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The H and K Family of Mock Theta
Functions

Richard J. McIntosh

Abstract. In his last letter to Hardy, Ramanujan defined 17 functions F(q), |q| < 1, which he called

mock θ-functions. He observed that as q radially approaches any root of unity ζ at which F(q) has

an exponential singularity, there is a θ-function Tζ (q) with F(q) − Tζ (q) = O(1). Since then, other

functions have been found that possess this property. These functions are related to a function H(x, q),

where x is usually qr or e2πir for some rational number r. For this reason we refer to H as a “universal”

mock θ-function. Modular transformations of H give rise to the functions K, K1, K2. The functions

K and K1 appear in Ramanujan’s lost notebook. We prove various linear relations between these

functions using Appell–Lerch sums (also called generalized Lambert series). Some relations (mock

theta “conjectures”) involving mock θ-functions of even order and H are listed.

1 Introduction

In Ramanujan’s last letter to Hardy ([22, pp. 354–355], [23, pp. 127–131], [26, pp. 56–

61]) he observes that the asymptotic expansions of certain q-series with exponential

singularities at roots of unity “close” in a striking manner. For example, let

G(q) =

∞
∑

n=0

qn2

(1 − q)(1 − q2) · · · (1 − qn)
=

∞
∏

m=0

1

(1 − q5m+1)(1 − q5m+4)

(where the last equality is the first Rogers-Ramanujan identity). If q = e−t and

t → 0+ (so that q approaches 1 radially from inside the unit circle), then

G(q) =

√

2

5 −
√

5
exp

(

π2

15t
− t

60

)

+ o(1).

In the same letter Ramanujan notes that it is only for some special q-series f (q) that

the exponential closes, i.e., its argument terminates with some power tN . If f (q) is

not the sum of a theta function and a function which is O(1) at all roots of unity ζ ,

and if for each such ζ there is an approximation of the form

f (q) =

M
∑

µ=1

tkµ exp

( N
∑

ν=−1

cµνtν
)

+ O(1)
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936 R. J. McIntosh

as t → 0+ with q = ζe−t , he calls f (q) a mock θ-function. It appears from his letter,

however, that he was actually concerned with functions having the (possibly) more

restrictive property that for every root of unity ζ , there are modular forms h
(ζ)
j (q)

and rational numbers α j , 1 ≤ j ≤ J(ζ), such that

f (q) =

J(ζ)
∑

j=1

qα j h
(ζ)
j (q) + O(1)

as q radially approaches ζ . For a further description of mock theta functions see [13].

The most well-known infinite family of mock θ-functions is defined by M(qr, q),

where r is a noninteger rational number and

M(x, q) =

∞
∑

n=0

qn(n+1)

(x)n+1(q/x)n+1
.

In this paper we will use the standard notation for the q-shifted factorial:

(a ; qk)0 = 1, (a ; qk)n =

n−1
∏

m=0

(1 − aqkm), (a ; qk)∞ =

∞
∏

m=0

(1 − aqkm),

where k is a positive integer. When k = 1 it is customary to write (a)n instead of

(a ; q)n.

The functions M(q, q5) and M(q2, q5) appear in the celebrated Mock Theta Con-

jectures stated by Ramanujan in the lost notebook [23] and later proved by Hick-

erson [15]. These conjectures are linear relations involving the fifth order mock

θ-functions.

The function

N(y, q) =

∞
∑

n=0

qn2

(yq)n(y−1q)n

is related to M(x, q) by a modular transformation law, proved in [12] and restated

in Section 4. This function is also known as the rank generating function (see, for

example [4]).

In [12] the functions M(qr, q) and N(e2πir, q) are denoted by M(r, q) and N(r, q),

respectively. The product (e2πir)n(e−2πir)n in the definition of N(r, q) in [12] should

be (e2πirq)n(e−2πirq)n. The function N1(r, q) in [12] is equal to our M(e2πirq, q2).

In this paper we study another infinite family of mock θ-functions defined by

H(qr, q), where r is a noninteger rational number and

H(x, q) =

∞
∑

n=0

q
1
2

n(n+1)(−q)n

(x)n+1(q/x)n+1
.
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The H and K Family of Mock Theta Functions 937

The function H(x, q) is defined in a different way by Choi [6, eq. (2.34)]. It is closely

related to the functions

K(y, q) =

∞
∑

n=0

(−1)nqn2

(q ; q2)n

(yq2; q2)n(y−1q2; q2)n
,

K1(y, q) =

∞
∑

n=0

(−1)nq(n+1)2

(q ; q2)n

(yq; q2)n+1(y−1q; q2)n+1
,

K2(y, q) =

∞
∑

n=0

q
1
2

n(n+1)(−1)n

(yq)n(y−1q)n
.

Of particular interest are the linear and modular relations connecting these functions.

One such linear relation involving the functions K and K1 appears on page 8 of the

lost notebook (see also [1, pp. 264–267]). We prove several more in Section 3. The

modular relations are studied in Section 4.

For every classical mock θ-function f (q) explicit linear relations involving f , H

(or M), and ordinary θ-functions are known [13]. These relations are usually referred

to as mock theta “conjectures”, even when their proofs are known. The “conjectures”

for the functions of even order involve H and are listed in Section 5.

In Section 2 we show that the function H is a normalized level 2 Appell function

(see Section 6 for the definition of an Appell function), whereas the function M is

a normalized level 3 Appell function. Appell functions of higher level can often be

expressed in terms of those with lower level. A linear relation expressing M in terms

of H and a θ-function is given in Section 3. By this relation and the mock theta

“conjectures”, every classical mock θ-function is related to H. For this reason we refer

to H as a “universal” mock θ-function.

A preprint of this paper was circulated during a conference at the University of

Florida in 2004. Subsequently, several results of the preprint were cited by Bring-

mann, Ono, and Rhoades [5]. Their desire to see a published version is fulfilled here.

2 Appell-Lerch Sums

To prove linear relations and construct transformation laws for these functions it is

more convenient to work with the Appell-Lerch sums (also called generalized Lam-

bert series) studied in [18, 19]. Two of these sums defined for positive integers k are

Uk(x, q) =

∞
∑

n=−∞

(−1)nq
1
2

kn(n+1)

1 − xqn
,(2.1)

Vk(y, q) =
1

1 − y−1

∞
∑

n=−∞

(−1)knq
1
2

n(kn+1)

1 − yqn
.(2.2)
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It is not difficult to show that

Uk(x, q) =

∞
∑

n=−∞

(−1)nq
1
2

kn(n+1)

(1 − xqn)(1 − qn+1/x)
,(2.3)

Vk(y, q) =

∞
∑

n=−∞

(−1)knq
1
2

n(kn+1)

(1 − yqn)(1 − y−1qn)
.(2.4)

Observe that

Uk(x, q) =

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

1 − xqn
+

−1
∑

n=−∞

(−1)nq
1
2

kn(n+1)

