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R-PROJECTIVE MODULES OVER A
SEMIPERFECT RING

BY

R. D. KETKAR AND N. VANAJA

ABSTRACT. The aim of this paper is to prove the following
theorem:

Let R be a semiperfect ring. Let Q be a left R-module satisfying
(a) Q is R-projective and (b) J(Q) is small in Q. Then Q is
projective.

1. Throughout R denotes an associative ring with unity. By an R-module we
mean a unitary left R-module. For further terminology we refer to [1].
Specifically speaking we require the definitions and elementary properties of
R-projective modules, projective covers and semiperfect rings.

2. This section is devoted to the proof of the theorem stated in the abstract.

We prove a key fact in

LemMa. Let Q be an R-projective module. Suppose Q = M+ N where N is
cyclic and Q/M has a projective cover f:P;— Q/M. Then Q = P@® Q, where
P<=N and P=P,.

Proof. Let g: Q— Q/M be the natural map. It is clear that g, =g |N:N—
Q/M is onto. This shows that Q/M and hence P; must be cyclic. Since Q is
R-projective and P, is cyclic there exists a homomorphism h : Q— P, such that
foh=g. Let h,=h|N. Then foh,=g,. Since g, is onto and Ker(f) is small in
Py, h; splits i.e. there is j:P,—>N such that h,cj=1p. Take P=j(P,),
Q, =Ker(h).

Now we state the main result

THEOREM 1. Let R be a semiperfect ring. Let Q be a left R-module satisfying
(a) Q is R-projective and (b) J(Q) is small in Q. Then Q is projective.

It is known that a semiperfect ring R satisfies a.c.c. on left ideals which are
direct summands of R ([3] Theorem 4.3). Hence Theorem 1 will follow
immediately from

THEOREM 2. Let R be a ring satisfying a.c.c. on left ideals which are direct
summands of R. Let Q be a left R-module satisfying (1) every finitely generated
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factor module of Q has a projective cover, (2) Q is R-projective and (3) J(Q) is
small in Q. Then Q is a direct sum of cyclic indecomposable projective modules.

Let x € Q, x¢J(Q). Then there is a maximal submodule M of Q such that
x¢ M. Then Q = Rx+ M. By condition (1), Q/M has a projective cover. Since
Q/M is simple, this projective cover is cyclic indecomposable. By the above
lemma we can write Q = P@® Q, where P< Rx and P is a cyclic indecompos-
able projective module. Then Rx = Ry,® Rx, where x =y, +x,, P= Ry, Rx; =
Rx N Q. It can be easily checked that Q; also satisfies the conditions (1), (2),
and (3). Now if x,¢J(Q;) we can repeat the above process to write Q, =
Ry,®Q,, Ry, cyclic indecomposable projective direct summand of Q con-
tained in Rx;, x;=y,+x, such that Rx, = Ry,® Rx, where Rx,= Rx;NQ,.
We claim that this process can be repeated only for finitely many times.
For otherwise, we obtain an infinite direct sum Ry,® Ry, ®- - -® Ry, D - - in-
side Rx such that for each n, Ry, + Ry, + - - - + Ry, is cyclic projective generated
by y;1+y,+---+y.Letg,:R—> R(y,;+---+y,)be the maps defined by g,(1) =
yi+- - -+y,. These maps split and Ker(g,) = Anng(y;+---+vy,). Therefore,
Ker(g,) 2Ker(g,) 2 - -2Ker(g,) 2 - - form a decreasing sequence of sum-
mands of R. Hence we can get an increasing sequence L, clL,c---cL, <
of summands of R such that L, =R(y,+---+vy,). By a.c.c. on these sum-
mands, L, =L, for some n. Hence Ry;®- - -® Ry, =Ry, P - -BRy, ;. But
this cannot happen since each Ry, is a non-zero indecomposable module. This
proves our claim. Now let

A={y|yeQ, y#0, Ry is cyclic indecomposable
projective direct summand of Q}.

Then the preceding arguments together with the fact that J(Q) is small in Q
show that Q=Y . Ry. Let & be the family of subsets B of A satisfying the
conditions: (a) Y,.gRy is a direct sum and (b) for vy, ...,y €B,
Ry,+---+ Ry, is a direct summand of Q. Clearly & is non-empty and Zorn’s
lemma is applicable (where the partial order in & is given by the usual
inclusion relation). Let B, be a maximal element in &. Then P=} g Ry =
D)., cp, Ry is projective. We claim that P = Q. For this it is sufficient to prove
that A< P+J(Q) since Q=Y,.. Ry and J(Q) is small in Q. Let ye A. We
consider two cases:

Case 1. PN Ry =0.

Then B, g BoU{y}< A. By maximality of B, we can find y;,...,y, in By
such that Ry, ®- - - Ry, @Ry is not a direct summand of Q. By condition (b)
on B,, we can write Q =(Ry,®- - -® Ry, )® Q,. Then Ry, D" - -DRy, PRy =
(Ry,D- - -®Ry,)D(Ry,®D- - - DRy, ®Ry)NQ,). This implies (Ry,D- - D
Ry, ®Ry)NQ;=Ry. Let (Ry;D- - -D Ry, DRy)NQ, = Rz. Then Rz is cyclic
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indecomposable submodule of Q; and Rz cannot be a direct summand of Q.
Hence it is clear from the previous arguments that z € J(Q,) = J(Q). It follows
that ye P+J(Q).

Case 2. PNRy#0.

If y € P we are through. Assume that y¢ P. Let 0 # sy = x € PN Ry. Since Ry
is non-zero projective, Ann(y) is a direct summand of R. Let Ann(y)=Rt.
Choose a finite subset B < B, such that xe€),.5 Rz. Then Y, _g Rz is a direct
summand of Q. Let h: Q—Y, .5 Rz be the natural projection. Let y' = h(y).
Then t(y—y’)=0. We have also that s(y—y’)=0 since sy’ =sh(y)=h(sy)=
h(x)=x=sy. Thus Ann(y)g Ann(y—y’). We claim that R(y—y’) does not
contain any non-zero projective summand. If possible, let N be such a
summand of R(y—y’). Since Ann(y)< Ann(y-—y’), y—=>(y—y’) defines an
epimorphism f: Ry— R(y—y’). Let g: R(y—y")— N be the natural projection
map. Then gof: Ry— N is an epimorphism which splits. Since Ry is indecom-
posable this means that gof is an isomorphism. This would imply Ann(y —y’) <
Ann(y), a contradiction. This proves our claim. It follows that y—y'eJ(Q).
Hence y € P+J(Q). This completes the proof of Theorem 2.

Note. A ring is called left perfect if every left R-module has a projective
cover. It is well known that the radical of every left module over a left perfect
ring is small. Hence from Theorem 1 and the Proof of Theorem 2 we get

CoroLLARY 1. (Sandomierski [4]). Any R-projective left R-module over a left
perfect ring R is projective.

CoroLLARY 2. (H. Bass [2]). Let P be a projective left R-module over a left
perfect ring R. Then P is a direct sum of cyclic indecomposable modules.

The authors are thankful to the referee for his helpful criticisms which
improved the proof of Theorem 2.
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