
J. Appl. Prob. 43, 899–904 (2006)
Printed in Israel

© Applied Probability Trust 2006

SEARCHING FOR SEARCHERS

COLIN L. MALLOWS ∗ ∗∗ and

JEAN MELOCHE,∗ ∗∗∗ Avaya Labs

Abstract

We describe a search problem that has arisen in the context of network monitoring.
Abstractly, a known (very large) region may contain one or more ‘agents’. Starting with
just one agent, we search until another agent is found; this new agent can assist in the
remaining search, and so on recursively.

Keywords: Search; exploration; functional equation

2000 Mathematics Subject Classification: Primary 68P10; 60J85
Secondary 90B40; 39B99

1. Monitoring a network

The reader interested only in the idealized problem discussed in this paper should go directly
to Section 2.

To monitor the quality of service of an IP (Internet protocol) network, engineers place
communication end-points at strategic physical locations in that network. End-points require an
IP address in order to communicate. IP addresses are assigned by the dynamic host configuration
protocol. Once an end-point has been installed, it can inject traffic to other end-points to
measure quality of service characteristics. But before this can be done, all IP addresses must
be discovered, i.e. made known to some originating end-point. While the engineer knows what
subnet (i.e. what range of IP addresses) each end-point is on, there is no direct way to find out
which IP address in the range an end-point has been allocated. There may be more than one
end-point in a subnet.

The problem for the engineer is thus to discover the IP addresses of the installed end-points.
For that purpose, the end-points are programmed with the ability to discover their peers by
probing IP addresses. If a functioning end-point receives a probe, it replies with a specific
response that prevents false positives. Probing an IP address at which there is no end-point will
result in either the wrong response or no reply at all. This discovery process starts from one
end-point with the task of searching through the list of all IP addresses in all the ranges where
end-points may be found.

Realistic numbers to work with are one end-point per 256 addresses, 1 million addresses to
probe, and 100 probes per second. As the search progresses, newly discovered end-points can
join in the search to speed up the discovery process.

The method is related to the statistical ‘snowball sampling’ method, in which ‘interesting’
people found in an initial sample are interrogated to suggest where more ‘interesting’ people
might be found. Our analysis is also related to the theory of branching processes.

Received 18 February 2004; revision received 11 May 2006.
∗ Postal address: Avaya Labs, 233 Mt. Airy Road, Basking Ridge, NJ 07920, USA.
∗∗ Email address: colinm@research.avayalabs.com
∗∗∗ Email address: jmeloche@research.avayalabs.com

899

https://doi.org/10.1239/jap/1158784957 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784957


900 C. L. MALLOWS AND J. MELOCHE

2. A probability problem

The problem outlined in Section 1 suggests the following abstract probability problem. There
is a region to be searched, consisting of a number of ‘cells’. There may be some topology on
the cells. We start with a single agent, which can search cells one by one. Each cell may or may
not contain another agent. When a new agent is found, it can be co-opted to help with the search
of the remaining cells. The question is, how long will it take to search all the cells? There is a
considerable literature on search and exploration problems (see, for example, Knuth (1998)),
but as far as the authors know this problem is a new one. We will usually assume that each cell
contains an agent with the same probability p (this may not be realistic), and that each search
takes the same length of time.

There are several possible search strategies. First, we may work hierarchically, i.e. when
the first agent finds a new agent, it splits the remaining region into two equal parts (or differing
by 1) and each agent works on its own region. Recursively, each new agent is assigned half of
the remaining region of its ‘parent’. This strategy may result in one agent working through a
large region with no help while other agents have found several additional agents and are now
idle, having finished searching their regions.

A more efficient (time-saving) strategy is that when an agent becomes idle, it is offered for
adoption by its parent to help with part of that parent’s region. When a parent with offspring
becomes idle, it and all its offspring are offered to the grandparent, etc. This will result in
efficient searching even when agents are not distributed uniformly throughout the region. This
strategy can be modelled by simply assuming that all active agents search the whole remaining
region efficiently. (However, this ignores the additional bookkeeping that is needed.) In a
limiting case, we assume that agents are situated along the positive real line according to a
stationary Poisson process. The search starts at the origin, moving to the right at unit speed;
every time a new agent is found, the speed increases by 1.