1 − xqn

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

1 − xqn
+

∞
∑

n=1

(−1)nq
1
2

kn(n−1)

1 − xq−n

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

1 − xqn
+

∞
∑

n=0

(−1)n+1q
1
2

kn(n+1)

1 − xq−n−1

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

1 − xqn
+

∞
∑

n=0

(−1)nq
1
2

kn(n+1)qn+1/x

1 − qn+1/x

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)(1 − q2n+1)

(1 − xqn)(1 − qn+1/x)

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

(1 − xqn)(1 − qn+1/x)
−

∞
∑

n=0

(−1)nq
1
2

kn(n+1)q2n+1

(1 − xqn)(1 − qn+1/x)

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

(1 − xqn)(1 − qn+1/x)
+

∞
∑

n=1

(−1)nq
1
2

kn(n−1)q2n−1

(1 − xqn−1)(1 − qn/x)

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

(1 − xqn)(1 − qn+1/x)
+

−1
∑

n=−∞

(−1)nq
1
2

kn(n+1)q−2n−1

(1 − xq−n−1)(1 − q−n/x)

=

∞
∑

n=0

(−1)nq
1
2

kn(n+1)

(1 − xqn)(1 − qn+1/x)
+

−1
∑

n=−∞

(−1)nq
1
2

kn(n+1)

(qn+1 − x)(qn − 1/x)

=

∞
∑

n=−∞

(−1)nq
1
2

kn(n+1)

(1 − xqn)(1 − qn+1/x)
,

which is (2.3). Similarly,

Vk(y, q) =
1

(1 − y)(1 − y−1)

+
1

1 − y−1

∞
∑

n=1

(

(−1)knq
1
2

n(kn+1)

1 − yqn
+

(−1)knq
1
2

n(kn−1)

1 − yq−n

)
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=

1

(1 − y)(1 − y−1)

+
1

1 − y−1

∞
∑

n=1

(

(−1)knq
1
2

n(kn+1)

1 − yqn
− (−1)knq

1
2

n(kn−1) y−1qn

1 − y−1qn

)

=

1

(1 − y)(1 − y−1)

+
1

1 − y−1

∞
∑

n=1

(−1)knq
1
2

n(kn+1)(1 − y−1)(1 + qn)

(1 − yqn)(1 − y−1qn)

=

1

(1 − y)(1 − y−1)
+

∞
∑

n=1

(−1)knq
1
2

n(kn+1)(1 + qn)

(1 − yqn)(1 − y−1qn)

=

∞
∑

n=0

(−1)knq
1
2

n(kn+1)

(1 − yqn)(1 − y−1qn)
+

∞
∑

n=1

(−1)knq
1
2

n(kn+1)qn

(1 − yqn)(1 − y−1qn)

=

∞
∑

n=0

(−1)knq
1
2

n(kn+1)

(1 − yqn)(1 − y−1qn)
+

−1
∑

n=−∞

(−1)knq
1
2

n(kn−1)q−n

(1 − yq−n)(1 − y−1q−n)

=

∞
∑

n=0

(−1)knq
1
2

n(kn+1)

(1 − yqn)(1 − y−1qn)
+

−1
∑

n=−∞

(−1)knq
1
2

n(kn+1)q−2n

(1 − yq−n)(1 − y−1q−n)

=

∞
∑

n=0

(−1)knq
1
2

n(kn+1)

(1 − yqn)(1 − y−1qn)
+

−1
∑

n=−∞

(−1)knq
1
2

n(kn+1)

(qn − y)(qn − y−1)

=

∞
∑

n=−∞

(−1)knq
1
2

n(kn+1)

(1 − yqn)(1 − y−1qn)
,

which is (2.4).

By (2.3) and (2.4) we see that Uk(x, q) = Uk(q/x, q) and Vk(y, q) = Vk(y−1, q).

Also, Vk(e2πir, q) is real when r is a noninteger rational number and q is real with

0 < |q| < 1. (This function plays an important role in equation (4.2).)

Many of our identities involve the Jacobi θ-function defined by

j(x, q) =

∞
∑

n=−∞

(−1)nq
1
2

n(n−1)xn
= (x)∞(q/x)∞(q)∞

(where the last equality is the well-known Jacobi triple-product identity; see, for ex-

ample [7, p. 12]). Following Hickerson [15], we define a θ-product (or θ-quotient) to

be an expression of the form

Cqex
f1

1 · · · x fr
r L

g1

1 · · · Lgs
s ,

where C is a complex number, e and fi are rational numbers, g j are integers, and each

L j has the form

j(Dqhxk1

1 · · · xkr
r ,±qm)

https://doi.org/10.4153/CJM-2011-066-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-066-0


940 R. J. McIntosh

for some complex number D (usually D = ±1) and rational numbers h, ki , m with

m > 0. A θ-function is a finite sum of θ-products. Thus (q)∞ = j(q, q3) is a

θ-function, even though it lacks the factor q
1

24 needed to make it a modular form.

The sums U1 and V1 (multiplied by 1 − y) turn out to be θ-functions, since

U1(x, q) =
(q)2

∞

(x)∞(q/x)∞
=

(q)3
∞

j(x, q)
,(2.5)

V1(y, q) =
U1(y, q)

1 − y−1
=

(q)2
∞

(y)∞(y−1)∞
.(2.6)

Equation (2.5) is the expansion for the reciprocal of a θ-function and is equivalent

to the next to last formula on page 1 of the lost notebook (see also [1, p. 264,

eq. (12.2.9)]). The function (1 − z)U1(z, q)/(q)∞ is the crank statistic of Garvan

[8, eq. (1.25)].

At this point we introduce two more θ-functions: Jacobi’s θ4(0, q) defined by

θ4(0, q) =

∞
∑

n=−∞

(−1)nqn2

= j(q, q2) =
(q)2

∞

(q2; q2)∞
=

(q)∞

(−q)∞

and the Gauss function ψ(q) defined by

ψ(q) =

∞
∑

n=0

q
1
2

n(n+1)
=

1

2
j(−1, q) = j(−q, q4) =

(q2; q2)2
∞

(q)∞
=

(q2; q2)∞

(q ; q2)∞
.

Using these functions we can express the relations between the H and K family and

the sums U2 and V2 as follows:

H(x, q) =
U2(x, q)

θ4(0, q)
(2.7)

K(y, q) = (1 − y)(1 − y−1)
V2(y, q2)

ψ(q)
,(2.8)

K1(y, q) =
1

(1 − y−1)ψ(q)

∞
∑

n=−∞

q(n+1)(2n+1)

1 − yq2n+1
=

V2(y, q2) −V1(y, q)

ψ(q)
,(2.9)

K2(y, q) =
(1 − y)(1 − y−1)

θ4(0, q)

∞
∑

n=−∞

(−1)nqn(n+1)

(1 − yqn)(1 − y−1qn)
(2.10)

=

1 − y

1 + y

(

1 + 2y
U2(y, q)

θ4(0, q)

)

.

