ≤ n,

so that |∇ f (z)| ≤ 2
√

n g(z) for all z ∈ Bn. This together with the assumption that

g ∈ Lp(Bn, dvp+α) shows that the function (1 − |z|2)|∇ f (z)| is in Lp(Bn, dvα). In

view of Lemma 5.3, this is the same as f ∈ A
p
α(Bn). So condition (d) implies (a) in

Theorem 5.1.

Finally let us assume that condition (b) holds in Theorem 5.1. It follows from the

well-known identity (see [11] or [14])

1 − |ϕz(w)|2 =
(1 − |z|2)(1 − |w|2)

|1 − 〈z, w〉|2

that

ρ(z, w)2

|z − w|2 =
|z − w|2 + |〈z, w〉|2 − |z|2|w|2

|z − w|2|1 − 〈z, w〉|2 .

By the triangle inequality for the natural inner product in C
n, we always have

|〈z, w〉|2 ≤ |z|2|w|2. We deduce that

ρ(z, w) ≤ |z − w|
|1 − 〈z, w〉|

for all z and w in Bn. As in the proof of Theorem 3.3, this along with condition (b)

implies the existence of a continuous function g in the space Lp(Bn, dvp+α) such that

condition (5.2) holds. So condition (b) implies (d), and the proof of Theorem 5.1 is

complete.

Although we have not checked whether the function

d(z, w) =
|z − w|

|1 − 〈z, w〉| , z, w ∈ Bn,

defines a metric on Bn, it is clear by now that the pseudo-hyperbolic metric ρ used in

Theorem 5.1 can be replaced by d. In other words, a holomorphic function f in Bn

belongs to the Bergman space A
p
α(Bn) if and only if there exists a continuous function

g ∈ Lp(Bn, dvα) such that | f (z)− f (w)| ≤ d(z, w)(g(z) + g(w)) for all z and w in Bn.
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