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The present review examines renewable sources of oils with n-3 long-chain (= C,) PUFA (n-3
LC-PUFA) as alternatives to oil from wild-caught fish in aquafeeds. Due to the increased demand
for and price of wild-caught marine sources of n-3 LC-PUFA-rich oil, their effective and
sustainable replacement in aquafeeds is an industry priority, especially because dietary n-3 LC-
PUFA from eating fish are known to have health benefits in human beings. The benefits and
challenges involved in changing dietary oil in aquaculture are highlighted and four major
potential sources of n-3 LC-PUFA for aquafeeds, other than fish oil, are compared. These sources
of oil, which contain n-3 LC-PUFA, specifically EPA (20:5r-3) and DHA (22:6n-3) or
precursors to these key essential fatty acids, are: (1) other marine sources of oil; (2) vegetable oils
that contain biosynthetic precursors, such as stearidonic acid, which may be used by fish to
produce n-3 LC-PUFA; (3) single-cell oil sources of n-3 LC-PUFA; (4) vegetable oils derived
from oil-seed crops that have undergone genetic modification to contain n-3 LC-PUFA.
The review focuses on Atlantic salmon (Salmo salar L.), because it is the main intensively
cultured finfish species and it both uses and stores large amounts of oil, in particular n-3 LC-
PUFA, in the flesh.

Long-chain PUFA: Aquaculture: Fish oil: Vegetable oil: Atlantic salmon: Phytosterols

Introduction
Sustainability of wild fish stocks

Historically, the intensive culture of Atlantic salmon (Salmo
salar L.) has relied on natural fisheries to supply fishmeal
and oil as ingredients for aquafeeds. Therefore the stability
and sustainability of the wild fishery are of vital importance
to the security of ingredients for aquafeeds. Worldwide,
capture fisheries have plateaued at about 85-95 million
tonnes per annum even though fishing effort has
intensified"">. However, there is a growing concern about
the health of global fisheries stocks and the ecological
effects of industrial fishing, with evidence that many
fisheries are fully or over-fished'*~®. Fish oil and meal
production is strongly dependent on the availability of
wild fisheries and the mismatch between demand and
expected supply of fish oil is expected to reach 40 million
tonnes by 2030, Dramatic decreases, even collapse, can
occur in fish populations of the species involved in fish oil

production®. Problems facing most fisheries are complex
and stock decreases can be caused by numerous
environmental, biological and ecological factors, not
necessarily fishing impacts®™. For instance, climatic events
such as El Nifio can significantly decrease fish populations
and therefore increase pressure on fish oil and meal
supply®~'". One-quarter of the world’s fish oil supply and
one-third of the fish meal for aquaculture diets come from
one anchoveta (Engraulis ringens) fishery off the coast of
Peru®!?. Collapse of this fishery alone would increase the
pressure on world fish meal and oil supply and threaten the
security of global aquaculture production®'?.

Sustainable Atlantic salmon farming

Aquaculture is the fastest growing food-producing sector in
the world”. Atlantic salmon aquaculture production has
grown from 55 000 tonnes in 1985 to more than 1-2 million
tonnes in 2006'*'¥. By 2010 it is estimated that 85 % of

Abbreviations: ALA, a-linolenic acid; LC, long-chain (=C,); PCB, polychlorinated biphenyls; SDA, stearidonic acid.
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global fish oil will be needed for salmon and trout

. (15) . . . .
production’ ~’. However, fish oils are increasingly being
used in the nutraceutical and agricultural industries, and
thus both demand and price have substantially increased,
stimulating the need for replacement oils. Replacement of
fish oil with renewable land-based products such as
vegetable oils has been extensively researched and the
results incorPorated into currently used commercial
aquafeeds'®~'?.

The present review evaluates how an ecologically
sustainable salmon aquaculture industry might be achieved
via use of secure and sustainable n-3 long-chain (=C,)
(LC)-PUFA oil options that are not based on wild fish catch.
The review is also relevant to the sustainable culture of other
fish species.

Discussion

Salmon are carnivorous and require dietary protein and lipid
that have traditionally been supplied from wild-caught
marine sources. Feed efficiency for Atlantic salmon
aquaculture is continually improving through the use of
highly specified aquafeeds; currently about 1kg of fish is
produced per kg of feed. Although an estimated 3-2kg of
wild fish stock is required to produce 1kg of aquafeed for
salmon aquaculture?, aquaculture has a significant
ecological advantage over wild salmon capture since 1kg
of growth in the wild equates to 10—15kg of fish eaten
by carnivorous fish or captured as by-catch®>*". The
efficiency of the aquaculture industry is also continually
improving as nutritional requirements are better understood.
However, further research into sustainability and security of
feed ingredients is vital for the growth of the industry.

Lipid content and nutrition of aquafeeds

Lipids provide the main source of metabolic energy in
aquafeeds for many carnivorous fish, particularly salmonids.
Current extrusion technologies allow aquafeeds to contain
up to 40 % oil. The natural marine diet of Atlantic salmon
contains high concentrations of n-3 LC-PUFA, in particular
EPA and DHA, low concentrations of n-6 PUFA, and
moderate amounts of MUFA and SFA (Table 1).