Equation (2.8) is equivalent to the last formula on page 1 of the lost notebook. Other

identities of this type are given in [1, Chapter 12].

Equations (2.5)–(2.10) can be proved by the Watson–Whipple transformation [7,

p. 242, eq. (III.17)]:
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(2.11) 8φ7

[

a, qa
1
2 , −qa

1
2 , b, c, d, e, f

a
1
2 , −a

1
2 , aq

b
, aq

c
, aq

d
, aq

e
, aq

f
,

; q;
a2q2

bcde f

]

=

(aq)∞( aq
de

)∞( aq
d f

)∞( aq
e f

)∞

( aq
d

)∞( aq
e

)∞( aq
f

)∞( aq
de f

)∞
4φ3

[ aq
bc
, d, e, f

aq
b
, aq

c
, de f

a

; q; q

]

.

We now prove (2.7). (The proofs of the other identities are similar.) Observe that

(qa
1
2 )n(−qa

1
2 )n

(a
1
2 )n(−a

1
2 )n

=

(1 − aq2)(1 − aq4) · · · (1 − aq2n)

(1 − a)(1 − aq2) · · · (1 − aq2n−2)
=

1 − aq2n

1 − a
.

Let e and f tend to infinity (or equivalently, put e = 1/e ′, f = 1/ f ′, simplify and

then let e ′ = f ′
= 0). Then (aq/e)n and (aq/ f )n tend to 1. Also,

(e)n = (1 − e)(1 − eq) · · · (1 − eqn−1)

= (−e)n
(

− 1

e
+ 1
)(

− 1

e
+ q
)

· · ·
(

− 1

e
+ qn−1

)

∼ (−e)nq
1
2

n(n−1)

as e → ∞. Similarly, ( f )n ∼ (− f )nq
1
2

n(n−1) as f → ∞. Hence in the limit, (2.11)

becomes

∞
∑

n=0

(

1 − aq2n

1 − a

)

(a)n(b)n(c)n(d)n

(q)n

( aq

b

)

n

( aq

c

)

n

( aq

d

)

n

(

a2

bcd

) n

qn(n+1)
=

(aq)∞
( aq

d

)

∞

∞
∑

n=0

( aq

bc

)

n
(d)n

(q)n

( aq

b

)

n

( aq

c

)

n

(

− a

d

) n

q
1
2

n(n+1).

Now put a = q, b = x, c = q/x, and d = −q to get

∞
∑

n=0

(−1)nqn(n+1)(1 − q2n+1)

(1 − xqn)(1 − qn+1/x)
=

(q)∞

(−q)∞

∞
∑

n=0

q
1
2

n(n+1)(−q)n

(x)n+1(q/x)n+1
.

Therefore

θ4(0, q) H(x, q) =

∞
∑

n=0

(−1)nqn(n+1)

(

xqn

1 − xqn
+

1

1 − qn+1/x

)

=

∞
∑

n=0

(−1)nqn(n+1)

(

1

1 − qn+1/x
− 1

1 − q−n/x

)

=

∞
∑

n=−∞

(−1)nqn(n+1)

1 − qn+1/x
=

∞
∑

n=−∞

(−1)nqn(n+1)

1 − xqn
= U2(x, q),
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since U2(x, q) = U2(q/x, q). This completes the proof of (2.7).

Subtracting V2(y, q2) from V1(y, q) removes the even terms in V1(y, q). The sec-

ond equality in (2.9) easily follows from this observation. The second equality in

(2.10) is a consequence of the two identities:

yU2(y, q) + y−1U2(y−1, q) = −θ4(0, q),(2.12)

yU2(y, q) − y−1U2(y−1, q) = (y − y−1)

∞
∑

n=−∞

(−1)nqn(n+1)

(1 − yqn)(1 − y−1qn)
.(2.13)

The proof of (2.13) is straightforward. We now prove (2.12). By (2.3) we get

U2(x, q) = U2(q/x, q). Hence,

yU2(y, q) + y−1U2(y−1, q) = yU2(y, q) + y−1U2(yq, q)

=

∞
∑

n=−∞

(−1)nqn(n+1) y

1 − yqn
+

∞
∑

n=−∞

(−1)nqn(n+1) y−1

1 − yqn+1

=

∞
∑

n=−∞

(−1)nqn(n+1) y

1 − yqn
+

∞
∑

n=−∞

(−1)n−1qn(n−1) y−1

1 − yqn

=

∞
∑

n=−∞

(−1)nqn2

(yqn − y−1q−n)

1 − yqn

=

∞
∑

n=−∞

(−1)nqn2

(1 + yqn)(1 − y−1q−n)

1 − yqn

= −
∞
∑

n=−∞

(−1)nqn2

(1 + yqn)(1 − yqn)y−1q−n

1 − yqn

= −
∞
∑

n=−∞

(−1)nqn2

(1 + y−1q−n)

= −
∞
∑

n=−∞

(−1)nqn2 − y−1
∞
∑

n=−∞

(−1)nqn(n−1)

= −θ4(0, q),

since the last sum vanishes.

The M and N analogues of (2.7) and (2.8) are ([12])

M(x, q) =
U3(x, q)

(q)∞
,(2.14)

N(y, q) =
(1 − y)(1 − y−1)

(q)∞
V3(y, q).(2.15)
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We see that the H and K family is related to U2 and V2, and the M and N family is

related to U3 and V3. In his proof of the Mock Theta Conjectures, Hickerson denotes

the function M by g. In view of these observations, in the forthcoming paper A survey

of classical mock theta functions [13], the functions H, K, M, N are denoted by g2, h2,

g3, h3, respectively.

3 Linear Relations

In this section we give linear relations for mock θ-functions, where the coefficients

are usually θ-functions. Unlike the modular transformation laws in Section 4, con-

vergence of the functions in these relations is not required. Equality is to be inter-

preted as equality of formal q-series (or Laurent series in q after replacing q by a

suitable power of q if necessary).

Since

U2(x, q) + U2(−x, q) = 2U1(x2, q2) =
2(q2; q2)3

∞

j(x2, q2)
,

it follows by (2.7) that

(3.1) H(x, q) + H(−x, q) =
2ψ2(q)

j(x2, q2)
.

From (2.10) and (2.7) we obtain

(3.2)
1 + y

1 − y
K2(y, q) = 1 + 2yH(y, q).

Since K2(x, q) = K2(x−1, q), it follows by (3.2) that

(3.3) xH(x, q) + x−1H(x−1, q) = −1.

Substituting H(x−1, q) = H(q/x−1, q) = H(xq, q) into (3.3), we get

xH(x, q) + x−1H(xq, q) = −1,

which is equivalent to the functional equation

H(xq, q) = −x2H(x, q) − x.

