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R -PROJECTIVE MODULES OVER A 
SEMIPERFECT RING 

BY 

R. D . K E T K A R A N D N. V A N A J A 

ABSTRACT. The aim of this paper is to prove the following 
theorem: 

Let R be a semiperfect ring. Let Q be a left R -module satisfying 
(a) Q is R-projective and (b) J(Q) is small in Q. Then Q is 
projective. 

1. Throughout R denotes an associative ring with unity. By an R -module we 
mean a unitary left R -module. For further terminology we refer to [1]. 
Specifically speaking we require the definitions and elementary properties of 
R-projective modules, projective covers and semiperfect rings. 

2. This section is devoted to the proof of the theorem stated in the abstract. 
We prove a key fact in 

LEMMA. Let Q be an R-projective module. Suppose Q = M+N where N is 
cyclic and Q/M has a projective cover f:P1^Q/M. Then O = P 0 Q i where 
P^N and P = Plm 

Proof. Let g : Q-+Q/M be the natural map. It is clear that gx = g | N:N—> 
Q/M is onto. This shows that Q/M and hence Px must be cyclic. Since Q is 
R-projective and Px is cyclic there exists a homomorphism h:Q-^P1 such that 
f°h = g. Let h1 = h\N. Then f°hx = gt. Since gx is onto and Ker(f) is small in 
P1? hx splits i.e. there is j:P1-^N such that h1°j = lPi. Take P = j(Pt), 
Q i - K e r ( h ) . 

Now we state the main result 

THEOREM 1. Let R be a semiperfect ring. Let Q be a left R-module satisfying 
(a) Q is R-projective and (b) J(Q) is small in Q. Then Q is projective. 

It is known that a semiperfect ring JR satisfies a.c.c. on left ideals which are 
direct summands of JR ([3] Theorem 4.3). Hence Theorem 1 will follow 
immediately from 

THEOREM 2. Let R be a ring satisfying a.c.c. on left ideals which are direct 
summands of R. Let Q be a left R-module satisfying (1) every finitely generated 
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factor module of Q has a projective cover, (2) Q is R-projective and (3) J(Q) is 
small in Q. Then Q is a direct sum of cyclic indecomposable projective modules. 

Let x G Q, x£J(Q). Then there is a maximal submodule M of Q such that 
x£M. Then Q = JRx + M. By condition (1), QIM has a projective cover. Since 
QIM is simple, this projective cover is cyclic indecomposable. By the above 
lemma we can write Q = P © Q i where P ç R x and F is a cyclic indecompos­
able projective module. Then Rx = Ryx®Rxx where x = y1 + xu P = JRy1? Rxx = 
jRx PlCh. It can be easily checked that Q1 also satisfies the conditions (1), (2), 
and (3). Now if x1^J(Q1) we can repeat the above process to write Qx = 
jRy2©Q2, ^ 2 cyclic indecomposable projective direct summand of Q con­
tained in Rxt, xx = y2 + x, such that Rx1 = Ry2(BRx2 where Rx2 = Rx1r\Q2. 
We claim that this process can be repeated only for finitely many times. 
For otherwise, we obtain an infinite direct sum Ry1(BRy2(B

m • *©i?yn©- • • in­
side Rx such that for each n,Ry1 + Ry2 + • • • + jRyn is cyclic projective generated 
by yi + y2 + • • • + yn. Let gn : R -» R(y1 + • • • + yn) be the maps defined by gn(l) = 
yi + '** + y„. These maps split and Ker(gn) = AnnR (y!+- • - + yn). Therefore, 
Ker(gi) ^ Ker(g2) ^ * • • ^ K e r ( g n ) ^ • • • form a decreasing sequence of sum-
mands of R. Hence we can get an increasing sequence L1ç=L2ç=- • • c 1^ c • • • 
of summands of JR such that L„ =K(y 1 + - • * + yn). By a.c.c. on these sum-
mands, Ln = Ln+1 for some n. Hence JRy!©- • -©-Ryn = jRyi©- • -®Ryn+1. But 
this cannot happen since each JRy, is a non-zero indecomposable module. This 
proves our claim. Now let 

A = {y | y e Q, y ^ 0, jRy is cyclic indecomposable 

projective direct summand of Q}. 

Then the preceding arguments together with the fact that J(Q) is small in Q 
show that Q = ZyeA Ry- Let si be the family of subsets B of A satisfying the 
conditions: (a) X y e B ^ y is a direct sum and (b) for y 1 } . . . , y n e B , 
JRyx + • • • + JRyn is a direct summand of Q. Clearly si is non-empty and Zorn's 
lemma is applicable (where the partial order in si is given by the usual 
inclusion relation). Let B 0 be a maximal element in si. Then P = Y,yeB0Ry = 

©SyeBo ^ y *s projective. We claim that P= Q. For this it is sufficient to prove 
that A^P + J(Q) since Q = I y e A # y and J(Q) is small in Q. Let y G A. We 
consider two cases: 

CASE 1. PC)Ry = 0. 

Then B0^B0U{y}^A. By maximality of B0 we can find yl9..., yn in B 0 

such that jRy!©- • -©jRyn©JRy is not a direct summand of Q. By condition (b) 
on B0 , we can write Q = (Ry1®- • •©jRyn)©Q1. Then JRy!©- • -®Kyn©jRy = 
(Ry1@--@Ryn)@((Ry1®--®Ryn®Ry)nQ1). This implies (Ryx®- • •© 
Ryn®Ry)nQ1 = Ry. Let (Ryx®- • -®Ryn®Ry)C\Q1 = Rz. Then Rz is cyclic 
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indecomposable submodule of Qt and Rz cannot be a direct summand of Qt. 
Hence it is clear from the previous arguments that z e / (Qi ) c J{Q). It follows 
that yeP + J(Q). 

CASE 2. PHRyj^O. 

If y e P we are through. Assume that y£P. Let 0^sy = xePCi Ry. Since Ry 
is non-zero projective, Ann(y) is a direct summand of R. Let Ann(y) = JRt. 
Choose a finite subset B^B0 such that x eX z e B -RZ- Then Xz e B ^ z is a direct 
summand of Q. Let h : Q—>ZZ€B^Z be the natural projection. Let y' = h(y). 
Then f (y-y ' ) = 0. We have also that s (y -y ' ) = 0 since sy'- sh(y) == h(sy) = 
h(x) = x = sy. Thus Ann(y)ç Ann(y-y ' ) . We claim that JR(y-y') does not 
contain any non-zero projective summand. If possible, let N be such a 
summand of jR(y-y') . Since Ann(y)ç Ann(y-y ' ) , y—»(y-y') defines an 
epimorphism f:Ry->R(y-y'). Let g: JR(y-y')—>N be the natural projection 
map. Then g°f:Ry—>N is an epimorphism which splits. Since jRy is indecom­
posable this means that g°f is an isomorphism. This would imply Ann(y - y') ç 
Ann(y), a contradiction. This proves our claim. It follows that y - y ' e J X Q ) . 
Hence y eP + J(Q). This completes the proof of Theorem 2. 

Note. A ring is called left perfect if every left R-module has a projective 
cover. It is well known that the radical of every left module over a left perfect 
ring is small. Hence from Theorem 1 and the Proof of Theorem 2 we get 

COROLLARY 1. (Sandomierski [4]). Any R-projective left R-module over a left 
perfect ring R is projective. 

COROLLARY 2. (H. Bass [2]). Let P be a projective left R-module over a left 
perfect ring R. Then P is a direct sum of cyclic indecomposable modules. 

The authors are thankful to the referee for his helpful criticisms which 
improved the proof of Theorem 2. 
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