The lipid component of aquafeeds requires the inclusion
of n-3 and n-6 essential fatty acids which are necessary for
cellular metabolism (synthesis of prostaglandins, eicosa-
noids, leucotrienes and other essential fatty acid meta-
bolites) and for maintaining cell membrane structure and
integrity(22’23). Digestion, absorption, transport, accumu-
lation, biosynthesis and metabolism of lipids, in particular
essential fatty acids and n-3 LC-PUFA, have been studied in
Atlantic salmon and reviewed elsewhere®>?*~2",

Atlantic salmon can show nutritional ‘diseases’ or
pathologies due to lipid imbalances®® ~>®. They can display
reduced growth, poor feed efficiency, evacuolated pyloric
caeca tissue and increased incidence of pancreatic disease
with essential fatty acid-deficient diets®®. It is therefore a
requirement that aquafeeds supply n-3 LC-PUFA as a part of
the oil comg)onent if it is not supplied by residue oil in the
fish meal®®. It has been demonstrated that a diet consisting
of 100 % vegetable oil and therefore lacking n-3 LC-PUFA
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causes severe heart lesions, thinning of ventricular walls,
muscle necrosis and can influence the devolvement of
arteriosclerotic changes in Atlantic salmon@*?,

Currently, n-3 LC-PUFA for aquafeeds are mainly
sourced from marine oil obtained from wild fisheries.
Over the past 10 years, the intensive aquaculture industry
has been using fish oil blended with vegetable and animal oil
in the manufacture of aquafeeds to reduce cost and, to a
lesser extent, to decrease the pressure on this finite resource.
Many trials with replacement oils have demonstrated that
the fatt?/-acid rofile of the salmon closely reflects that of its
diet!?1%31749 Tt is suggested that in Atlantic salmon, 75 %
of dietary fish oil can be replaced by vegetable oil without
compromising growth and performance or significantly
affecting fish health or welfare if n-3 LC-PUFA require-
ments are met''?>>*%_ Vegetable oils do not contain any n-3
LC-PUFA, but can contain higher concentrations of SFA (in
the case of palm oil), MUFA and n-6 PUFA“¥. Salmon fed
replacement vegetable oils have a reduced n-3 LC-PUFA
content, which is a reflection of these diets.

It is important to monitor any potential aquafeed oil
source for xenobiotics such as dioxins and dioxin-like
polychlorinated biphenyls (PCB). Recently, there has been
increased interest in the quality and toxicological properties
of fish oil as an ingredient in aquafeeds for salmon
aquaculture =% There are considerable health concerns
associated with the presence of dioxins and dioxin-like PCB
residues in fish 0il**®. Concentrations of such residues
vary greatly in fish oil sources from around the world with
seasonal and/or spatial variations common“>. Dioxins and
PCB are fat-soluble xenobiotics that are carcinogenic to
humans’>? and are also known to cause skin ailments,
liver disease, reproductive disorders and neurological
problems®®. Furthermore, dioxins and PCB are lipophilic
and resistant to degradation, and therefore can accumulate
in significant concentrations in fish oil. Lastly, dioxins and
PCB can persist in the environment for many years and they
bioaccumulate up the food chain, with potential harmful
effects for the human consumer. Alternative oils such as
vegetable or single-cell oils have a very minor possibility of
containing dioxins and PCB, making them favourable as
replacement oils in aquafeeds®™.

n-3 and n-6 PUFA

Recently, it has been generally acknowledged that when
incorporating alternative lipid sources in aquafeeds, the
lipid composition should be targeted to achieve proper fatty
acid profiles to meet the requirements of fish and maximise
human health benefits®. Over the past 20 years evidence
has increased that n-3 LC-PUFA, in particular EPA and
DHA, have unique nutritional and health benefits to the
human consumer®>~®?. As salmon have the ability to store
considerable amounts of n-3 LC-PUFA in their flesh, they
are considered an excellent source of these key essential
fatty acids.

However, excess intake of n-6 PUFA in humans, in
particular linoleic acid (18 : 2n-6), has been associated with
many disorders including CVD, cancer, and inflammatory
and autoimmune disease®”. It is thought that n-6 PUFA, in
particular linoleic acid, is excessive in most Western diets,
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Table 1. Fatty acid profiles (g/100 g) of possible plant or vegetable replacement oils for fish oil