Combining (3.2) and (3.1) gives

1 + y

1 − y
K2(y, q) − 1 − y

1 + y
K2(−y, q) =

4yψ2(q)

j(y2, q2)
,

or equivalently,

K2(y, q)

(1 − y)(1 − y−1)
+

K2(−y, q)

(1 + y)(1 + y−1)
=

4V1(y2, q2)

θ4(0, q)
.
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By (2.8) and (2.9),

(3.4) (1 − y)−1K(y, q) − (1 − y−1)K1(y, q) =
(1 − y−1)V1(y, q)

ψ(q)
=

(q)3
∞

ψ(q) j(y, q)
.

When y = −a we obtain the fifth formula on page 8 of the lost notebook (see also

[1, p. 265, eq. (12.3.2)]:

∞
∑

n=0

(−1)n(q ; q2)nqn2

(−a ; q2)n+1(−q2/a ; q2)n
− (1 + 1/a)

∞
∑

n=0

(−1)n(q ; q2)nq(n+1)2

(−aq ; q2)n+1(−q/a ; q2)n+1
=

(q ; q2)∞ θ4(0, q)

(−a ; q)∞(−q/a ; q)∞
.

Generalizations of equations (3.1) and (3.4) were later given in [5, Theorem 1.3] and

in [17, eq. (1.7), (1.11)].

The functions H and K are related by the identity [14]

qH(x, q)

x
+

K(−x2/q, q2)

1 + x2/q
=

(q2; q2)3
∞

j(x, q) j(−x2/q, q4)
.

The analogous relation between M and N is

xM(x, q) + 1 =

N(x, q)

1 − x
,

which is equivalent to

(3.5) x2U3(x, q) + (1 − x)V3(x, q) + x(q)∞ = 0

by (2.14) and (2.15).

We now prove (3.5). By (2.1) and (2.2) we have

x2U3(x, q) + (1 − x)V3(x, q) + x(q)∞

= x2
∞
∑

n=−∞

(−1)nq
3
2

n(n+1)

1 − xqn
+

1 − x

1 − x−1

∞
∑

n=−∞

(−1)nq
1
2

n(3n+1)

1 − xqn
+ x j(q2, q3)

=

∞
∑

n=−∞

(−1)nx2q
3
2

n(n+1)

1 − xqn
−

∞
∑

n=−∞

(−1)nxq
1
2

n(3n+1)

1 − xqn
+

∞
∑

n=−∞

(−1)nxq
1
2

n(3n+1)

=

∞
∑

n=−∞

(−1)nxq
1
2

n(3n+1)(xqn − 1 + (1 − xqn))

1 − xqn
= 0.
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The functions M and N can be expressed in terms of H. More precisely,

M(x4, q4) =
qH(x6q, q6)

x2

+
x2H(x6/q, q6)

q
− x2(q2; q2)3

∞(q12; q12)∞ j(x2q, q2) j(x12q6, q12)

q(q4; q4)∞(q6; q6)2
∞ j(x4, q2) j(x6/q, q2)

.

This identity is a special case of more general identities expressing each Uk as a com-

bination of k − 1 copies of U2 and a θ-function [13, eq. (6.7), (6.8)]. Identities (6.7)

and (6.8) in [13] were discovered by the author and proved by Gordon [14].

All of the functions K, K1, K2, M, and N can be expressed in terms of H and θ-

functions. In [13] a case is made for considering H as a “universal” mock θ-function.

Other linear relations involving H can be constructed using the transformation

laws in Section 4 and the hyperbolic function identity

cosh ax

cosh x
=

sinh(1 + a)x

sinh 2x
+

sinh(1 − a)x

sinh 2x
.

Some special values of H, K2 and K are

H(−1, q) = 1/2,(3.6)

H(q,−q2) = ψ(q4),(3.7)

H(iq, q2) = ψ(q4),(3.8)

H(i, q) = θ4(0,−q)/2 + i/2,(3.9)

K2(i, q) = θ4(0,−q),(3.10)

K2(1, q) = 1/θ4(0, q),(3.11)

K(1, q) = 1/ψ(q).(3.12)

Equation (3.6) is obtained from (3.3) with x = −1. Observe that (3.7) is (3.8)

with q replaced by −iq, and (3.10) follows from (3.9) by (3.2). We will now prove

(3.8) and (3.9).

By (2.7) and (2.5),

H(iq, q2) =
U2(iq, q2)

θ4(0, q2)
=

1

θ4(0, q2)

∞
∑

n=−∞

(−1)nq2n(n+1)

1 − iq2n+1

=

1

θ4(0, q2)

∞
∑

n=−∞

(−1)nq2n(n+1)(1 + iq2n+1)

1 + q4n+2

=

1

θ4(0, q2)

(

U1(−q2, q4) + iq

∞
∑

n=−∞

(−1)nq2n(n+2)

1 + q4n+2

)

= ψ(q4).

(3.13)
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The last sum in (3.13) vanishes, since

−1
∑

n=−∞

(−1)nq2n(n+2)

1 + q4n+2
= −

∞
∑

n=0

(−1)nq2n(n+2)

1 + q4n+2
.

By (3.1) we have

(3.14) H(i, q) + H(−i, q) =
2ψ2(q)

j(−1, q2)
= θ4(0,−q),

and by (3.3) we have

iH(i, q) − iH(−i, q) = −1,

which is equivalent to

(3.15) H(i, q) − H(−i, q) = i.

Adding (3.14) and (3.15) we obtain (3.9).

To prove (3.11), we begin with the first identity of (2.10):

θ4(0, q)K2(y, q) = (1 − y)(1 − y−1)

∞
∑

n=−∞

(−1)nqn(n+1)

(1 − yqn)(1 − y−1qn)

= 1 + (1 − y)(1 − y−1)

∞
∑

n=−∞
n6=0

(−1)nqn(n+1)

(1 − yqn)(1 − y−1qn)
.

When y = 1, this becomes θ4(0, q)K2(1, q) = 1, which is (3.11).

The proof (3.12) is similar to the proof of (3.11). By (2.8) and (2.2) we obtain

ψ(q)K(y, q) = (1 − y)(1 − y−1)V2(y, q2) = (1 − y)

∞
∑

n=−∞

qn(2n+1)

1 − yq2n

= 1 + (1 − y)

∞
∑

n=−∞
n6=0

qn(2n+1)

1 − yq2n
.

When y = 1, this becomes ψ(q)K(1, q) = 1, which is (3.12).

In the transformation law for H(qr,−q) (see Section 4) the integral vanishes when

r = 1/2. This implies that H(q1/2,−q) and K2(i,−q) are θ-functions. Using com-

puter algebra we found identities (3.7)–(3.10).
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4 Transformation Laws

In discussing the approximation of mock θ-functions near roots of unity, we have

adhered to the notation q = e−α, employed by Ramanujan and his early successors.