3. Efficient searching

Consider searching an unlimited number of cells, where for each cell the probability that it
contains an agent is p = 1 − q, independently for all cells. If the time to complete searching
n cells is Tn and the number of cells searched in time t is Nt , then we have

{Tn ≤ t} = {Nt ≥ n}.
For convenience, we can work with Nt (for fixed t) rather than Tn (for fixed n).

We start (at time 0) with a single agent. Suppose that at time t we have k active agents and
have searched n cells. Let the probability of this (given t) be P(t, k, n). Initially we have t = 0,
k = 1, and n = 0. At time t + 1 another k cells will have been searched and some random
number Xt of new agents will have been found, so that now there are Kt = k +Xt agents. The
distribution of Xt is binomial(k, p). We obtain the generating function

F(u, x, y) =
∑

utxkyn P(t, k, n),

where all sums, on t , k, and n, are from 0 to ∞. Considering what will happen in the next time
interval, we have

F(u, x, y) = x + uF(u, qxy + px2y, y); (1)

whence, by differentiation and setting x and y to 1, we can derive moments of Kt and Nt .

https://doi.org/10.1239/jap/1158784957 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784957


Searching for searchers 901

Putting s = 1 + p, we find that

E(Kt ) = st , var(Kt ) = q(s2t−1 − st−1),

E(Nt ) = st − 1

p
, var(Nt ) = (s2t−1 − (2t − 1)pst−1 − 1)q

p2 .

The authors have not seen how to solve (1) explicitly.

4. Asymptotics

The moments suggest that for t large the distribution of Nt is approximately the same as that
of Kt/p, and that, as t → ∞, the distributions of K ′

t = Kt/s
t and N ′

t = Nt/s
t may approach

limits. Assuming this, we find that, for each of X = K ′ and X = pN ′, the Laplace transform
f (u) = E(exp(−uX)) must satisfy

f ((1 + p)u) = qf (u) + pf (u)2, (2)

with f ′(0) = 1. It is not hard to show that all moments exist, and that these moments do
determine the distribution of X. We find that

m1 = 1, m2 = 2

s
, m3 = 12

s2(s + 1)
, m4 = 24(5 + s)

s3(s + 1)(s2 + s + 1)
,

where s = 1 + p. The distribution of X approaches a standard exponential distribution as
s → 1 (i.e. p → 0) and approaches a point mass at X = 1 as s → 2 (i.e. p → 1).

After much effort, the authors have not been able to solve (2) explicitly. It appears that
f = f (p, u) has a Taylor expansion about p = 0, the first two terms of which are

f (p, u) = 1

1 + u
− pu log(1 + u)

(1 + u)2 + · · · ,

but we have not found the next term.
Another asymptotic approximation can be obtained as follows. Suppose that new agents

appear according to a stationary Poisson process on (0, ∞) with rate λ. The gaps g1, g2, . . .

between successive new agents are independent exponential variables with mean 1/λ. If we fix
k then the position of the kth new agent is Xk = g1 + · · · + gk, and the time it takes to search
up to this agent is

Tk = g1 + g2

2
+ g3

3
+ · · · + gk

k
,

so that (for k fixed)

E(Xk) = k, var(Xk) = k, E(Tk) ≈ γ + log(k), var(Tk) ≈ π2

6
,

where γ = 0.5772 is Euler’s constant. The Laplace transform of the distribution of Tk is

k∏
j=1

1

1 + s/j
.

As k increases, the distribution of Tk − log k − γ approaches a limit, which is the double-
exponential or extreme-value distribution

P(Tk − log k − γ < y) = exp(− exp(−y)),

https://doi.org/10.1239/jap/1158784957 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784957


902 C. L. MALLOWS AND J. MELOCHE

Efficient search

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100120

(a) λn 16=

(f)

Binary search

λ 4=

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100120

(e)

Efficient search

λn 4=

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100120

(d)

Binary search

λ 8=

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100120

(c)

Efficient search

λn 8=

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100120

(b)

Binary search

λ 16=

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100120

Figure 1: Exact and approximate distributions of Tn for nine cases; (a), (c), and (e) show an efficient
search and (b), (d), and (f) show a binary search.

so that, as an approximation, we may take

P(Tx < t) = exp(−x exp(γ − t)). (3)

Equivalently, this approximation says that exp(−x exp(γ − Tx)) is uniform in (0, 1).
Figure 1 shows how this approximation performs. We calculated the exact distribution of

Tn for three values of n, namely 32, 64, and 128, and three values of λn, namely 4, 8, and 16.
Figures 1(a), 1(c), and 1(e) show the cumulative distributions of Tn for these nine cases, with

https://doi.org/10.1239/jap/1158784957 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784957


Searching for searchers 903

the time scales adjusted to make the comparisons easier (for n = 64 we plot P(T < t) against
2t , etc.) The curves for the three values of n (labelled ‘Efficient search’) lie on top of one
another in each case. The approximation (3) is also shown. It appears that the approximation
is poor for these values of λn, though it may be better for larger values. Figures 1(b), 1(d), and
1(f) show P(T < t) for the binary division strategy; see Section 6.