Palm oil* Rapeseed oilt Linseed oilt Sunflower-seed oil§ Qlive oil|| Soya ail{ Echium oil** Thraustochytrid oiltt Fish oilft
14:0 1.2 0-0 0-0 0.0 0-0 0.0 0-0 8-9 6-2
16:0 46-7 4.7 6-3 6-4 10-8 9.7 7-5 26-1 16-4
18:0 5.2 2.1 51 41 3.3 3.5 3.6 0-8 3.5
Other SFA 0-3 0-6 0-0 1.5 0-6 0-2 0.0 1.0 1.2
Total SFA 53.5 7-4 114 12.0 146 13-4 11.2 36-7 27-3
16:1n-7c 0-0 0-0 0-0 0-0 0.7 0.7 0-0 0-6 82
18:1n-9c 33-8 58-3 18-3 25-3 75-4 225 17.2 1.3 211
18:1n-7c 1.3 4.3 1.3 2.0 2.5 1.8 1.0 04 3.6
20:1n-9 0-0 11 0-0 0-0 0-0 0-0 0-8 0-1 3.8
Other MUFA 0.0 0-0 0-0 0-0 0-0 0-0 0-9 0-2 6-2
Total MUFA 351 637 19-6 27-2 78-6 25.0 199 2.5 42.9
18:3n-3 0-0 7-3 53-3 0-0 0-0 6-4 281 0-1 0-6
18:4n-3 0-0 0.0 0-0 0-0 0-0 0-0 114 04 1.5
20:4n-3 0-0 0-0 0-0 0-0 0-0 0-0 0-0 1.0 1.0
20:5n-3 0.0 0-0 0-0 0.0 0-0 0.0 0-0 2.2 12.7
22:5n-3 0-0 0.0 0-0 0.0 0-0 0.0 0-0 0.7 1.7
22:6n-3 0-0 0-0 0-0 0-0 0-0 0-0 0-0 36-7 7-3
Other n-3 0.0 0-0 0-0 0.0 0-0 0.0 0-0 0.0 05
Total n-3 0-0 7-3 53-3 0.0 0-0 6-4 39-6 411 25.3
18:2n-6 114 216 15.7 60-7 6-8 55.2 195 0-6 3.4
18:3n-6 0-0 0.0 0-0 0-0 0-0 0.0 9-8 0-3 0-0
20:3n-6 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-5 0-0
20:4n-6 0-0 0-0 0-0 0-0 0-0 0-0 0-0 2.4 1.0
22:5n-6 0-0 0.0 0-0 0-0 0-0 0-0 0-0 15-8 0-0
Other n-6 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-1
Total n-6 114 216 15.7 60-7 6-8 55.2 29.3 196 4.5
n-3:n-6 0-0 0-3 34 0-0 0-0 0-1 1.3 21 5.6
Oil price January 572 712 759 657 3245 641 4000-8000]|| 20000—-100000]||| 817
2007 ($US/tonne)§§
Qil price January 1039 1569 1475 1645 3894 1174 4000-8000]| || 20000-100000]||| 1615

2008 ($US/tonne)§§

* Aoroma, Hallam, Vic, Australia.

1 Steric Trading Pty Ltd, Villawood, NSW, Australia.

1 Melrose Laboratories, Mitcham, Vic, Australia.

§ Meadowlea Foods, Mascot, NSW, Australia.

|| Island Olive Grove, Cambridge, Tasmania, Australia.

i Carolina Soy Product, Warsaw, NC, USA.

**Croda Chemicals, East Yorkshire, UK.

11 Martek, Columbia, MD, USA.

11 From jack mackerel (Trachurus symmetricus L.), Skretting Australia, Cambridge, Tasmania, Australia.
§§ Prices taken as an average of January oil prices in 2007 and 2008 from Hamburg market prices, OIL WORLD ISTA Mielke GmbH, Hamburg, Germany.
||| Estimated current costs; however, costs may reduce when the volume of production increases.
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which are dominated by vegetable oils and processed foods.
It is increasingly recognised that a greater ratio of n-3:n-6
PUFA plays a positive role in human health®~°” and is
also important in aquafeeds, because this ratio best
represents the natural diets of salmon®”. Eating oily, n-3
LC-PUFA-rich fish such as salmon is proposed to be a good
way to improve the dietary n-3:n-6 ratio .

Biosynthetic pathway of n-3 and n-6 PUFA

Atlantic salmon can naturally biosynthesise n-3 LC-PUFA
from dietary precursors (Fig. 1). Understanding and utilising
this biosynthetic capacity through the provision of different
precursors may ensure that farmed salmon receive their
required n-3 LC-PUFA. Salmon lack A12 and A15 fatty acid
desaturases and cannot produce linoleic acid and a-linolenic
acid (ALA; 18:3n-3) from the precursor oleic acid
(18 : 11-9)*». However, salmon can biosynthesise dietary
ALA into n-3 LC-PUFA®?. Atlantic salmon are anadro-
mous: the adult fish live in the sea, but breed and have their
early development stages in fresh water. The ability of
Atlantic salmon to biosynthesise n-3 LC-PUFA from
precursors changes throughout their life cycle®?.

The conversion of ALA to n-3 LC-PUFA has been
demonstrated in freshwater fish, which have high concen-
trations of ALA and limited DHA in their natural diet®®7%"".
However, the conversion of ALA to EPA and DHA is
inefficient in marine fish, which have high concentrations of
LC-PUFA in their natural diet'’?. Therefore the evolutionary
pressure of fatty-acid availability has affected the ability of fish
to biosynthesise n-3 LC-PUFA. There have been many studies
to determine the capacity of Atlantic salmon to biosynthesise
n-3 LC-PUFA from precursor dietary fatty acids®®%>73~8D
Salmon have shown a very limited capacity to produce n-3 LC-
PUFA from ALA in both in wivo and in witro
trials36:69-73-75.77-80) However, there has been limited
research on other biosynthetic precursors such as stearidonic
acid (SDA; 18:4n-3) in salmon'’¢81:82), Understanding the

18:0
AY*
18:1n-9
OA
Al127
A6 ELO AS
18:2n-6 —=18:3n-6—=20:3n-6——>
LA GLA
AlS5*

A6 EL
18:3n-3——==18:4n-3

(0]
=20:4n-3 = =20:5n-3

complex interactions between gene expression, synthesis of
enzymes (protein expression) and fatty acid composition will
give a better understanding of biological responses at the
cellular level, including, for example, how Atlantic salmon
endogenously produce, use and store n-3 LC-PUFA.