This maps the right half-plane Re(α) > 0 onto the punctured disc 0 < |q| < 1. In the

classical theory of θ-functions, as expounded for example in [25, 27], it is customary

to write instead q = eπiτ with Im(τ ) > 0. Thus α = −πiτ . The transformations

of mock θ-functions are more complicated than those of θ-functions; they involve

Mordell integrals [21]. For example, the θ-functions (q)∞, θ4(q), and ψ(q) satisfy

the transformation laws:

q
1

24 (q)∞ =

√

2π

α
q

1
6

1 (q4
1; q4

1)∞,

q
1

24 (−q;−q)∞ =

√

π

α
q

1
24

1 (−q1;−q1)∞,

θ4(0, q) =

√

4π

α
q

1
4

1ψ(q2
1),

θ4(0,−q) =

√

π

α
θ4(0,−q1),

q
1
8ψ(q) =

√

π

2α
θ4(0, q2

1),

q
1
8ψ(−q) =

√

π

α
q

1
8

1ψ(−q1),

(4.1)

where q = e−α and q1 = e−β with αβ = π2. Here

(a;−q)n =

∞
∏

m=0

(

1 − a(−q)m
)

= (a; q2)∞(−aq; q2)∞.

Observe that (4.1) is the functional equation for the Dedekind η-function (see, for

example [3, p. 48]); the other five identities above can easily be deduced from it.

The corresponding laws for the mock θ-function H(qr, q) are

qr(1−r)H(qr, q) =

√

π

4α
csc(πr)q

− 1
4

1 K(e2πir, q2
1)

−
√

α

π

∫ ∞

0

e−αx2 cosh(2r − 1)αx

coshαx
dx,

qr(1−r)H(−qr, q) = −
√

4π

α
sin(πr)q

− 1
4

1 K1(e2πir, q2
1)

+

√

α

π

∫ ∞

0

e−αx2 cosh(2r − 1)αx

coshαx
dx,
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qr(1−r)H(qr,−q) =

√

π

4α
cot
( πr

2

)

K2(eπir,−q1)

+

√

α

π

∫ ∞

0

e−αx2 sinh(2r − 1)αx

sinhαx
dx,

qr(1−r)H(−qr,−q) =

√

π

4α
tan
( πr

2

)

K2(−eπir,−q1)

−
√

α

π

∫ ∞

0

e−αx2 sinh(2r − 1)αx

sinhαx
dx.

Observe that the first two transformation laws for H involve the same Mordell

integral. Using (3.1), (3.4), and transformation laws for the above θ-functions one

can show that these laws are equivalent. Since H(−qr,−q) = H(q1−r,−q), the last

two transformation laws for H are also equivalent. A complete transformation theory

of H is found in [5, Theorem 4.3] proved by the same method of contour integration

used to prove (4.2) below. This method extends back to the work of Watson [26].

The analogous transformation laws for M(qr, q) are [12]

q
3
2

r(1−r)− 1
24 M(qr, q) =

√

π

2α
csc(πr)q

− 1
6

1 N(e2πir, q4
1) −

√

3α

2π
J(r, α),

q
3
2

r(1−r)− 1
24 M(−qr, q) = −

√

2π

α
q

4
3

1 M(e2πirq2
1, q

4
1) −

√

3α

2π
J1(r, α),

q
3
2

r(1−r)− 1
24 M(qr,−q) =

√

π

4α
csc
( πr

2

)

q
− 1

24

1 N(eπir,−q1) −
√

3α

2π
J2(r, α),

q
3
2

r(1−r)− 1
24 M(−qr,−q) =

√

π

4α
sec
( πr

2

)

q
− 1

24

1 N(−eπir,−q1) −
√

3α

2π
J2(1 − r, α),

where the Mordell integrals J, J1, J2 are defined by

J(r, α) =

∫ ∞

0

e−
3
2
αx2 cosh(3r − 2)αx + cosh(3r − 1)αx

cosh 3
2
αx

dx,

J1(r, α) =

∫ ∞

0

e−
3
2
αx2 sinh(3r − 2)αx − sinh(3r − 1)αx

sinh 3
2
αx

dx,

J2(r, α) =

∫ ∞

0

e−
3
2
αx2

(

cosh
(

3r − 7

2

)

αx + cosh
(

3r − 5

2

)

αx

+ cosh
(

3r − 1

2

)

αx − cosh
(

3r +
1

2

)

αx

)/

cosh 3αx dx.

A complete transformation theory of M is found in [4, Theorems 2.1, 2.2].

In [13] we deduce the first transformation laws for H and M from the following
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transformation law for Uk:

q
1
2

kr(1−r)Uk(qr, q) =
4π

α
sin(πr) Vk(e2πir, q4

1)

−
k−1
∑

m=1

θ1

( mπ

k
, q

2
k

1

)

∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx

=

4π

α
sin(πr) Vk(e2πir, q4

1)

−
√

kα

2π

k−1
∑

m=1

q
(k−2m)2

8k j(qm, qk)

∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx,

(4.2)

where the Jacobi θ-function θ1 is defined by

θ1(z; τ ) = θ1(z, q) = 2

∞
∑

n=0

(−1)nq
(2n+1)2

4 sin(2n + 1)z.

As usual for Jacobi θ-functions q = eπiτ .

We will now prove (4.2) by contour integration and the saddle-point method. By

analytic continuation, it suffices to prove the identity for real α > 0. Put q = e−α

and consider the contour integral

I = I1 + I2 =
1

2πi

∫ +∞−ǫi

−∞−ǫi

π

sinπz

e−
1
[

2kαz(z + 1)

1 − e−α(z+r)
dz

+
1

2πi

∫ −∞+ǫi

+∞+ǫi

π

sinπz
e−

1
2

kαz(z+1)1 − e−α(z+r)dz,

where ǫ > 0 is sufficiently small. By Cauchy’s residue theorem, I is equal to the sum

of the residues of the poles of the integrand inside the contour. Now π/ sinπz has a

simple pole of residue (−1)n at each integer n and 1/(1 − e−α(z+r)) has a simple pole

of residue 1/α at z = −r. If ǫ is sufficiently small, there are no other poles inside the

contour. Hence

(4.3) I =

∞
∑

n=−∞

(−1)nq
1
2

kn(n+1)

1 − qn+r
+

π

sin(−πr)

q−
1
2

kr(1−r)

α
= Uk(qr, q) +

πq−
1
2

kr(1−r)

α sin(−πr)
.

We now consider I2. In the upper half plane we have

1

sinπz
= −2i

∞
∑

n=0

e(2n+1)πiz,

so

I2 =

∞
∑

n=0

∫ +∞+ǫi

−∞+ǫi

e(2n+1)πiz− 1
2

kαz(z+1)

1 − e−α(z+r)
dz =

∞
∑

n=0

Jn,
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say. The integrand of Jn has poles in the upper half plane at the points z where

1 − e−α(z+r)
= 0, that is, at the points

zm = −r +
2πim

α

for m = 1, 2, . . . . The residue at zm (multiplied by 2πi) is

µn,m = 2πi
e(2n+1)πizm−

1
2

kαzm(zm+1)

α

=

2πi

α
e−(2n+1)πirq(2n+1)2m

1 q−
1
2

kr(1−r)e−k(1−2r)πimq−2km2

1 ,

where q1 = e−π
2/α. Next, we symmetrize the denominator of the integrand of Jn by

using the identity

1

1 − t
=

t−
1
2

k + t−
1
2

k+1 + t−
1
2

k+2 + · · · + t
1
2

k−1

t−
1
2

k − t
1
2

k
.