5. B-stability

Equation (2) is a special case of

f (cu) = g(f (u)), (4)

where f (u) is a Laplace transform and g(z) is the probability generating function (PGF) of a
random variable J , say, which takes values on the positive integers; thus, g(z) = E(zJ ). The
constant c is the mean of this distribution. In (2) we have g(z) = qz+pz2. We recognise (4) as
a generalization of the basic relation governing an explosive branching process. Suppose that
a zeroth generation consists of a single individual, X0 = 1. The PGF of this variable is simply
g0(z) = z. This individual has J descendants, so the PGF of the number X1 of individuals
in the first generation is g1(z) = g(z). Each of these has a random number of descendants,
each distributed in the same way as J , and all mutually independent; so the PGF of X2 is
g2(z) = g(g(z)). In general, we have gn+1(z) = gn(g(z)).

If P(J = 0) = 0 and c = E(J ) is finite, then the growth of Xn is exponentially explosive
and Yn = Xn/c

n is a martingale. The distribution of Yn converges, with the limiting Laplace
transform satisfying (4). The relation (4) generalizes this by allowing f (u) to be the transform
of an arbitrary distribution. Mallows and Shepp (2005) studied the solutions of (4) in some
generality.

6. Binary division

Suppose now that each agent is assigned a specific region to work on, and that when a new
agent is found, it takes responsibility for half of the region assigned to its parent. This may be
the simplest strategy to follow when the region to be searched has some topology, for example
when it is a tree. The search ends when the slowest agent finishes. We have not seen how to
tackle this case analytically, but a numerical approach is feasible. Let Tn be the time taken to
search all of n cells, and denote by �·	 and 
·� the ‘floor’ and ‘ceiling’ functions, respectively.
We have

P(Tn ≤ t) = (1 − p) P(Tn − 1 ≤ t − 1) + p P(T�(n−1)/2	 ≤ t − 1, T
(n−1)/2� ≤ t − 1), (5)

so that, given p, values of P(Tn ≤ t) can be computed by induction on n. For n large, there is
a Poisson process approximation

P(Tx < t) =
∫ x

0
e−w P2(T(x−w)/2 < t − w) dw,

which has proved to be intractable.
Numerical work with p = 0.1 shows that, for a binary search, T100 has a mean of about

71.2, and, for an efficient search, has a mean of about 62.1. The distribution of T100 for a binary
search is close to that of T100 for an efficient search, translated by +10. For p = 0.5, T100
for a binary search has a mean of about 13.3 and is about 40% larger than T100 for an efficient

https://doi.org/10.1239/jap/1158784957 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784957


904 C. L. MALLOWS AND J. MELOCHE

search, which has a mean of about 9.7. Figures 1(b), 1(d), and 1(f) show the distributions of
Tn for a binary search for the same nine cases as for the efficient case.

For a binary search, the distribution of Tn does not have a smooth density. This effect is
negligible for large values of λn.

The numerical results suggest that the time needed to search n sites using a binary search is
some 20% to 40% longer than for an efficient search. This penalty may not be large enough to
warrant the additional organizational burden of an efficient search.

Several questions remain open for further work.

• Can (2) be solved explicitly?

• Is there a convenient correction term that will improve the approximation (3)?

• Can (5) be used to find the asymptotic form of the distribution of Tn for a binary search?

References

Knuth, D. E. (1998). The Art of Computer Programming, Vol. 3, Sorting and Searching. Addison-Wesley, Reading,
MA.

Mallows, C. and Shepp, L. (2005). B-stability. J. Appl. Prob. 42, 581–586.

https://doi.org/10.1239/jap/1158784957 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784957

	1 Monitoring a network
	2 A probability problem
	3 Efficient searching
	4 Asymptotics
	5 B-stability
	6 Binary division
	References