Advantages and disadvantages of vegetable- or
plant-based oils

The major advantages that vegetable oils have over fish oil
as ingredients in aquafeeds are that they are produced in
large volumes, are renewable, can be reliably sourced and
importantly are currently less expensive. However, the main
disadvantage is that they do not contain any n-3 LC-PUFA
or n-6 LC-PUFA and therefore they are, as a sole oil source,
unable to meet the nutritional requirements for these
components by Atlantic salmon. Vegetable oils generally
have high concentrations of oleic acid, linoleic acid and in
some instances ALA.

Other disadvantages of terrestrial oils include significant
environmental, social and economic issues surrounding
their production®-** including increasing oil and grain
prices due to competing global demand for biofuel, and an
associated acceleration in unsustainable or inappropriate
land-use practices, for example replacing rain forest with
palm oil plantations®*#%.

Nonetheless, aquafeed producers are increasingly using
blends of vegetable oils. Blending oils gives the feed
producers flexibility to meet dietary nutritional require-
ments and also allows seasonal adjustment of diets in
response to factors such as cost and availability. The major
sources of vegetable oils that have been extensively
researched for Atlantic salmon include sunflower-
seed(16’32), linseed(33‘36), ra eseed(34’37_40), soyabean(35’4”,
olive®**® and palm oil"*¥53%_ The fatty acid profiles of
the major replacement oils for aquaculture diets differ
greatly (Table 1).

AA

ALA SDA ETA

EPA

22:5n-6
DPA-6
T Short
ELO ELO AG*
20:4n-6—=22:4n-6—m=24 :4n-6—24:5n-6
ELO ELO AG*
72 : 5n-3—24:5n-3—24:6n-3
DPA-3
Short
22:6n-3
DHA

Fig. 1. Representation of the n-3 and n-6 long-chain (= C,0) PUFA biosynthetic pathways from their C,g fatty acid precursors in Atlantic salmon
(Salmo salarL.). OA, oleic acid; LA, linoleic acid; A5, A 6 and A6*, fatty acyl desaturases; GLA, y-linolenic acid; ELO, fatty acyl elongases; AA,
arachidonic acid; DPA-6, docosapentaenoic acid (n-6); Short, fatty acyl peroxisomal chain shortening; ALA, a-linolenic acid; SDA, stearidonic acid;
ETA, eicosatetraenoic acid; DPA-3, docosapentaenoic acid (n-3). A6* may or may not be the same desaturase enzyme as A6. A9%, A12* and A15%

are not present in Atlantic salmon. Adapted from Tocher®4).
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The fatty acid profile of vegetable oils can vary with
location, season and species. Alongside fatty acid profile,
cost and production characteristics of these oils are
considerable factors in their selection as ingredients in
aquafeeds. Globally, soya and palm are the most abundant
oil crops and have the lowest market price. The cheapest oils
for aquafeeds in non-European Union countries are poultry
and animal fats (lard, $US 930 per tonne, Hamburg market
prices, January 2008, OIL WORLD ISTA Mielke GmbH,
Hamburg, Germany) in which the fatty acid profiles are
dominated by SFA, in particular palmitic acid (16:0) and
stearic acid (18 :0). There are significant economic benefits
of including poultry and animal fats in aquafeeds, but
regulations in Europe following the outbreaks of BSE forbid
the use of animal lard in aquafeeds. The rise in vegetable oil
prices shown in Table 1, and their predicted increase in the
future, is largelgy attributed to increased use and demand for
oil in biofuels®*.

Phytosterols

Minor components of vegetable oil that are not present in
the natural diets of fish need to be investigated and
monitored. For example, a potential benefit of the increasing
replacement of fish oil and meal with plant-based
ingredients in salmon aquafeeds is the increased amounts
of phytosterols in the fish diet. Phytosterols are naturally
occurring molecules found in vegetable oils and meals
which are structurally related to cholesterol®. Phytosterols
are known to affect cholesterol metabolism and have been
shown to reduce LDL-cholesterol levels in humans,
reducing the risk of CHD®>~*") Phytosterols are lipophilic
and have been introduced to margarines, butters, spreads
and breakfast cereals and promoted as ‘functional foods’ to
reduce CHD®* %, With the increased use of vegetable oils
in aquafeeds, increased natural abundances of phytosterols
will occur in Atlantic salmon diets. There has only been one
investigation of the digestion, accumulation and metabolism
of phytosterols in Atlantic salmon when fed replacement
diets containing plant-based oils". That study showed that
Atlantic salmon were able to digest and accumulate low
levels of phytosterols®". The low amount of phytosterols
available in the diet, coupled with their low digestibility,
suggests at this stage that Atlantic salmon are unlikely to be
a major delivery source of this cholesterol-lowering agent.
However, in combination with the health benefits of n-3 LC-
PUFA, phytosterols may act in unison to increase the
benefits of eating farmed salmon for the consumer.
Minor components of vegetable oils such as phytosterols
need to be monitored to determine whether they have
positive or negative effects not only for the consumer, but
also for fish health.