Applying this with t = e−α(z+r), we find that the integrand of Jn is

e
1
2

kα(z+r) + e( 1
2

k−1)α(z+r) + · · · + e(− 1
2

k+1)α(z+r)

e
1
2

kα(z+r) − e−
1
2

kα(z+r)
e−

1
2

kαze(2n+1)πiz− 1
2

kαz2

.

To find the saddle point, we set the derivative of the last factor equal to 0, getting

(2n + 1)πi − kαz = 0 or

z =

(2n + 1)πi

kα
= wn,

say. We move the upper contour of Jn up to the horizontal line through wn, getting

J ′n. By the residue theorem,

Jn = J ′n + sum of residues of poles of integrand between the two contours.

These poles are the points zm = −r + 2πim
α for which 0 < 2m < 2n+1

k
, or equivalently,

0 < m ≤ n
k

. Hence,

Jn = J ′n +
∑

0<m≤ n
k

µn,m.

Summing over n, we obtain

I2 =

∞
∑

n=0

J ′n +

∞
∑

m=1

∞
∑

n=km

µn,m.

Now

µn+1,m = e2πizmµn,m = e−2πirq4m
1 µn,m.
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Hence,
∞
∑

m=1

∞
∑

n=km

µn,m =

∞
∑

m=1

µkm,m

1 − e−2πirq4m
1

=

∞
∑

m=1

2πi

α

e−(2km+1)πirq(2km+1)2m
1 q−

1
2

kr(1−r)e−k(1−2r)πimq−2km2

1

1 − e−2πirq4m
1

=

2πi

α
q−

1
2

kr(1−r)e−πir
∞
∑

m=1

(−1)kmq2km2+2m
1

1 − e−2πirq4m
1

,

so

(4.4) I2 =
2πi

α
q−

1
2

kr(1−r)e−πir
∞
∑

m=1

(−1)kmq2km2+2m
1

1 − e−2πirq4m
1

+

∞
∑

n=0

J ′n.

Before going on to evaluate the integral J ′n, we remark that the integral I1 over the

lower contour can be handled similarly. This time the expansion

1

sinπz
= 2i

∞
∑

n=0

e−(2n+1)πiz

is employed. Note that this is just the complex conjugate of the expansion used in the

upper half plane. Thus I1 =
∑∞

n=0 Kn, where

Kn =

∫ +∞−ǫi

−∞−ǫi

e−(2n+1)πiz− 1
2

kαz(z+1)

1 − e−α(z+r)
dz.

The lower contour is moved down to the horizontal line through wn, giving

Kn = J
′

n +
∑

0<m≤ n
3

µn,m.

The sum here is just the complex conjugate of the one evaluated above, so from (4.4)

it follows that

(4.5) I1 = −2πi

α
q−

1
2

kr(1−r)eπir
∞
∑

m=1

(−1)kmq2km2+2m
1

1 − e2πirq4m
1

+

∞
∑

n=0

J
′

n.

Adding (4.4) and (4.5), we obtain

I = I1 + I2

=

2πi

α
q−

1
2

kr(1−r)
∞
∑

m=1

(−1)kmq2km2+2m
1

[

e−πir

1 − e−2πirq4m
1

− eπir

1 − e2πirq4m
1

]

+

∞
∑

n=0

( J ′n + J
′

n)

=

4π

α
q−

1
2

kr(1−r) sin(πr)

∞
∑

m=1

(−1)kmq2km2+2m
1 (1 + q4m

1 )

(1 − e2πirq4m
1 )(1 − e−2πirq4m

1 )
+

∞
∑

n=0

( J ′n + J
′

n).
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It now follows from equation (4.3) that

Uk(qr, q) = I − π

sin(−πr)

q−
1
2

kr(1−r)

α

=

4π sin(πr)q−
1
2

kr(1−r)

α

[

1

4 sin2(πr)
+

∞
∑

m=1

(−1)kmq2km2+2m
1 (1 + q4m

1 )

(1 − e2πirq4m
1 )(1 − e−2πirq4m

1 )

]

+

∞
∑

n=0

( J ′n + J
′

n)

=

4π sin(πr)q−
1
2

kr(1−r)

α
Vk(e2πir, q4

1) +

∞
∑

n=0

( J ′n + J
′

n).

(4.6)

We now evaluate
∑∞

n=0( J ′n + J
′

n). In the integral J ′n put z = −r + p + x, where

p =
(2n+1)πi

kα and x is a real variable running from −∞ to ∞. This gives

J ′n = q−
1
2

kr

∫ ∞

−∞

ABC dx ,

where

A = e(2n+1)πi(−r+p+x),

B =

1 + e−α(p+x) + e−2α(p+x) + · · · + e(−k+1)α(p+x)

e
1
2

kα(p+x) − e−
1
2

kα(p+x)
,

C = e−
1
2

kα(−r+p+x)2

.

Simplifying, we obtain

J ′n = q−
1
2

kr(1−r)q
(2n+1)2

2k

1

∫ ∞

−∞

ekαrx− 1
2

kαx2

2i(−1)n cosh 1
2
kαx

k−1
∑

m=1

e−
m(2n+1)πi

k e−mαx dx

+ q−
1
2

kr(1−r)q
(2n+1)2

2k

1

∫ ∞

−∞

ekαrx− 1
2

kαx2

2i(−1)n cosh 1
2
kαx

dx

= Pn + Qn,

say. Since Qn is purely imaginary, we have J ′n + J
′

n = Pn + Pn. Hence,

J ′n + J
′

n = −q−
1
2

kr(1−r)
k−1
∑

m=1

(−1)nq
(2n+1)2

2k

1 sin

(

m(2n + 1)π

k

)
∫ ∞

−∞

e(kr−m)αx− 1
2

kαx2

cosh 1
2
kαx

dx

= −2q−
1
2

kr(1−r)
k−1
∑

m=1

(−1)nq
(2n+1)2

2k

1 sin

(

m(2n + 1)π

k

)

·
∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx
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and so

∞
∑

n=0

( J ′n + J
′

n) = −q−
1
2

kr(1−r)
k−1
∑

m=1

∞
∑

n=0

2(−1)nq
(2n+1)2

2k

1 sin

(

m(2n + 1)π

k

)

·
∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx

= −q−
1
2

kr(1−r)
k−1
∑

m=1

θ1

( mπ

k
, q

2
k

1

)

∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx,

(4.7)

where the Jacobi θ-function θ1 is defined by

θ1(z; τ ) = θ1(z, q) = 2

∞
∑

n=0

(−1)nq
(2n+1)2

4 sin(2n + 1)z = ie−izq
1
4 j(e2iz, q2)

and satisfies the transformation law

−i
√
−iτ exp

( iz2

πτ

)

θ1(z; τ ) = θ1

( z

τ
;− 1

τ

)

.