Regiospecificity of fatty acids

Lipids are important molecules in the body for storing
energy and for maintaining cell membrane integrity.
Regiospecificity refers to how individual fatty acids are
positioned on the glycerol backbone of both storage TAG
and membrane polar lipids. Regiospecificity of lipids plays
an important role in their function and bioavailability.
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The bioavailability of n-3 LC-PUFA is of vital importance if
Atlantic salmon is to be marketed as a good source of n-3.
Regiospecific characteristics of dietary and possibly
endogenously biosynthesised n-3 LC-PUFA stored as TAG
by Atlantic salmon is yet to be understood fully by fish
nutritionists. Therefore, it is important to assess the
regiospecificity of novel sources of n-3 LC-PUFA oil.
Traditional profiling of lipid class and fatty acid
composition provides important information, but does not
reveal the regiospecific nature of the molecules, which can
play a key role in their function®*®®. With advances in
analytical and computing facilities, new techniques and
methods can be used to examine lipids with the emphasis on
the regiospecific distribution of fatty acids.

The middle sn-2 position of the storage TAG molecule is
thought to be the most bioavailable position for the digestion
of particular fatty acids. This was first shown in fat
absorption by infants fed breast or formulated milk®. How
Atlantic salmon regiospecifically store n-3 LC-PUFA has
the potential to affect the bioavailability of fatty acids for
the human consumer. Structural lipids, such as polar lipids,
are important components of cell membrane structure. The
composition of the molecular species in the cell membrane
can be influenced by many factors including temperature
and diet®. The composition of cell membranes has a major
effect on the health of the cell and therefore the health of the
fish. To date, limited research has been conducted to identify
changes in the regiospecific composition of membrane
lipids and TAG in Atlantic salmon as a result of changes in
the fatty acid profile of their diet®®. Regiospecific analysis
of the lipid profiles of Atlantic salmon has shown recently
that DHA has a high affinity for the sn-2 (middle) position in
both the TAG and polar lipid fractions®”.

Influence of temperature on lipids

Temperature has a major influence on the membrane and
storage lipids of exothermic animals, such as Atlantic
salmon, which need to adapt to seasonal and occasionally
abrupt changes in environmental temperature >~ The
Tasmanian Atlantic salmon industry commonly encounters
temperatures (over 19°C) that approach the upper threshold
for salmon survival®”. A possible outcome of climate
change is increased sea temperature, which may affect
aquaculture not only in Tasmania but worldwide. Replace-
ment oil blends may assist by adapting the fatty acid profiles
of salmon diets to meet the different nutritional require-
ments for raised temperatures.

Fish may exploit the structural diversity of lipids within
their membranes to adapt to change in ambient water
temperature. Membrane lipids may adapt in several ways to
a change in temperature: by altering the unsaturation and
chain-length of the fatty acids“’"; by changing the
distribution of fatty acids within the phospholipid
molecules' >0 by altering the composition of the polar
head group of the phospholipids"**'%. In general, colder
temperatures lead to an increase in unsaturation in gill
lipids, thus maintaining membrane fluidity'°*'%® Most
studies have investigated temperature influence on Atlantic
salmon lipids within the range of 2—12°C“!197=109 "y
only one has examined salmon at higher temperatures such
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as 19°C®”. An increased water temperature of 19°C
resulted in adaptation of both structural and storage lipids
with significant reduction in PUFA occurring, in particular
in the tissue concentrations of EPA®”. As water
temperatures rise, there is reduced need for high levels of
n-3 LC-PUFA in polar lipids to maintain optimal cell
membrane function. The converse is true for decreasing
water temperatures. This suggests that changes in Atlantic
salmon diets, in particular the amount of n-3 LC-PUFA,
during periods of high water temperature may maintain the
health and performance of fish. With global water
temperatures increasing it is pertinent to monitor membrane
structure and oil storage in salmon at higher temperatures.

Temperature plays a significant role in the digestibility of
lipids in salmon diets""%*''°=112 Reduced water tempera-
ture decreases the digestibility of SFA and therefore
changing the dietary source of oil may have implications
during winter conditions. Highly saturated oils, such as
palm, have been demonstrated to have reduced digestibility
at very low water temperature; however, the digestibility of
MUFA and PUFA was not affected"'®. The fatty acid
profile of novel sources of oil needs to be considered, in
regard to digestibility, when formulating diets.