Hence,

−i
√
−iτ exp

( iz2

πτ

)

θ1(z, q) = θ1

( z

τ
, q1

)

.

Replacing q by q
k
2 (so τ → k

2
τ , q1 → q

2
k

1 ), we obtain

−i

√

−ikτ

2
exp
( 2iz2

kπτ

)

θ1(z, q
k
2 ) = θ1

( 2z

kτ
, q

2
k

1

)

.

When z = mπτ/2, this becomes

θ1

( mπ

k
, q

2
k

1

)

= −i

√

−ikτ

2
exp
( m2πiτ

2k

)

θ1

( mπτ

2
, q

k
2

)

= −i

√

−ikτ

2
q

m2

2k θ1

( mπτ

2
, q

k
2

)

= −i

√

kα

2π
q

m2

2k θ1

( mπτ

2
, q

k
2

)

=

√

kα

2π
q

(k−2m)2

8k j(qm, qk).

(4.8)

Substituting (4.8) into (4.7) gives

∞
∑

n=0

( J ′n + J
′

n) = −q−
1
2

kr(1−r)
k−1
∑

m=1

θ1

( mπ

k
, q

2
k

1

)

∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx

= −q−
1
2

kr(1−r)

√

kα

2π

k−1
∑

m=1

q
(k−2m)2

8k j(qm, qk)

·
∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx.

(4.9)
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Finally, by (4.6) and (4.9) we get the transformation law

q
1
2

kr(1−r)Uk(qr, q) =
4π

α
sin(πr) Vk(e2πir, q4

1)

−
k−1
∑

m=1

θ1

( mπ

k
, q

2
k

1

)

∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx

=

4π

α
sin(πr) Vk(e2πir, q4

1)

−
√

kα

2π

k−1
∑

m=1

q
(k−2m)2

8k j(qm, qk)

∫ ∞

0

e−
1
2

kαx2 cosh(kr − m)αx

cosh 1
2
kαx

dx,

which completes the proof of (4.2).

5 Mock Theta Conjectures for Functions of Even Order

Hickerson [15,16] proved that Ramanujan’s fifth and seventh order mock θ-functions

are related to the function M. The third order mock θ-function ω(q) is M(q, q2),

and the third order mock θ-function ψ(q) is equal to qM(q, q4). Ramanujan gave

relations, later proved by Watson [26], between ω(q) or ψ(q) and some of the other

third order mock θ-functions. A complete list of relations between all of the third

order mock θ-functions and the function M is given in [13].

It turns out that the mock θ-functions of even order are related to the function H.

Lists of all of these relations (referred to as mock theta “conjectures” even after their

proofs are known) are found in [13]. We will discuss some of these relations.

The second order mock θ-function B(q) is H(q, q2) (see [20]). The function V1(q)

in [11, 20] is equal to qH(q, q4).

The sixth order mock θ-functions φ(q) and ψ(q) defined by

φ(q) =

∞
∑

n=0

(−1)nqn2

(q ; q2)n

(−q ; q)2n
, ψ(q) =

∞
∑

n=0

(−1)nq(n+1)2

(q ; q2)n

(−q ; q)2n+1

are related to H by

φ(q4) =
(q2; q2)3

∞(q3; q3)2
∞(q12; q12)3

∞

(q)2
∞(q6; q6)3

∞(q8; q8)∞(q24; q24)∞
− 2qH(q, q6),

ψ(q4) =
q3(q2; q2)2

∞(q4; q4)∞(q24; q24)2
∞

(q)∞(q3; q3)∞(q8; q8)2
∞

− q3H(q3, q6).

These identities were discovered using transformation laws and computer algebra.

Some proofs for these and similar identities for the eighth and tenth order functions

below will appear in a forthcoming paper. Relations between other sixth order mock

θ-functions and φ(q) or ψ(q) are found in [2].
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Gordon and the author [11] discovered the eighth order mock θ-functions by

applying the half-shift method to the θ-functions appearing in the Göllnitz–Gordon

identities [9],[10], [24, eq. (36), (34)]. Two of the eighth order mock θ-functions are

S0(q) =

∞
∑

n=0

qn2

(−q ; q2)n

(−q2; q2)n
, S1(q) =

∞
∑

n=0

qn(n+2)(−q ; q2)n

(−q2; q2)n
.

They are related to H by

S0(−q2) =
j(−q, q2) j(q6, q16)

j(q2; q8)
− 2qH(q, q8),

S1(−q2) =
j(−q, q2) j(q2, q16)

j(q2, q8)
− 2qH(q3, q8).

On page 9 of the lost notebook Ramanujan defined four functions that came to be

known as the tenth order mock θ-functions. These functions are

φ(q) =

∞
∑

n=0

q
1
2

n(n+1)

(q ; q2)n+1
, ψ(q) =

∞
∑

n=0

q
1
2

(n+1)(n+2)

(q; q2)n+1
,

X(q) =

∞
∑

n=0

(−1)nqn2

(−q ; q)2n
, χ(q) =

∞
∑

n=0

(−1)nq(n+1)2

(−q; q)2n+1
.

The mock theta “conjectures” of order 10 are

φ(q) =
(q10; q10)2

∞ j(−q2, q5)

(q5; q5)∞ j(q2, q10)
+ 2qH(q2, q5),

ψ(q) = −q(q10; q10)2
∞ j(−q, q5)

(q5; q5)∞ j(q4, q10)
+ 2qH(q, q5),

X(−q2) =
(q4; q4)2

∞

(

j(−q2, q20)2 j(q12, q40) + 2q(q40; q40)3
∞

)

(q2; q2)∞(q20; q20)∞(q40; q40)∞ j(q8, q40)

− 2qH(q, q20) + 2q5H(q9, q20),

χ(−q2) =
q2(q4; q4)2

∞

(

2q(q40; q40)3
∞ − j(−q6, q20)2 j(q4, q40)

)

(q2; q2)∞(q20; q20)∞(q40; q40)∞ j(q16, q40)

− 2q3H(q3, q20) − 2q5H(q7, q20).

The first two were stated and proved by Choi [6, pp. 533–534], and the last two were

discovered by the author [13] by matching the Mordell integrals in their transfor-

mation laws (obtained using computer algebra) with the Mordell integrals in the

transformation laws for H(qr, q). A rigorous proof has yet to be worked out.
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6 Concluding Remarks

Unlike that for θ-functions, transformation laws for mock θ-functions are not

unique. For example,

q
3
2

r(1−r)U3(qr, q) =
4π

α
sin(πr) V3(e2πir, q4

1) + an integral(6.1)

=

−2πi

α
e3πirU3(e2πir, q4

1) + some integrals.(6.2)

Equation (6.1) is (4.2) with k = 3. To prove (6.2) we first introduce the Appell

function.