Potential sources of n-3 long-chain PUFA for aquaculture

Other than traditional fish oil sources, the current and future
possible sources of oil that contain beneficial essential fatty
acids or their precursors are:

(1) Other marine sources including by-catch and marine
invertebrates such as krill and copepods;

(2) Vegetable oils that contain biosynthetic precursors that
can be used by Atlantic salmon to biosynthesise n-3
LC-PUFA;

(3) Several different microbial taxa at the base of the
marine food chain that produce single-cell oils that are
rich in n-3 LC-PUFA;

(4) GM organisms including single-celled micro-organ-
isms and terrestrial plants that have undergone genetic
modification and contain enriched amounts of n-3
LC-PUFA.

Each of these sources of oil will be discussed in turn.

Other marine sources

Improving our seafood processing byproducts as well as an
increased use of by-catch may create a possible source of
n-3 LC-PUFA oil for aquafeeds. Seafood processing
byproducts exist in large quantities (over 30 % of processed
seafood is inedible) and can contain high levels of LC n-3
oils, including EPA and DHA. Therefore, byproducts from
seafood processing operations could supply, in part, the n-3
LC-PUFA required for aquaculture. However, before the use
of recycled oil and meal from seafood processing can occur,
several factors need to be assessed. These include under-
standing the risk of prions and other disease transmission
vectors associated with feeding byproducts from one species
back to the same or similar species'’'®. As previously
stated, regulations in Europe forbid the use of land animal
products in aquafeeds. It is yet to be determined whether the
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benefits (ecological and economic) outweigh the risks
(human health) of using various types of seafood byproducts
as feed. Furthermore, contaminants in oil from seafood
byproducts, such as PCB and dioxins, have the potential to
bioaccumulate in farmed fish®>*®. Careful monitoring of
these contaminants in seafood byproducts and oil derived
from them is needed. Finally, the socio-economic and
environmental aspects of the use of seafood byproducts need
to be assessed before they can be used in aquafeeds.

Other marine sources, such as marine invertebrates, may
be a future source of n-3 LC-PUFA oil. Southern Ocean krill
(Euphausia superba) biomass is estimated at up to 700
million metric tonnes, and the current re%ulatory catch quota
is almost 6 million metric tonnes '+ However, due to
factors such as the remoteness of the fishery, the current
catch is only 0-2 million metric tonnes"'®. Krill contain oil
which has high concentrations of EPA and DHA plus high
levels of phospholipids and antioxidants such as the
carotenoid, astaxanthin"'>''"_ The fatty acid profile of
krill oil can vary markedly with the region and time of year
of harvest, with other factors also influencing its
profile" 8119 Considerable care will be required with
management practices in the setting of local catch limits for
krill harvest to protect not only this sensitive species, but
also key Southern Ocean predators. Krill is at the base of the
Southern Ocean’s food chain, and is also particularly
sensitive to environmental changes including climate
change''®!'2?_ Over-fishing of krill, particularly concen-
trated fishing efforts in localised regions, could severely
undermine the food web and devastate marine life"*”. As
such, increasing fishing pressure for krill is worrisome and
the catch and ecological consequences should be closely
monitored.

Zooplankton, specifically copepods, may also provide a
minor alternative source of n-3 LC-PUFA oil. The
commercial harvesting of wild copepods is not expected
to meet the demand, quality and constant supply of n-3 LC-
PUFA"?Y. Cultured copepods may be a future source of
feed including oil; however, the scale of production to
supply aquaculture’s growing demand for quality n-3 LC-
PUFA-rich oil is beyond its scope"*". However, copepod
oil, more likely the total biomass, may provide niche
products for segments of the aquaculture industry in
particular in larval rearing'?! =129

Biosynthetic precursors of n-3 long-chain PUFA

As mentioned above, fish have an endogenous capacity via
fatty acid desaturase and elongase enzymes to biosynthesise
n-3 LC-PUFA from ALA. The pathways are quantitatively
important in freshwater fish, but activity levels are very low
in marine species**%?, Understanding and utilising
biosynthetic precursors further along the LC n-3 pathway
may provide renewable and sustainable options from the use
of specialised vegetable oils for future aquafeeds. Plants
such as Patterson’s curse (Echium plantagineum L.) and
blackcurrant (Ribes nigrum L.) have a A® desaturase gene
that produces the n-3 LC-PUFA biosynthetic precursor SDA
from ALA. Echium oil from Patterson’s curse has an SDA
level > 10 % depending on the strain (Table 1). It has been
suggested that the A® desaturation of ALA to SDA is the
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limitin% step in the biosynthetic pathway of n-3 LC-
PUFA_ In this case, dietary SDA bypasses the initial
rate-limiting A® desaturase step in the n-3 LC-PUFA
biosynthetic pathway (Fig. 1) and potentially enables
greater biosynthesis of EPA and DHA via non-limiting
steps. For this to occur, subsequent desaturase enzymes
must also be present in large enough amounts.

It has been recently shown that freshwater Atlantic
salmon parr can maintain concentrations of n-3 LC-PUFA,
in particular EPA and DHA, in muscle tissue over a 6-week
period when fed a diet containing SDA, but with only trace
levels of n-3 LC-PUFA®". This result indicated that SDA-
rich aquafeeds may have potential as an alternative to
replace n-3 LC-PUFA sources such as fish oil in freshwater
aquaculture; however, this was only a short trial and
occurred over the period before smolting, which has been
shown to coincide with a period of peak n-3 LC-PUFA
production®”. Smolting involves a series of morphological,
physiological and behavioural changes which include both
increased lipid deposition and increased accumulation of
LC-PUFA, in particular arachidonic acid, before saltwater
transfer'*>'?®), During this freshwater parr stage, the use of
dietary precursor (SDA) oils such as Echium oil may prove
most beneficial in aquafeeds.

Further research on Atlantic salmon smolt fed SDA
demonstrated an up-regulated expression of genes involved
in fatty acid synthesis, which affected the concentration of
the direct biosynthetic 2_groduct (eicosatetraenoic acid; 20 : 4
n-3) in all tissues"'*”. However, the increased gene
expression with use of the SDA-rich diet is not enough to
maintain concentrations of n-3 LC-PUFA in seawater
Atlantic salmon fed SDA at equivalent amounts to those in
fish fed with fish 0il"?”. Results with Atlantic salmon smolt
are analogous with other species of fish, the marine Atlantic
cod (Gadus morhua L.) and a salmonid species the Arctic
charr (Salvelinus alpinus L.), that have shown SDA
conversion to eicosatetraenoic acid (20 :4n-3), but not to
EPA and DHA"?*'*?_Selective breeding programmes with
Atlantic salmon and other salmonoids have focused on
characteristics such as health and growth requirements, but
increasingly contain product quality factors such as flesh
colour, fat content and fat distribution*?. In the future,
selection traits may be widened to include enhanced
biosynthesis of n-3 LC-PUFA and/or an ability to store large
amounts of the n-3 LC-PUFA-rich oil in the fillet. Family
lines of salmon with an elevated ability for n-3 LC-PUFA
biosynthesis and/or storage may lead to a reduced need for
the provision of dietary n-3 LC-PUFA.

The cost and availability of an SDA-rich oil source, such
as Echium oil, is at present not economically viable for
aquaculture. The current price of SDA-rich oil from
Patterson’s curse is 2-:5-5 times the price of fish oil (Table
1). In Australia, Patterson’s curse is an introduced pest
species and considered a noxious weed. Despite a significant
proportion of southern Australian agricultural land being
covered by Patterson’s curse, there are presently no
companies in Australia looking to use this resource for its
oil content. However, the amount of oil available to be
extracted from Patterson’s curse is minor compared with
commercial oil crops. The only commercially viable source
of SDA-rich oil may be through the genetic modification of
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oilseed crops (see below). Furthermore, the ability of
salmon and or other species to digest, accumulate and
biosynthesise SDA into longer n-3 LC-PUFA needs to be
further assessed before it can be considered as a dietary
ingredient for aquafeeds.

Single-cell oils

Single-cell oils provide a novel and renewable source of
essential fatty acids, in particular EPA and DHA. Single-cell
organisms, including thraustochytrids, diatoms, other
microalgae and some marine bacteria are the n-3 LC-
PUFA -‘biofactories’ of the ocean. Thraustochytrids are
heterotrophic protists, commonly found in marine and other
saline environments; they can be detritivores, bacterivores
and/or parasites'*". Originally thought to be closely related
to primitive fungi, thraustochytrids have more recently been
assigned to the subclass Thraustochytridea (Chromista,
Heterokonta), aligning them with heterokont algae such as
diatoms and brown algae"*?. Thraustochytrids can produce
a number of n-3 LC-PUFA, especially DHA. Thraustochy-
trids show potential as a source of oil for aquacul-
ture® 1311337139 [ arge-scale culture of thraustochytrids
may be suitable for commercial aquafeeds as they produce a
relatively high biomass and have a high percentage of n-3
LC-PUFA-rich lipid"*?. Optimising strain selection and
growth conditions can provide single-cell oils with specific
qualities such as high DHA (concentrations up to 60 %), low
n-6 (in particular docosapentaenoic acid, DPA-6, 22 : 5n-6),
high total n-3 LC-PUFA and high n-3:n-6 ratios""*”.
Thraustochytrid biomass (for example, the product Alga-
mac) is already being used commercially as an enriched
feed for rotifers (Brachionus spp.) and brine shrimp
(Artemia) before feeding these live feeds to finfish
larvae'*~139 and as a fish oil replacement in Atlantic
salmon nutrition trials®""*®. The replacement of fish oil
with 100 % thraustochytrid oil in Atlantic salmon parr diets
has been demonstrated, without any detriment to growth, to
significantly increase the concentrations of DHA in muscle
tissue''*®. Thraustochytrid oil (Table 1) from the species
Schizochytrium L., has a high concentration of DHA (35 %).