The Appell function of level l (not to be confused with the level of a modular

form) is defined by (see, for example [30])

Al(u, v ; τ ) = elπiu
∞
∑

n=−∞

(−1)lnelπi(n2+n)τ+2πinv

−e2πinτ+2πiu
, τ ∈ H, v ∈ C, u ∈ C \(Zτ + Z),

and satisfies the transformation law [30]

Al(u, v; τ ) =
eπi(lu−2v)u/τ

τ
Al(u/τ , v/τ ;−1/τ ) + some integrals.

When l = 3 and v = 0, this law becomes

(6.3) e3πiuU3(e2πiu, e2πiτ ) =
e3πiu2/τ

τ
e3πiu/τU3(e2πiu/τ , e−2πi/τ ) + some integrals.

Recall that q = e−α = eπiτ and q1 = e−π
2/α. So α = −πiτ and q1 = e−πi/τ . If we

put u = rτ , then (6.3) simplifies to

q3rU3(q2r, q2) =
−πi

α
q3r2

e3πirU3(e2πir, q2
1) + some integrals.

Replacing q by q
1
2 (hence α→ 1

2
α, q1 → q2

1), this becomes (6.2).

Comparing (6.1) and (6.2), we cannot conclude that

4π

α
sin(πr) V3(e2πir, q4

1) =
−2πi

α
e3πirU3(e2πir, q4

1),

which is equivalent to

2i sin(πr) V3(e2πir, q4
1) = e3πirU3(e2πir, q4

1) .

By (3.5) (with x → e2πir, q → q4
1, then divide by eπir) we obtain

2i sin(πr) V3(e2πir, q4
1) − e3πirU3(e2πir, q4

1) = eπir(q4
1; q4

1)∞.
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Hence 2i sin(πr) V3(e2πir, q4
1) and e3πirU3(e2πir, q4

1) differ by a θ-function.

In general, the mock θ-functions on the right-hand sides of transformation laws

similar to (6.1) and (6.2) (with the same left side) differ by a θ-function, because they

have the same shadow [28].

The presence of a nonzero Mordell integral in a transformation formula for a

function f (q) does not always indicate that f (q) is a mock θ-function. We provide

an example using Zwegers’ µ-function [29] (this function is a normalized level 1

Appell function):

µ(a, b, q) = µ(u, v ; τ ) = ib
1
2 q−

1
8 A1(u, v; τ )/ j(b, q),

where a = e2πiu, b = e2πiv, and q = e2πiτ .

If we put u = 1/2 + τ/2 and v = 1/2, then

µ(u, v; τ ) = µ(−q
1
2 ,−1, q) = q

1/8
2i , µ

( u

τ
,

v

τ
;− 1

τ

)

= µ(−q
− 1

2

1 , q
− 1

2

1 , q1) = 0,

where q1 = e−2πi/τ . The transformation law for f (q) = µ(−q
1
2 ,−1, q) becomes

q1/8
= e−α/4

= 2

∫ ∞

0

e−αx2 cosαx

coshπx
dx,

where α = −πiτ .

Equation (2.7) expresses the function H(x, q) as a normalized level 2 Appell func-

tion. In particular,

H(x, q) =
U2(x, q)

j(q, q2)
=

Ã2(x,−1, q)

j(q, q2)
,

where

Ãl(a, b, q) =

∞
∑

n=−∞

(−1)lnq
1
2

ln(n+1)bn

1 − aqn
.

By the identity

1

1 − x
=

1 + x + x2 + · · · + xl−1

1 − xl
,

where x = aqn, it is not difficult to show that

(6.4) Ãl(a, b, q) =

l−1
∑

m=0

amÃ1(al, (−1)l−1bqm, ql).

Kang [17] used this to prove that

(6.5) iaH(a, q) =
η4(2τ )

η2(τ )ϑ(2u ; 2τ )
+ aq−

1
4µ(2u, τ ; 2τ )

and

ia
3
2 q−

1
24 M(a, q) =

η3(3τ )

η(τ )ϑ(3u ; 3τ )
+ aq−

1
6µ(3u, τ ; 3τ ) + a2q−

2
3µ(3u, 2τ ; 3τ ),
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where a = e2πiu, q = e2πiτ , and η(τ ) = q
1

24 (q)∞ is the Dedekind η-function.

The transformation laws for H and µ can be combined to eliminate the Mordell

integrals. This resulting transformation law is

q−
1
2

r2(

q
1
8 H(a

1
2 b−

1
2 q

1
4 , q

1
2 ) + iµ(u, v ; τ )

)

=

1√
−iτ

( 1

2
sec(πr) q

− 1
8

1 K(−qv−u
1 , q1) − iµ

( u

τ
,

v

τ
;− 1

τ

))

,

where q = e2πiτ , q1 = e−2πi/τ , a = e2πiu, b = e2πiv, and r = (u − v)/τ . Hence,

(6.6) iµ(u, v ; τ ) + q
1
8 H(a

1
2 b−

1
2 q

1
4 , q

1
2 )

and

(6.7) iµ(u, v; τ ) − a
1
2 b−

1
2 q−

1
8 K(−a/b, q)

1 + a/b

are Jacobi forms; they behave like θ-functions. A proof that (6.6) vanishes when

u + v = τ/2 and (6.7) vanishes when u + v = 1/2 is given in [14]. Therefore

(6.8) H(a, q) = −iq−
1
4µ(u, τ − u ; 2τ )

and

K(a, q) = (a
1
2 − a−

1
2 )q

1
8µ
( u

2
,

1 − u

2
; τ
)

= 2i sin(πu)q
1
8µ
( u

2
,

1 − u

2
; τ
)

,

or equivalently,

H(x, q) = −iq−
1
4µ(x, q/x, q2) =

Ã1(x, q/x, q2)

j(q/x, q2)

and

K(y, q)

1 − y
= −y−

1
2 q

1
8µ(y

1
2 ,−y−

1
2 , q) =

Ã1(y
1
2 ,−y−

1
2 , q)

y
1
2 j(−y−

1
2 , q)

.

Observe that (6.8) removes the θ-quotient from (6.5). This has a nice extension

to higher level Appell functions. It follows from (6.4) and (2.5) that

Ãl(a, (−1)l−1, q) =
(ql; ql)3

∞

j(al, ql)
+

l−1
∑

m=1

amÃ1(al, qm, ql)

=

(ql; ql)3
∞

j(al, ql)
− i

l−1
∑

m=1

am− l
2 q

l
8
− m

2 j(qm, ql)µ(lu,mτ ; lτ ).

(6.9)
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The θ-quotient in (6.9) is removed by the conjectured identity

Ãl(a, (−1)l−1, q) =

l−1
∑

m=1

j(qm, ql)

j(qm/a, ql)
am−1Ãl(al−1, qm/a, ql)

= −i

l−1
∑

m=1

am− l
2 q

l
8
− m

2 j(qm, ql)µ(lu − u,mτ − τ ; lτ )

for l ≥ 2.
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