Single-cell oils, such as oil from thraustochytrids, provide
a major renewable source of n-3 LC-PUFA for aquaculture.
These organisms could potentially provide a source of n-3
LC-PUFA without any foreseeable negative impact on wild
fish stocks. Currently, manufacturers of single-cell oils do
not have sufficient production capacity and the oils are
viewed as too expensive to be considered for use as a
replacement oil in diets for Atlantic salmon, although the
use of thraustochytrid biomass is now thought to be
economically feasible for prawns (Browdy er al. *®; B
Bullis, personal communication). There is still considerable
scope for the discovery or development of novel strains with
other advantageous properties including high n-3 LC-PUFA
concentrations. With the continual discovery of new strains
and improvements in fermentation and molecular engineer-
ing techniques, it may be possible to produce single-cell oils
or biomass with sufficient amounts of n-3 LC-PUFA and at a
price suitable to meet the growing demand in aquaculture. It
is likely that increased use in biomedical fields will cover
the high initial cost of this biotechnology allowing
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aquaculture to access it when production capacity is
increased and, importantly, as the price is reduced. Single-
cell biomass rather than extracted oil is a logical candidate
for aquafeeds as it provides n-3 LC-PUFA-rich oil with
accompanying marine proteins at a significantly lower price
due to a reduction of the processing costs.

Genetic modification of oils

Transgenic oilseed crops and micro-organisms that are
engineered to produce the major n-3 LC-PUFA by the
insertion of various genes encoding desaturases and/or
elongases have been suggested as a source of n-3 LC-
PUFA!?*1%9 However, the requirement for coordinate
expression and activity of five or more new enzymes
encoded by genes from possibly diverse sources has made
this goal difficult to achieve and only low yields have
generally been obtained!3*-141:142),

A gene encoding the A® desaturase isolated from borage
(Borago officinalis) was expressed in transgenic tobacco
and Arabidopsis, resulting in the production of vy-linolenic
acid and SDA, the direct precursors of LC-PUFAU/4314%)
This initial research provided only the first step to n-3 LC-
PUFA, but may provide a renewable source of SDA for
aquaculture and other uses. Recently more genes encoding
the whole pathway have produced EPA"*> and DHA?, in
crops or model plants, including oilseeds. In the model plant
Arabidopsis, the insertion of five genes resulted in the first
oil with DHA"?®. That study observed a total LC-PUFA
content (arachidonic acid + EPA 4+ DHA) of 4-2 %. This
has subsequently been increased to close to 8 % (SP Singh,
SS Robert, XR Zhou, JR Petrie, SI Blackburn, PM Mansour,
PD Nichols and Q Liu, unpublished results). Further
research using different genes and seed-specific promoters
with soyabean has produced an EPA content of 19-5 % and a
DHA content of 3-3%"*®. These two examples demon-
strate the complicated nature of engineering multi-genes to
produce a sustainable land plant source of n-3 LC-PUFA-
rich oil.

Nonetheless, GM plants may in the future provide the
most economically viable source of n-3 LC-PUFA-rich oil
for aquaculture. It is estimated that the cost and availability
of oils from GM plants would be similar to that of currently
available commercial oilseed crops such as rapeseed and
soya. Research in this area has the potential for significant
commercial, health, social and environmental benefits.
However, consumer and industry acceptance of this
biotechnology and the requirement for passing health and
safety requirements set by regulatory bodies will be needed
for oils from GM plants before they can be used by the
aquaculture industry. Recent assessments of perceived
consumer acceptance of GM land-plant n-3 LC-PUFA
technologies in Australia and the USA have reported that
farmed fish were a preferred delivery mechanism compared
with capsules or functional foods 147,148) Ultimately, as
demand for fish oil intensifies, as knowledge about fishing
impacts and benefits to human health of n-3 LC-PUFA
increases, and the potential for salmon prices to decrease
occurs due to reduced ingredient cost, consumers may
eventually accept oil from a GM crop as an ingredient of
aquafeeds.
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Future security of n-3 long-chain PUFA oils and sustainable
aquaculture

Having access to secure sources of n-3 LC-PUFA-rich oils
is vital for the continued sustainability and growth of the
intensive aquaculture industry. The future use of these n-3
LC-PUFA-rich oils will depend on the cost and
availability of fish oil as a commodity. It is yet unknown
whether a premium 7n-3 oil crop (to include n-3 LC-PUFA
via GM or increased n-3:n-6 ratio via selective breeding
and management methods) would be economically viable.
However, as fish oil and grain prices rise, alternative
sources of n-3 LC-PUFA-rich oils are becoming more
financially feasible. Single-cell biomass with high
amounts of n-3 LC-PUFA will provide an option, but
the current high production cost limits their immediate
use. New n-3 LC-PUFA oils from GM land plants are still
in development, with trials including field planting, fish
and animal feeding, toxicity and other assessments
required before the large-scale consideration of their use
by aquafeed companies.

In summary, the short-term forecast for aquafeeds rests in
the careful management of the use of fish oil from wild
fisheries, the use of vegetable and other oils in blends, and
the use of suitable feeding regimens including finishing
diets containing higher levels of the n-3 LC-PUFA oils than
in the longer grow-out phase. These changing and
developing practices will be continuously evaluated as
new technologies become available to prevent impacts on
wild fish stocks, and to increase resource security and
market feasibility. Aquaculture will need to increase efforts
to find new sources of n-3 LC-PUFA, in particular for
intensive rearing of marine carnivorous species. Whether
replacement sources will be derived from single-cell
biomass, from oil from GM land plants, or a combination
of the two is yet to be determined, but will ultimately
depend on scientific developments, social acceptance,
community needs and governmental policy.
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